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ABSTRACT

Since Large Language Models or LLMs have demonstrated
high-quality performance on many complex language tasks,
there is a great interest in bringing these LLMs to mobile
devices for faster responses and better privacy protection.
However, the size of LLMs (i.e., billions of parameters) re-
quires highly effective compression to fit into storage-limited
devices. Among many compression techniques, weight-
clustering, a form of non-linear quantization, is one of the
leading candidates for LLM compression, and supported
by modern smartphones. Yet, its training overhead is pro-
hibitively significant for LLM fine-tuning. Especially, Differ-
entiable KMeans Clustering, or DKM, has shown the state-
of-the-art trade-off between compression ratio and accuracy
regression, but its large memory complexity makes it nearly
impossible to apply to train-time LLM compression. In this
paper, we propose a memory-efficient DKM implementation,
eDKM powered by novel techniques to reduce the memory
footprint of DKM by orders of magnitudes. For a given ten-
sor to be saved on CPU for the backward pass of DKM, we
compressed the tensor by applying uniquification and shard-
ing after checking if there is no duplicated tensor previously
copied to CPU. Our experimental results demonstrate that
eDKM can fine-tune and compress a pretrained LLaMA 7B
model from 12.6 GB to 2.5 GB (3bit/weight) with the Al-
paca dataset by reducing the train-time memory footprint of
a decoder layer by 130x, while delivering good accuracy on
broader LLM benchmarks (i.e., 77.7% for PIQA, 66.1% for
Winograde, and so on).

1. INTRODUCTION

Large language models or LLMs, and especially Genera-
tive Pre-trained Transformer (GPT) models have shown excel-
lent performance on many complex language tasks [11,23].
Such breakthrough leads to the desire to run these LLMs
locally on mobile devices for user privacy [20,21], but even
small LLMs are too big for on-device execution. For example,

the smallset LLaMA model has 7B parameters which is 14GB
in FP16 [18], while high-end mobile devices have only up to
18GB DRAM. Therefore, aggressively compressing LLMs
via train-time optimizations, such as sparsification, quanti-
zation, or weight clustering, is a crucial step for on-device
LLM deployment [3,5,6,8,12,13,14,15,16,16,19,20,22,24]
However, train-time optimization of LLM is highly ex-
pensive due to the model size and computational resource
overheads. Especially, the computational resource demand
from a train-time differentiable weight clustering in DKM [3],
one of the state-of-the-art weight clustering algorithm is pro-
hibitively high, as it needs to analyze the interactions between
all the weights and all possible clustering options. Accord-
ingly, many existing LLM compression techniques, such as
GTPQ [7], and AWQ [9] rely on post-training optimization.
In this work, we propose memory optimization techniques
to enable train-time weight clustering and their applications
to DKM [3], leading to eDKM. Our techniques include
cross-device tensor marshaling and weight matrix uniquifica-
tion/sharding. When we used eDKM to fine-tune and com-
press LLaMA 7B model into 3bit-per-weight, we achieved
about 130 x memory footprint reduction for a decoder stack,
yet outperformed the existing 3bit compression techniques.

2. MEMORY-EFFICIENT DKM

Pruning, quantization, and normalization are all popular
weight optimization techniques/systems that take in the orig-
inal weights, W and output optimized weights W for infer-
ence latency, test accuracy, or model size, as shown in Fig 1.
Among techniques, we focus on weight clustering, notably
the state-of-the-art train-time weight clustering algorithm,
DKM [3]. Weight clustering is a non-linear weight discretiza-
tion, and a weight matrix will be compressed into a lookup
table and a list of low-precision indices to the lookup table,
which can be consumed by modern inference accelerators [1].

DKM performs differentiable weight clustering by ana-
lyzing the interaction between the weights (denoted W) and
centroids (denoted C), and has shown state-of-the-art trades-
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Figure 1: General overview of weight optimization sys-
tems. For DKM [3], an attention map for differentiable
weight clustering is created inside the system.

off between compression ratio and accuracy. Therefore, us-
ing DKM for LLM compression would yield high-quality
result. However, DKM computes a large attention map with
O(|W||C|) memory complexity (i.e., the matrix in Fig. 1) for
forward/backward passes (see the Appendix in [3]), which is
particularly challenging for LLM compression. For example,
a LLaMA 7B model needs at least 224GB just to compute an
attention map for 4bit weight clustering.

Accordingly, we need to tap onto CPU memory to handle
such large memory demand by overflowing to CPU memory
and copying back to GPU when needed later. However, it
will incur significant traffic between GPU and CPU (slowing
down the training), and need immense CPU memory capacity.
Hence, it is critical to reduce the number of transactions
between CPU and GPU, and minimize the traffic of each
transaction. To address such challenges, we introduce two
novel memory optimization techniques in PyTorch.

e Cross-Device Tensor Marshaling: We track tensors be-
ing copied across devices and avoid redundant copying
to reduce the memory footprint and expedite training.

e Weight Uniquification and Sharding: We use the fact
that weights in 16 bits have only 2! unique values to
reduce the attention map (in Fig 1) representation and
further shard it over multiple learners.

2.1 Cross-device Tensor Marshaling

PyTorch represents a tensor with data storage that links
to the actual data layout and metadata that keeps the ten-
sor shapes, types, and so on. Such tensor architecture lets
PyTorch reuse the data storage whenever possible and ef-
ficiently reduces the memory footprint. However, when a
tensor moves to another device (i.e., from GPU to CPU), the
data storage cannot be reused and a new tensor needs to be
created. Table 1 shows an example of the memory footprint
overhead when a tensor moves between devices in PyTorch.
The tensor, xg allocated in line 0, consumes 4MB on GPU.
When its view is changed in line 1, no additional GPU mem-
ory is required as the underlying data storage can be reused
(i.e., xo and x; are effectively identical). However, when x(
and x; move to CPU as in lines 2 and 3, the CPU memory
consumption becomes 8MB, although yg and y; could share
the same data storage on CPU, which leads to the redundancy
on CPU memory and increases GPU-CPU traffic.

line | code | GPU CPU
0 x0 = torch.rand([1024,1024]) 4
1 x1 =x0.view(-1,1) 4
2 y0 = x0.to(‘cpu’) 4
3 yl =x1.to(‘cpu’) 4

0~ OO

Table 1: LLM fine-tuning may need to use CPU mem-
ory to offload large activations. Lacking cross-device
tensor management can lead to redundant copies across
devices (especially when the computation graph is com-
plex), which can be particularly undesirable for LLM
train-time optimization. For example, although x0 and
x1 are the same tensor with just a different view, when
copied to CPU, the resulting tensors yo and y; do not share
the data storage while xo and x; do on GPU.
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Figure 2: When the proposed cross-device tensor mar-
shalling is applied to the case in Table 1, we can avoid du-
plication on the CPU side, which saves the memory/traffic.
Before copying x; to CPU, our marshaling scheme checks
if there exits tensor with the same data storage on the
CPU (i.e., yp). If there is, we reuse the reference for y,
along with the required ops (view in this case) for future
retrieval.

To address such inefficiency, we place a marshaling layer
as in Fig. 2 (b), where the black represents actual data storage
and metadata, and the gray indicates only the metadata. Fig. 2
(a) illustrates the example in Table 1 (with the corresponding
line numbers) where x; shares the data layout with xo but yq
and y; have independent/duplicated data storage on CPU. By
inserting a marshaling layer as in Fig. 2 (b), we avoid such
redundancy and reduce the GPU-CPU traffic.

We use the save-tensor-hook in PyTorch (see [2] for ref-
erence) to implement such a marshaling scheme, where we
examine if the same data storage has been already copied.
However, checking whether the same tensor exists on the
destination device is prohibitively expensive when using a
convention scheme like hashing. Therefore, when a new
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Figure 3: Weight Uniquification and Sharding: since w; and w; have the same bit value (BA45), both can share the same
attention to centroids in the attention table, yet use the bit value as the offset to the table in the index list.

tensor enters our marshaling system, we turn to the forward
graph and check if there exists another tensor that is already
on CPU and is reachable via only data-storage invariant oper-
ations (i.e., view, transpose, ...) from the new tensor within a
few hops. If not found, the tensor is copied and a reference
to the tensor is generated. If found, we return the reference
of the existing tensor and the list of operations tracing back
to the new tensor. For the example in Fig. 2 (b), instead of
copying x; to CPU, we simply return the reference to yo and
the view operation between x; and yy.

Navigating the computation graph costs extra compute
cycles, but saving on an unnecessary copy can compensate
for such overhead. We found that searching within 4 hops is
sufficient to detect all the qualified cases in the computation
graph from the original DKM implementation.

2.2  Weights Uniquification and Sharding

In most LLM training, 16bit (e.g., BF16 or FP16) is widely
used for weights, which means although there are multi-
billion parameters in LLMs, there are only 2'° unique coef-
ficients due to the bit-width. This allows an opportunity to
significantly compress the attention map between weights
and the centroids, as in Fig 3. By computing the attention to
the centroids once for each unique weight value, the attention
map can be converted into an attention table with O(|C|) and
the index list with O(|W|). Note that the number of rows in
the attention table is at most 65,536.

The index list (denoted L) can be further sharded over
a set of learners (i.e., GPUs) in a fully synchronous train-
ing setup [4], as the weights are identical in each learner at
any moment (thus, attention map and index list too). Such

sharding will bring down the memory complexity to 0(%')

Uniquifying and sharding come with higher communication
and computation costs, as the sharded weights need to be
all-gathered and the attention table and index list need to be
converted back to the attention map for backward propagation
(see Table 2 for the runtime overhead).

Assume {w;,w;,wi} € W and {cp,cq,¢,} € C, which de-
note the weights and centroids respectively in Fig. 3. Further
consider the case where {w;,w;} have the same 16bit repre-
sentation BA45 and w; has CB1F. Then, when an attention
map is computed during forward pass, w; and wy shall have
the same attention to C. After uniquification, the attention
map is decomposed into an attention table with O(|C|) mem-
ory complexity and an index list with O(|W|) complexity. For

example, the 16bit value, BA45 of w; and wy can serve as an
offset to the attention table in the index list. The index list can
be further sharded over |L| learners to reduce the complexity

in each learner into 0(%) The original attention map needs

to be reconstructed for backward pass to stay compatible with
the existing autograd implementation. Therefore, we take
the reverse steps to restore the attention map by performing
all-gather and look-up.

3. EXPERIMENTAL RESULTS

We used the PyTorch 2.0.01 and applied Fully Sharded
Data Parallel (FSDP) to fine-tune the pretrained LLaMA
7B model in brainfloat16 with the Alpaca dataset [17]. We
fine-tuned for 2 epochs while compressing the model on a
single node with 8x A100-80GB GPUs using eDKM. The
maximum sequence length during fine-tuning was 256. We
used AdamW optimizer with learning rate as 5e-5, weight
decay as 0, and betas as (0.9,0.95). The global batch size is
64, and the gradient norm clipping with 1.0 is used.

3.1 LLM Accuracy

We compared eDKM against other quantization-based
compression schemes: round-to-nearest (RTN), SmoothQuant,
GPTQ [7], AWQ [9] and LLM-QAT [10]. For eDKM, we
also compressed the embedding layers with 8 bits.

Table 3 reports the accuracy with Common Sense Reason-
ing, and Few-Shot benchmarks with the compressed LLaMA
7B models from each technique.

o ¢DKM allows the 3bit compressed LLaMA 7B model to

Me | sp | ue Memory  Memmory  Runtime
(MB) Reduction (x)  (sec)
1600 1 8.67
v 544 2.9 8.97
v |V 68 235 9.5
v v 97 16.4 15.9
vV VvV 12 129.9 14.9

4 M: using marshaling layer
b S: using sharding
¢ U: using uniquification

Table 2: Ablation study to understand the effects of each
techniques: With the proposed techniques, the memory
footprint can be reduced by 130x with 1.7x slow down.



Method bits Model Common Sense Reasoning Few-shot
Size(GB) | PIQA HellaSwag Winograde ARC-e ARC-c | TriviaQA MMLU
LLaMA-7B 16 12.6 79.3 76.1 70.0 73.0 48.0 57.0 352
RTN 4 35 77.3 72.7 66.9 68.8 46.4 44.9 28.9
GPTQ g128¢ | 4 37 77.2 54.0 65.7 61.6 -4 - -
AWQ g128 4 3.7 78.1 55.8 65.8 66.8 - - -
LLM-QAT 4 35 78.3 74.0 69.0 70.0 45.0 50.8 30.8
GPTQ g128 3 3.0 70.9 46.8 60.9 66.1 - - -
AWQ g128 3 3.0 76.7 53.6 66.1 65.7 - - -
eDKM 3 2.5 77.7 54.6 66.1 72.3 40.3 35.20 30.3

“ The result is not reported for the corresponding scheme; ” One-shot is applied; ¢ Group size is 128.

Table 3: When compared our techniques against the state-of-the-art compression scheme, eDKM offered the smallest
model size, yet similar or better accuracy for the broader set of benchmarks with the 3bit compressed LLaMA 7B model.

outperform all other schemes in the 3bit configuration.

e ¢DKM even delivers the best accuracy for ARC-e bench-
marks across 3 and 4bit configurations.

e ¢DKM yields the competitive performance for PIQA
and MMLU benchmarks with 4bit compressed models.

3.2 Ablation Study

For the ablation study, we made an example with one atten-
tion layer from the LLaMA 7B decoder stack and measured
the trade-off between the memory footprint vs. the forward-
backward speed with 3bit compression, as shown in Table 2.

Cross-device tensor marshaling alone reduces the memory
footprint by 2.9 x with little runtime overhead, and the addi-
tional savings of 23.5x and 16.4 x are achieved with sharding
and uniquification, respectively. When all techniques com-
bined, as in Fig. 3, eDKM offered about 130x reduction. Al-
though these steps require extra computation/communications
(i.e., all-gather), the runtime overhead is insignificant, as the
traffic between GPU and CPU has decreased substantially.

4. CONCLUSION

In this work, we propose a memory-efficient differentiable
weight clustering scheme, eDKM, to provide train-time com-
pression for LLMs. With the proposed techniques, the mem-
ory consumption was reduced by almost 130x, and the result-
ing 3bit compressed LLaMA model yields state-of-the-art
accuracy on various LLM-harness benchmarks.
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