
Canal: A Flexible Interconnect Generator for
Coarse-Grained Reconfigurable Arrays

Jackson Melchert*, Keyi Zhang*, Yuchen Mei, Mark Horowitz, Christopher Torng, Priyanka Raina
Stanford University; *Equal Contribution

ABSTRACT

The architecture of a coarse-grained reconfigurable array
(CGRA) interconnect has a significant effect on not only
the flexibility of the resulting accelerator, but also its power,
performance, and area. Design decisions that have complex
trade-offs need to be explored to maintain efficiency and
performance across a variety of evolving applications. This
paper presents Canal, a Python-embedded domain-specific
language (eDSL) and compiler for specifying and generat-
ing reconfigurable interconnects for CGRAs. Canal uses a
graph-based intermediate representation (IR) that allows for
easy hardware generation and tight integration with place and
route tools. We evaluate Canal by constructing both a fully
static interconnect and a hybrid interconnect with ready-valid
signaling, and by conducting design space exploration of the
interconnect architecture by modifying the switch box topol-
ogy, the number of routing tracks, and the interconnect tile
connections. Through the use of a graph-based IR for CGRA
interconnects, the eDSL, and the interconnect generation sys-
tem, Canal enables fast design space exploration and creation
of CGRA interconnects.

1. INTRODUCTION
Coarse-grained reconfigurable arrays (CGRAs) have been

studied heavily in recent years as a promising configurable
accelerator architecture [4, 7, 8, 12]. The end of Moore’s law
necessitates the creation of specialized hardware accelerators
to enable running increasingly complex image processing
and machine learning applications. While a variety of hard-
ware accelerator architectures exist, CGRAs have emerged as
an interesting midpoint between the flexibility of an FPGA
and the performance of an application-specific accelerator. A
CGRA can achieve high energy efficiency and performance
due to word-level arithmetic operations and interconnect,
while maintaining enough flexibility to run a variety of appli-
cations that evolve over time [2].

CGRAs, as well as other spatial accelerator architectures,
often have hundreds of compute cores and memory cores.
These compute cores (called processing elements or PEs) and
memory (MEM) cores are laid out spatially in a grid of tiles
and are connected through a configurable interconnect. An
example is shown in Fig. 1. The reconfigurable interconnect
contains switch boxes (SBs), which connect the PE/MEM
outputs to the tracks in the interconnect, and connection boxes
(CBs), which connect the interconnect tracks to the inputs
of the cores. While having a large number of compute cores
enables very high performance, the reconfigurable intercon-
nect connecting these cores can constitute over 50% of the

. . .

PE PEMEM

PE PEMEM

PE PEMEM

. . .
CGRA

Connection Box Switch Box

Figure 1: Architecture of a CGRA with PE tiles, memory
tiles, connection boxes, and switch boxes.

CGRA area and 25% of the CGRA energy [12]. Design space
exploration of the interconnect is necessary to achieve high
performance with lower energy and area costs.

There are many interconnect design choices that directly
impact the power, performance, and area of the resulting
accelerator, including the number and bitwidth of tracks in
the interconnect, how the processing elements and memories
are arranged in the array, how those elements are connected,
and how the interconnect is configured. An agile approach
for specifying and generating the interconnect is needed for
efficient design space exploration.

In this paper, we present Canal, a Python-embedded domain-
specific language (eDSL) and compiler for specifying and
generating reconfigurable interconnects for CGRAs using a
graph-based intermediate representation. The major contribu-
tions of our paper are:

1. We describe a graph-based intermediate representation
(IR) for CGRA interconnects that is capable of repre-
senting and generating a variety of topologies.

2. We propose an embedded domain-specific language
(eDSL) called Canal that can compile an interconnect
architecture specification into the graph-based IR.

3. We propose an interconnect generator system that can
take the IR and automatically produce hardware, place
and route collateral, and a bitstream generator.

4. We explore various design space choices using Canal
and demonstrate its effectiveness in generating an effi-
cient CGRA design.

1

ar
X

iv
:2

21
1.

17
20

7v
1

 [
cs

.A
R

]
 3

0
N

ov
 2

02
2

Canal
Program

Canal
Compiler

Interconnect
RTL

Interconnect
Graph

Application

Placer and
Router

Physical
Design

Bitstream
Generator

Placement
Result

Configuration
Bitstream

PE and MEM
Core Designs

Figure 2: The Canal interconnect generator system. It takes
an interconnect specification written as a program in the
Canal eDSL and produces the interconnect RTL implementa-
tion. Canal also takes an application and places and routes it
on a CGRA with the specified interconnect and generates a
configuration bitstream.

2. RELATED WORK
Previous attempts have been made to create an interconnect

generator for CGRAs, but new demands in CGRA design ne-
cessitate a more flexible and powerful system. VPR is one of
the most established FPGA architecture research tools [1]. It
allows users to adjust various design aspects of the FPGA and
observe the effects on final application performance, such as
timing and area usage. However, VPR does not offer an RTL
generator and users have to design their FPGA independently
and hand-write the VPR architecture file accordingly.

CGRA-ME [3] is a CGRA architecture research tool simi-
lar to Canal in that it also offers integrated RTL generation
and place and route tools. One of the major differences is the
architecture specification. CGRA-ME opts for a more rigid
XML-based input whereas Canal takes in a Python eDSL
program, which is more flexible and readable.

FastCGRA [15] is a similar CGRA architecture exploration
tool that uses an eDSL to construct the hardware. However,
with FastCGRA, users explicitly construct multiplexers and
switches, from which RTL is generated. Canal abstracts away
the notion of hardware primitives and lets the compiler back-
end choose how to generate the hardware. In summary, Canal
supports more tools, allows for more flexibility, and enables
easier design space exploration than previous attempts at an
interconnect generator.

3. SYSTEM DESIGN
In this section, we introduce the design of the Canal system,

including the graph-based IR for representing interconnects,
the Canal eDSL, the static interconnect generation used to
translate the IR into hardware, and finally how that IR inter-
faces with the application place and route (PnR) algorithms.
Fig. 2 summarizes how the Canal interconnect generator in-
terfaces with the PE and memory core designs, application
PnR, RTL generation, and bitstream generation.

3.1 Graph-Based Intermediate Representation
The primitives in Canal’s intermediate representation (IR)

are nodes, which represent anything that can be connected
in the underlying hardware, and edges, which are wires con-
necting the nodes together. An example of the IR for a switch
box is shown in Fig. 3.

All edges are unidirectional so the IR represents a directed
graph. Nodes in the graph can have multiple incoming edges
which, when translated into hardware, transform into multi-
plexers. Each node also has attributes that provide additional

PE
2 inputs
1 output

SB SB

SB SB

(a) Hardware
representation of a PE

with four SBs

in0 in1

out

(b) Digraph
representation of a PE

with four SBs

Figure 3: Hardware and directed graph based intermediate
representation of the configurable interconnect. Not all con-
nections between the PE and SBs are shown for simplicity.

node = Node(x=1, y=1, side="south", track=1)
for port_node in tile.pe.inputs():

node.add_edge(port_node)

create_uniform_interconnect(width=32,
height=32, sb_type="wilton", num_tracks=5,
track_width=16, reg_density=1)

Figure 4: Example Canal low level node creation and high
level interconnection creation. Canal includes many useful
high level interconnect construction functions to enable the
creation of common interconnects.

information for type checking and hardware generation.
This intermediate representation is flexible enough to rep-

resent a wide variety of interconnect topologies and handle
an arbitrarily complex set of CGRA cores. We will discuss
a few design space exploration experiments that exploit this
flexibility in Section 4.

3.2 The Canal Language
The Canal language is a Python-embedded domain-specific

language (eDSL) that constructs the interconnect intermedi-
ate representation described in the previous section. The
Canal language translates the Python description of an in-
terconnect into this IR, so at the lowest level, a designer
could instantiate nodes in the Canal language and wire them
together.

As Canal is embedded in Python, we have also built a
layer on top of the basic primitives of Canal, which simplifies
the IR construction. For instance, for creating a uniform
interconnect (all switch boxes have the same topology) with
no diagonal connections, we provide a simple helper function
that produces different interconnect topologies by varying
function parameters such as height and width of the array,
switch box topology, number of tracks, bit width of tracks,
and density of pipeline registers. An example of creating a
low level Canal node and using a higher level Canal helper
function is shown in Fig. 4.

The Canal eDSL allows designers to easily conduct design
space exploration by varying the parameters in the helper
functions, or by generating an entirely new interconnect.
Canal can easily be integrated with other DSLs. For ex-
ample, one could use a DSL for specifying individual CGRA
tiles and then integrate them together using Canal to generate
the interconnect.

2

n_ready

w_ready

s_ready

ready
n_sel_oh[2]

w_sel_oh[1]

s_sel_oh[0]

w_sel
n_sel

s_sel

0 1 2

2 1 0

0
1

2 data_in

PE

PE

SB

Data Signals

Ready Signals
n_ready

w_ready

s_ready

sel

sel_oh[2]
sel_oh[1]

sel_oh[0]

PE

Decoder

ready

 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 0
 1 0 0 0
 1 0 1 0
 1 1 0 1
 1 1 1 1

LUT Implementation

Optimized Implementation

LUT

AOI Mux

i0 i1 i2 ready

Figure 5: Joining logic for the ready signals on the config-
urable interconnect. In this example, the data signal coming
in from the east is being routed to both the north and west.
The ready signals corresponding to the data signals flow in
the opposite direction through the same switch boxes. The
two ready signals need to be joined together to form the final
ready signal, and we can reuse the one-hot switch box mux
select signals to compute this.

3.3 Generating Interconnect Hardware
Because Canal’s IR only describes the connectivity among

the different nodes, it is up to the hardware compiler back-
end to decide how to lower the IR. We implemented two
different hardware compiler backends that lower the IR into
(1) a static mesh interconnect and (2) a statically configured
network-on-chip (NoC). This NoC has data channels along
with a ready-valid interface and routing is configured stati-
cally before the application runs. We use magma [10] as our
hardware circuit implementation, but this could be extended
to any hardware generator framework.

To generate a static mesh interconnect, we adopt the fol-
lowing principles to generate hardware:

1. Nodes with hardware attributes (e.g. a processing ele-
ment core) generate the specified hardware.

2. Directed edges are translated into wires.

3. Nodes with multiple incoming edges generate multi-
plexers.

We also use attributes associated with each node to lower
the node to different hardware components. For instance, a
register node will be lowered into a physical register. A port
node will be lowered to a CB (with an internal multiplexer)
where the output of the CB connects to the port of the core.
These translations are mechanical and can be accomplished
through a compiler pass.

Split FIFO

FIFO FIFO

Original FIFO

FIFO

Figure 6: Split FIFO optimization where two registers in
adjacent switch boxes can function as a FIFO.

Reusing the same IR to generate a statically configured
NoC has several challenges. First, the application graph may
have fanouts, that is, one output port of a node is connected to
multiple input ports. While this is simple to handle in a static
interconnect, we now need an area-efficient way to handle
control signals.

Since valid signals flow in the same direction as the data,
generating hardware for valid channels follows the same
strategy as that used for the data channels. However, since
ready signals flow in a direction opposite to that of the data
channels, we need a way to merge ready signals at the fan-
in point. A naive solution is to implement a lookup table
(LUT) that encodes the fan-in information, as shown in Fig. 5.
During configuration, we statically encode the ready signal
joining logic into the LUT. However, building a LUT for each
multiplexer is expensive and it also bloats the configuration
space. To optimize this logic, we leverage the fact that the
data multiplexers in the switch box are AOI multiplexers,
which internally use a decoder to convert the mux selection
bits into a one-hot vector, which represents the active routing
information. The ready signal joining logic needs this routing
information to properly join multiple ready signals. We can
reuse these one-hot decoder signals to compute the joining
logic without introducing expensive LUT based solutions,
as shown at the bottom of Fig. 5. In this figure, the one-hot
selection signals are n_sel_oh, w_sel_oh, and s_sel_oh. We
know that if bit 2 of n_sel_oh is high, than the data_in is
routed to the north. We OR the inversion of n_sel_oh[2]
with the n_ready signal, giving us a signal that is high when
n_ready is high or when that route is not used. We can repeat
this logic for the remaining two directions and AND them all
together to form the final ready output.

Another challenge when generating a statically configured
NoC is that a ready-valid NoC needs FIFOs present in the
interconnect to buffer data when a downstream tile is not yet
ready. While we can easily generate a fixed-size FIFO for a
register IR node, the area cost of those FIFOs can be quite
high, as shown in Fig 8. Therefore, we also need a way to
reduce FIFO size. To reduce the area overhead introduced by
FIFOs while maintaining backward compatibility with a static
interconnect, we realize that we can combine two registers
from adjacent tiles into a single size-two FIFO. We call this a
split FIFO. The first register’s FIFO control signals are passed
from the first tile into the second tile and its register, as shown
in Figure 6.

3

(a) Digraph representation
with no edge weights

200 ps

5 ps

5 ps

5 ps 5 ps

50 ps

50 ps 50 ps

50 ps

(b) Digraph representation with
timing information as weights

Figure 7: The edge weights of the directed graph representa-
tion of the interconnect allow the PnR algorithm to be run on
the graph directly.

We can also chain more registers together into a deeper
FIFO using the same logic. Since each register’s FIFO logic
is slightly different depending on its location inside the FIFO
pipeline, we need to configure them differently during place
and route. The drawback, however, is that these control
signals cannot be registered at the tile boundary; the longer
the FIFO is chained, the longer the combinational delay on
the path. However, if most of the target applications do
not require a deep FIFO between different nodes, using this
scheme can significantly reduce the silicon area. The area
impact of this optimization is evaluated in Fig. 8.

After the graph is translated into RTL, Canal verifies struc-
tural correctness by comparing the connectivity of the hard-
ware with that of the IR by parsing the generated RTL. In
addition, Canal also has a built in configuration sweep test
suite that exhaustively tests every possible connection in IR
on the CGRA. This ensures correctness of the design.

The methodology described here also applies to generating
dynamic NoCs. Instead of lowering a node into a configurable
multiplexer to select among incoming data tracks, we can
generate a router whose routing table is computed based on
the same connectivity information.

3.4 Place and Route using Canal Interconnect
This section describes how the Canal system integrates

with a PnR algorithm backend (see Fig. 2) to enable running
applications on a given interconnect. During the translation
from a Canal program into the directed graph representation,
information regarding important hardware characteristics,
like core or wire delays, can be embedded into the graph as
shown in Fig. 7. The Canal system then executes PnR in three
stages: packing, placement, and routing. The remainder of
this section describes the PnR backend we use in our results.

During the packing stage, both the interconnect graph and
the application graph (represented as a dataflow graph) are
loaded into the PnR tool. Constants and registers in the
application are analyzed to identify any packing opportunities.
For example, a pipeline register that feeds directly into a PE
can be packed within that PE, eliminating the need to place
that register on the configurable interconnect.

After packing, the placement tool places the tiles in the
application onto the interconnect in two stages: global place-
ment and detailed placement. Global placement uses an
analytical algorithm that leverages the standard conjugate

0
1000
2000
3000
4000

Baseline FIFO Split FIFO

SB Area (μm²)

Figure 8: Area comparison of a baseline fully static switch
box, a switch box that includes FIFOs for ready/valid appli-
cations, and an optimized switch box with a split FIFO.

gradient method on the summation of the cost of each net
(Equation 1) [5]. The cost of a net is the combination of its
half-perimeter wire length (HPWL) and a legalization term
for memory tiles. In global placement, we use L2 distance to
approximate the HPWL to speed up the algorithm. CGRAs
typically have fewer rows or columns of memory tiles (com-
pared to PE tiles), so the legalization term is needed to ensure
that memory tiles are only placed in those rows/columns.

Costnet = HPWLnet,estimate +MEMpotential (1)

After global placement, we perform detailed placement
based on simulated annealing [11]. The cost function for sim-
ulated annealing (see Equation 2) is the total wirelength of the
application, calculated by summing the HPWL cost for each
net, and an additional term for penalizing pass-through tiles.
Pass-through tiles are those that are only used for routing,
which need to be powered on despite not computing any-
thing for the application. γ and α are hyperparameters. Some
CGRAs have tile-level power gating that enables the ability to
turn off tiles that are used for neither the application’s compu-
tation nor as pass-through tiles. A higher value of γ penalizes
pass-through tiles more, which encourages the placement
algorithm to use already-used tiles for routing, rather than
powering on otherwise unused tiles. A higher value for α

will penalize longer potential routes, thereby encouraging
shorter critical paths after routing. We find that sweeping α

from 1 to 20 and choosing the best result post-routing results
in short application critical paths.

Costnet = (HPWLnet − γ× (Areanet ∩Areaexisting))
α (2)

After global and detailed placement, we route using an
iteration-based routing algorithm [9]. During each iteration,
we compute the slack on a net and determine how critical
it is given global timing information. Then we route using
the A* algorithm on the weighted graph. The weights for
each edge are based on historical usage, net slack, and current
congestion. This allows us to balance both routing congestion
and timing criticality. Similarly to detailed placement, we
also adjust the wire cost functions to discourage the use of
unused tiles in favor of tracks within already-used tiles. We
finish routing when a legal routing result is produced.

4. EVALUATION
We evaluate the Canal system by first exploring the op-

timizations of interconnect FIFOs described in Section 3.3
and then by using the Canal system to conduct design space
exploration of a CGRA interconnect.

4

Wilton Disjoint
Figure 9: Topology of a Wilton and Disjoint switch box.

Tracks

0

500

1000

1500

2000

3 4 5 6 7

SB Area (μm²)

Tracks

0

200

400

600

3 4 5 6 7

CB Area (μm²)

Figure 10: Left: Area of a switch box as the number of tracks
increases. Right: Area of a connection box as the number of
tracks increases.

4.1 Interconnect FIFO Optimizations
We evaluate the effect of introducing FIFOs in the inter-

connect on switch box area. As described in Section 3.3,
we need to include FIFOs in the configurable routing when
running applications with ready-valid signaling.

As a baseline, we compare against a fully static intercon-
nect with five 16-bit routing tracks containing PEs with two
outputs and four inputs, synthesized in Global Foundries 12
nm technology. As shown in Fig. 8, adding these depth two
FIFOs to the baseline design introduces a 54% area overhead.
Splitting the FIFO between multiple switch boxes results in
only a 32% area overhead over the baseline. This optimiza-
tion allows for much more efficient implementation of an
interconnect that supports ready-valid signaling.

4.2 Interconnect Design Space Exploration
We use Canal to explore three important design space axes

of a configurable interconnect: switch box topology, number
of routing tracks, and number of switch box and connec-
tion box port connections. We find that Canal’s automation
greatly simplifies the procedure to explore each option in the
following subsections.

4.2.1 Exploring Switch Box Topologies and Number
of Routing Tracks

The switch box topology defines how each track on each
side of the switch box connects to the tracks on the remaining
sides of the switch box. The choice of topology affects how
easily nets can be routed on the interconnect. High routability
generally corresponds to shorter routes and shorter critical
paths in applications. This allows the CGRA to be run at
higher frequencies, which decreases application run time. For
these experiments we investigate two different switch box
topologies illustrated in Fig. 9: Wilton [14] and Disjoint [13].
These switch box topologies have the same area, as they both
connect each input to each of the other sides once.

We found that the Wilton topology performs much better

Figure 11: Application run time comparison on CGRAs with
switch boxes that have different number of tracks.

than the Disjoint topology, which failed to route in all of
our test cases. The Disjoint topology is worse for routability
because every incoming connection on track i has a connec-
tion only to track i on the three other sides of the SB. This
imposes a restriction that if you want to route a wire from
any point on the array to any other point on the array starting
from a certain track number, you must only use that track
number. In comparison, the Wilton topology does not have
this restriction resulting in many more choices for the routing
algorithm, and therefore much higher routability [6].

We also vary the number of routing tracks in the intercon-
nect. This directly affects the size of both the connection box
and switch box and the amount of routing congestion. For
these experiments we measure the area of the connection box
and switch box as well as the run time of applications running
on the CGRA.

In this experiment we use an interconnect with five 16-bit
tracks and PE tiles that have 4 inputs and 2 outputs. As shown
in Fig. 10, the area of both the switch box and connection
box scale with the number of tracks. From Fig. 11, we can
see that the run time of the applications generally decreases
as the number of tracks increases, although the benefits are
less than 25%.

4.2.2 Exploring Switch Box and Connection Box Port
Connections

Finally, we explore how varying the number of switch box
and connection box port connections affects the area of the
interconnect and the run time of applications executing on the
CGRA. In Canal, we have the ability to specify how many of
the incoming tracks from each side of the tile are connected
to the inputs/outputs of the PE/MEM cores. Decreasing these
connections should reduce the area of the interconnect, but
may decrease the number of options that the routing algo-
rithm has. For these experiments, we vary the number of
connections from the incoming routing tracks through the
connection box to the inputs of the PE/MEM core, and vary
the number of connections from the outputs of the core to
the outgoing ports of the switch box. At maximum, we can
have 4 SB sides, with connections from the core output to
the four sides of the switch box. We then decrease this by
removing the connections facing east for a total of three sides
with connections, and finally we also remove the connections
facing south for a total of two sides with connections. This is
shown in Fig. 12. We do the same for the connection box.

As shown in Fig. 13, as the number of connections from the
core to the switch box decreases, we see a decrease in switch
box area. From Fig. 14, we can see that this generally has a

5

PE

SB

4 SB Ports 3 SB Ports 2 SB Ports
PE

SB
PE

SB

Figure 12: Reducing the number of connections from the
outputs of the PE to the outgoing ports of the switch box.

0
250
500
750

1000
1250

4 SB
Ports

3 SB
Ports

2 SB
Ports

SB Area (μm²)

0

100

200

300

400

4 CB
Ports

3 CB
Ports

2 CB
Ports

CB Area (μm²)

Figure 13: Area comparison of a switch box and a connection
box that have varying number of connections with the four
sides of the tile.

small negative effect on the run time of the applications. In
this case, a designer could choose to trade some performance
for a decrease in switch box area.

As shown in Fig. 13, as the number of connections from
the connection box to the tile inputs decreases, we see a larger
decrease in connection box area. From Fig. 15, we can see
that this has a larger negative effect on the run time of the
applications. Again, a designer could choose to trade some
performance for a decrease in connection box area.

5. CONCLUSION
We have developed Canal, a domain-specific language

and interconnect generator for coarse-grained reconfigurable
arrays. The Canal language allows a designer to easily spec-
ify a complex configurable interconnect, while maintaining
control over the low-level connections. The hardware gen-
erator, placer and router, and bitstream generator help to
facilitate design space exploration of CGRA interconnects.
We demonstrate the flexibility of Canal by creating a hybrid
ready-valid interconnect and demonstrate the design space ex-
ploration capabilities of Canal by evaluating different switch
box topologies, number of interconnect routing tracks, and
number of SB and CB port connections. The power and flexi-
bility that Canal provides will enable more designers to create
and explore diverse and interesting CGRA architectures.

Figure 14: Run time comparison of a switch box that has
varying number of connections from the four sides of the tile.

Figure 15: Run time comparison of a connection box that has
varying number of connections from the four sides of the tile.

REFERENCES

[1] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in International Workshop on Field
Programmable Logic and Applications. Springer, 1997.

[2] A. Carsello, K. Feng, T. Kong, K. Koul, Q. Liu, J. Melchert, and et al.,
“Amber: A 367 GOPS, 538 GOPS/W 16nm SoC with a
Coarse-Grained Reconfigurable Array for Flexible Acceleration of
Dense Linear Algebra,” in IEEE Symposium on VLSI Technology and
Circuits (VLSI Technology and Circuits), 2022.

[3] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “CGRA-ME: A unified framework for CGRA
modelling and exploration,” in Application-specific Systems,
Architectures and Processors (ASAP), 2017.

[4] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “DySER: Unifying Functionality and
Parallelism Specialization for Energy-Efficient Computing,” IEEE
Micro, 2012.

[5] A. B. Kahng, S. Reda, and Q. Wang, “APlace: A General Analytic
Placement Framework,” in International Symposium on Physical
Design (ISPD), 2005.

[6] M. I. Masud, “FPGA Routing Structures: A Novel Switch Block and
Depopulated Interconnect Matrix Architectures,” in Masters Thesis,
The Dalhousie University, 1998.

[7] B. Mei, M. Berekovic, and J.-Y. Mignolet, “ADRES & DRESC:
Architecture and Compiler for Coarse-Grain Reconfigurable
Processors,” in Fine- and Coarse-Grain Reconfigurable Computing.
Springer, 2007.

[8] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao,
S. Hadjis, A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A
reconfigurable architecture for parallel patterns,” in ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
2017.

[9] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability-Driven Router
for FPGAs,” in Proceedings of the 1998 ACM/SIGDA Sixth
International Symposium on Field Programmable Gate Arrays, 1998.

[10] L. Truong and P. Hanrahan, “A Golden Age of Hardware Description
Languages: Applying Programming Language Techniques to Improve
Design Productivity,” in 3rd Summit on Advances in Programming
Languages (SNAPL), 2019.

[11] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in
Simulated annealing: Theory and applications, 1987.

[12] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for
imaging and vision applications,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[13] N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI design:
a systems perspective,” in Mass: Addison-Wesley Pub. Co., 1993.

[14] S. J. E. Wilton, “Architecture and Algorithms for Field Programmable
Gate Arrays with Embedded Memory,” in PhD Thesis, University of
Toronto, 1977.

[15] S. Zheng, K. Zhang, Y. Tian, W. Yin, L. Wang, and X. Zhou,
“FastCGRA: A Modeling, Evaluation, and Exploration Platform for
Large-Scale Coarse-Grained Reconfigurable Arrays,” in International
Conference on Field-Programmable Technology (ICFPT), 2021.

6

	1 Introduction
	2 Related Work
	3 System Design
	3.1 Graph-Based Intermediate Representation
	3.2 The Canal Language
	3.3 Generating Interconnect Hardware
	3.4 Place and Route using Canal Interconnect

	4 Evaluation
	4.1 Interconnect FIFO Optimizations
	4.2 Interconnect Design Space Exploration
	4.2.1 Exploring Switch Box Topologies and Number of Routing Tracks
	4.2.2 Exploring Switch Box and Connection Box Port Connections

	5 Conclusion

