On Performance Measurements of TCP/IP and its Device Driver

Jau-Hsiung Huang and Chi-Wen Chen

Department of Computer Science
National Taiwan University,

Abstract

Among all protocols, TCPIIP is one of the most
popular protocol suites in use. Hence, the performance
behavior of TCPIIP becomes a very important issue and
much work has been conducted in this area. In this paper,
a performance measurement of the processing overhead of
TCP/IP on personal computers interconnected by Ethernet
is given. In this measurement, we found that most of the
processing overhead comes from TCP and the Ethernet
device driver. Among TCP, a large portion of overhead
comes from the checksum computation. Further, almost
all overhead of the lower layers comes from moving data
from the main memory to the Ethernet card. Hence, if the
bus speed can be increased and the TCP checksum can be
performed by hardware, the processing overhead generated
from TCPIIP and lower layers can be greatly reduced. The
results presented in this paper shed light on designing
communication protocols on personal computers.

1. Introduction

The motivation of this paper came from the industry
with the following question. Should we implement
TCP/IP [1,2] in silicon? In order to answer this question,
we performed a series of measurement (o find out the
bottleneck of TCP/IP and its lower layers including the
device driver. Although some results of the performance of
TCP have been published [3,4], our measurements showed
some results of our own by considering not only TCP but
also IP and the lower layers. ,

Looking at a computer network, there are three main
components, namely, computers and their operating
systems, communication hardwares, and communication
softwares. Among all combinations of these three
components, an MS-DOS based personal computer

This research was sponsored by Computers and Com-
munication Lab. of ITRI, Taiwan.

0742-1303/92 $3.00 © 1992 IEEE

'V T T 11

568

and Information Engineering
Taipei, Taiwan, R.0.C.

network interconnected by Ethemet running TCP/IP is
one of the most popular environments.

In [3], a performance study of TCP based upon UNIX
on a Intel 80386 processor was conducted. In their work,
they concluded that TCP is in fact not the source of the
overhead often observed in packet processing, and that it
could support very high speeds if properly implemented.
However, they did not study the overhead generated from
the checksum computation in TCP and the overhead from
the lower layers and the device driver. In this work, a TCP
source code was written for the performance evaluation.

In [4], a simple mathematical model was proposed to
study the performance of TP-4 {5], which is in essence
similar to TCP. This work studied the performance of
various ways of implementation from both the sender side
and the receiver side. However, the authors did not attempt
to search for the performance bottleneck. Moreover, this
work based their argument purely from a mathematical
model, many practical implementation issues were totally
not considered.

In our experiment, we actually measured the overhead
generated by TCP, IP, and the device driver. To perform
this measurement, we developed our own TCP/IP from a
commercialized product with some improvements. One
improvement we made was to rewrite the checksum
computation of TCP using assembly language instead of
C language. In this measurement, a detailed measurement
of the overheads of the checksum computation and the
acknowledgement processing was conducted. Various
combinations of parameters, such as -the length of a
segment and the processor speed, are also tested in the
experiment to show their impact on the performance.
Moreover, the architectural characteristics of personal
computers were also considered which helped us
understand better the performance of the system.

2. System Configuration and Measure-
ment Methodology

IR

The measurement environment of this project is to
have two PCs interconnected by an Ethernet running
TCP/IP protocol suite for communication. The PCs used
in the system are 386PC with 80386-33 CPUs and 64
Kbytes cache memory in the configuration. However, a
similar experiment is also performed on 286PCs. On each
machine, 4096 bytes of buffer is preallocated for the
socket. Each transaction contains 20 Mbytes of data in all
measurements and we allow no other stations to send
other data on the Ethernet while the measurement is under
way. In order to avoid extra delay, an ACK is sent by the
receiver immediately after a packet is received.

Five different segment sizes are used in the
measurement to show the impact of segment sizes. These
five segment sizes studied are 256, 512, 768, 1024, and
1280 bytes. The TCP/IP function blocks of
sending/receiving data packets of the measurement are
shown in Figure 1 and the function blocks of
sending/receiving ACKs are shown in Figure 2. The
functional description of each block follows.

* Write_Socket: The output routine of the application
program which sends a stream of data to TCP.

* Read_Socket: The input routine of the application
program which receives the data stream from TCP.

* TCP_Request: The interface between the application
program and TCP which processes a TCP user request
(e.g., attach, bind, connect, listen, send, receive,
disconnect, ..., elc.).

* TCP_Output: This routine figures out what should
be sent and should the data be fragmented. This routine
also decides when to send the segment(s) to IP.

* TCP_Input: This routine reassembles segments,
stores data in the socket buffer, processes the ACK and
sends the ACK.

* IP_Output: This routine fragments segments into
packets if necessary and routes them.

* IP_Input: This routine determines if the received
packets have reached the ultimate destination and
reassembles them before passing them to its TCP; or,
these packets will be further forwarded if the ultimate
destination has not been reached.

* Forward_Packet: This routine converts the internet
address of the destination into an Ethernet address (ARP
function) and sends it.

* Driver_Output: This block outputs a packet to the
Ethemet.)

* Driver_Input: This block is activated from an
interrupt and inputs a packet from the Ethernet.

In this measurement, we divide the CPU costs into
two categories. One is CPU cost per packet and the other
is CPU cost per byte. We define the CPU cost per packet
as the CPU time required for every packet. This CPU cost
only depends on the number of packets sent and received

T J—

569

and not depend on the total data size. For example, thei
overhead from the Ethernet card driver and the packet
header processing for TCP, IP, and ARP are CPU cost per
packet. Similarly, we define the CPU cost per byte as the
CPU cost required for every byte of data sent. For
example, TCP checksum computation, moving data
within main memory, and moving data from main
memory to the LAN card are CPU cost per byte. Hence,
this cost depends on the length of all data bytes. In this
experiment, we first measure the CPU cost per byte in
transmission and then measure the CPU cost per packet
sent.

Max Segment Size 256 512 768 1024 1280
Packet Number 80000| 40000 26666 20000{ 16000
(A) write_socket 3.41 2.53 2.20 2.08 1.98
(B) tcp_output 21.47 16.26 14.51 13.68 13.07
(C) ip_input 6.12 3.06 2.05 1.52 1.29
(D) driver_out 26.25] 22.64] 21.30f 20.72 20.39
(L) driver_input(Ack) 6.33 3.13 2.09 1.55 1.21
(M) ip_input{Ack) 2.64 1.32 0.88 0.66 0.47
(N) tcp_input(ack) 13.69 6.97 4.87 3.44 2.62
Tx. Time(Sender) 79.20 55.37 47.40f 43.39] 41.03
CPU Time(Receiver) 77.72} 53.99] 46.08] 42.18f 39.82

Table 1. Time spent in each function block of the
sending machine.(Time unit: seconds)

In the measurement, we are able to measure the CPU
time required by each function block as shown in Figures
1 and 2. For example, the CPU time of the function
blocks of the sending computer is listed in Table 1. In
Table 1, the computers used are IBM PC-386 running at
33Mhz with 64 Kbytes cache memory. As mentioned
earlier, the data transferred in this measurement is 20
Mbytes with a socket buffer size of 4096 bytes. In Table
1, five different maximum segment sizes are measured.
The data in this table will be later analyzed in the
following section. Note that the sum of rows (A), (B),
(©), (D), (L), (M), and (N) should equal the value of the
Tx. Time of the sender. However, a small error may incur
due to measurement efrror.

Clearly, as the maximum segment size gets larger, the
number of packets required to convey 20 Mbytes of data
decreases. Hence, CPU cost per packet gets smaller, which
consequently reduces the transmission time for- both
sending and receiving. However, notice that the time taken
by driver_out does not change significantly over all
segment sizes since this overhead is generated per byte,
which does not vary significantly with respect to the

T- .

segment size.

3. Performance Measurements

In this section, numerous measurement results are
presented. Many conclusions can be drawn through these
measurement results. In our first set of measurement, a
maximum segment size of 1024 bytes is used to scnd a
block data of 20 Mbytes between two 386PCs. We show
the overheads (in percentage) generated by TCP, IP, device
driver, and writing the socket. The results are shown in
Figure 3, from which we notice that the CPU time
consumed by the device driver takes up more than half of
the overall time while TCP takes almost 40% of time.
The total CPU time consumed is 43.39 seconds.

From this measurement, we note that the time taken
by IP is only 5%. More carefully examining the overhead
taken by the device driver, we found that more than 90%
of the time consumed by the device driver comes from
moving data from the main memory to the buffer on the
Ethernet cards. Once the data is in the memory buffer on
the Ethernet card, the co-processor on the Ethernet card
takes charge and consumes little of the CPU time. This
result indicates clearly that the bus speed of PCs is too
slow for high speed networking and hence becomes the
major bottleneck. Luckily, the EISA bus on personal
computer developed recently has a much faster bus speed
than the AT-BUS used in our measurement.

By further measuring the overhead consumed by the
checksum computation, we have the results as shown in
Figure 4. Notice that the TCP checksum computation
takes up almost 25% of the overall time. Note especially
that in our experiment, the checksum computation is
written in Assembly language, which is much faster than
a high level language such as C language. If considering
only TCP and IP, the TCP checksum computation
consumes half of the overall processing oyerhead of
TCP/IP. Although in our measurement a file transfer is
considered, which will result in a higher percentage of
checksum computation overheads, this result still gives us
an idea about the burden of the checksum computation.
The above result suggests that if the TCP checksum
computation can be implemented by hardware, the
computational overhead of TCP/IP can be saved by 50%
and the overall time can be saved by 25%.

However, there are two reasons which make checksum
computation slow on PC architecture. First, the high-low
byte sequence of an integer (16 bits) stored in PC's:
memory is different from the order defined by TCP/IP.
Hence, a reordering of the sequence of each integer is
required before checksum computation. Second, there is no
1's complement addition instructions on PCs. Therefore,
we have to use 2's complement addition first and convert

570

it to 1's complement addition. Since these situations may
not occur in workstations, it suggests that if a
workstation is used instead of PC, the percentage of
checksum computation time may be reduced.

Figure 5 shows the CPU overhead created by sending

_and receiving the acknowledgement of each packet in the

measurement. This figure shows that acknowledgement
process consumes roughly 10% of the overall overhead,
which is not negligible in high-speed network. Clearly, if
an ACK is sent for every two packets like many
commercial products do, then the overhead of
acknowledgement packets will be halved. This will induce
a 5% save in processing overhead.

For the above measurements, the maximum segment
size is set at 1024 bytes. In the next measurement, a
maximum segment size of 512 bytes is conducted with ail
other parameters unchanged. This result is shown in
Figure 6. Figure 6 shows that the computational overhead
of TCP and IP are slightly increased while the overhead of

“the device driver is slightly decreased. This is caused of the

increase of the per packet computation time of TCP and
IP; hence, the overhead percentage of the device driver is
reduced. Nonetheless, the basic observations obtained
above remain unchanged.

An important measurement result is shown in Figure 7
which has the same system configuration as in Figure 3
except that the PCs used here use Intel 80286 CPUs.
Figure 7 shows that the overhead percentage taken by
TCP and IP increases significantly over the device driver
for slower computers. This is caused by two reasons.
First, TCP and IP are written in software, hence more
time will be consumed by using a slower computer.
Second, the bottleneck of the device driver comes from the
system bus which does not differ significantly between
PC-286s and PC-386s compared to the speed difference
between Intel 80286 and 80386 CPUs. Hence the
processing time of the driver does not change dramatically
with the CPUs.

By comparing Figures 3 and 7, we show that for
systems with more powerful CPUs, the bus speed
becomes a very important issue affecting the networking
performance. This result shows that if the Ethernet
chipsets can be directly mounted on the main board
(motherboard) of the personal computer, the networking
performance will be greatly enhanced since the bottleneck
of bus speed is avoided.

Figure 8 shows the CPU time taken versus the
maximum size of segments. This Figure actually comes
from Table 1 shown earlier. Note from Table 1 that the
transmission time with 512 bytes segment size is roughly
20% more than that with 1024 bytes segment size. Worse
yet, the transmission time with 256 bytes segment size is
roughly 40% more than that with 512 bytes segment size.

Moreover, from Figure 8, we note that the CPU time
rises sharply for smaller segment sizes. This result
quantitatively suggests us to avoid small segment sizes if
possible. Figure 9 shows the CPU time versus the
number of packets sent. This Figure shows that CPU
time is linearly proportional to the number of packets sent
which is not too surprising.

We define stream size as the number of data bytes
passed to TCP from the application program in one

send_primitive call. Figure 10 shows the transmission
time versus different stream sizes with maximum segment

size equals 1024 bytes. Two sets of curves are shown in
this Figure, one is with PUSH flag set and the other is
without. Note the sharp rise in transmission time for
smaller stream sizes, especially when PUSH flag is set.
This result advices us to avoid using a very small stream
size if possible.

Figure 11 shows the CPU time for seven of the most
important function blocks versus different segment sizes.
Note that in Figure 11 that the TCP overhead generated by
acknowledgement rises sharply when the segment size
gets smaller and smaller. Hence, the percentage of CPU
time taken by TCP protocol grows with respect to smaller
segment sizes. This result clearly suggest that the
overhead of acknowledgement packets cannot be ignored,
especially for smaller segment sizes. Another conclusion
shown in this Figure is that as the segment size decreases,
the number of packets sent hence increases, the overhead
percentage of driver decreases while the overhead of TCP
increases. Moreover, the overhead percentage increase by
acknowledgement processing is the most significant.

4. Observations and Remarks

From the measurements mentioned above, we have the
following observations and remarks.

(1) Moving data from one place to another is very
CPU time consuming. The worst of it is to move data
from the main memory to the buffers on the Ethernet card
though the system bus. Unfortunately, although the
computational power of CPUs advances rapidly, the speed
of the system bus is still the bottleneck of the
performance. Hence, directly mounting the Ethernet
chipsets on the motherboard is important as the CPU gets
faster and high speed networking capability is required.

(2) The TCP checksum is a computation intensive
process. We suggest that this checksum computation can
be implemented through hardware instead of using
software. Moreover, the TCP checksum computation is a
1's complement sum, which can easily be implemented by
simple logic in hardware.

(3) If only TCP and IP are considered, the overhead
generated by TCP far outweighs IP. This shows that it

T

T

571

does not make sense by only implementing IP in hardware
and leave TCP in software.

(4) Even if TCP/IP is implemented totally in hardware,
the CPU overhead can be reduced by only a half if an
Ethernet card is used since the data moving iime from the
system to the Ethernet card constitutes the other half of
the CPU time.

Table 2 shows the time taken by the IP_output
function block with various sized of routing table using
linear searching algorithm. This result shows that the
searching time in making routing decision may be
significant. Hence, if a large network is considered, we
should be careful in designing the algorithm in searching
routes from the routing table. For example, in a file
transfer application, since consecutive packets will be sent
to the same destination; hence, we should always store the
route of current packet in cache since this route is very
likely to be the route for the next packet. By so doing, we
do not have to search the routing table for most packets;
hence, a significant amount of overhead can be saved.

Destination address order IP_Output CPU time (C)

in routing table

1] 1.52

4 1.99
7 C 247
10 2.92

Table 2. 1P_output processing time versus diff-
erent routing table with linear searching.

5. Conclusions

As mentioned earlier, the motivation of this work is to
find out the performance bottleneck of TCP/IP and its
lower layers. At first, we planned to measure the workload
percentage of each function block in TCP/IP and lower
layers. However, as the above results has shown, the
overhead of moving data either within the main memory
or from main memory to the Ethernet card is the major
bottleneck which actually depends on the operating system
rather than on the communication protocols. Another
bottleneck comes from the checksum computation and
acknowledgement processing.

If the above bottleneck can be removed, the overheads
of all other function blocks are not significant. We take
Figure 4 as the example. If the new bus architecture can
be five times faster (eg., EISA bus for PCs) and the TCP
checksum computation can be implemented in silicon,
then the processing time of TCP/IP and lower layers can

be reduced by as much as 61%. That is, the processing
time is 2.56 times faster. From this fact, we believe the
major bottlenecks have been identified; hence, we do not
go on measure the overheads of other function blocks.
From the above discussions, we have the following
conclusions. (1) The overhead generated by IP is far less
than that of TCP. (2) The overhead generated by the
Ethernet driver is more than that of TCP/IP. (3) In TCP,
the checksum computation is a major bottieneck. (4) The
overhcad generated by moving data around in the memory
or moving data from the memory to the Ethemet card is
significant. (5) The operating systems and the bus speed
are two major sources of bottleneck. (6) Implementing
TCP/IP in silicon is not necessarily required. However, if
the Ethernet chipsets can be mounted on the main board,
the bottieneck of the bus speed may be greatly relieved.

References

[1] Information Science Institure. Transmission Control
Protocol NIC-RFC 793. DDN Protocol Handbook, Vol.
2, Sept. 1981,pp. 2.179-2.198.

[2] Information Science Institure. DARPA Internet Program
Protocol Specification NIC-RFC 791. DDN Protocol
Handbook, Vol. 2, Sept. 1981,pp. 2.99-2.149.

[3] D.D. Clark, V. Jacob son, J. Romkey, and H. Salwen, "An
Analysis of TCP Processing Overhead," IEEE
Communication Magazine, June, 1989, pp-23-29.

[4] B.W. Meister, "A Performance Study of the ISO Transport
Protocol," IEEE Trans. Comput., Vol.40, No.3, March
1991, pp.253-262.

(5] OSI Transport Protocol Specification, Standard I1SO-8073.

T)

Sender Receiver

TCP ﬁ

Y

TCP_Output

IP

MAC hd . Drivcr_h:pul ®
+PHYSICAL (Interrupt)
EthertNet Prrrrrrierrrorrrrrrrrrrsersrrrerrhiyrrerrrrr-

Note: * show memory copy

Figure1. TCP/IP Function Block Chart (Send a packet)

Figure2. TCP/IP Function Block Chart (Ack)

572

7?] I {1

Write Socket
(4.79%)
[Write_Socket
8rcp
owe
O Driver

TCcP
(38.86%)

Driver
(51.33%)

Max Segment : 1024 (Bytes)
Stream Size : 1024 (Bytes)
Total data : 20 M Bytes
Sender CPU Time : 43.39 Sec.

IP (5.02%)

Figure 3. Ratio of CPU time with maximum segment size
equals 1024 bytes

Write_Socket :
4.79%

Driver
(51.33%)

O Write_Socket

B TCP {-Checksum)
B TCP Checksum
IP Checksum

O IP (-Checksum)

\D Driver

TCP Checksum :
24.25%

IP Checksum :
1.27%

IP (-Checksum) :
3.76%

Figure 4. Ratio of CPU time with maximum segment §i;e
equals 1024 bytes

573

Driver_input : ACK (3.57%) Write Socket (4.79%)

TCP_Output (31.53%)

D Write_Socket
B TCP_Output
Driver_Output { & TCP_Input(ACK)
(47.75%) |21 tP_Output

IP_Input{ACK)

C1 Driver_Output
B Driver_input(Ack)
TCP_lInput : ACK -
(7.33%)
T 1P_Output
IP_input : ACK (3.50%)

(1.52%)

Figure 5. Ratio of CPU time with maximum segment size
equals 1024 bytes

Write_Socket (4.57%)

[0 Write_Socket
8 vcp
Ow
B Driver
Driver |
(46.54%) |
| TCP (40.98%)

Max Segment : 512 (Bytes)
Stream size : 512 (Bytes)
‘Sendind data : 20 M Bytes

1P (7.91%) Sender CPU time : 55.37 Sec.

Figure 6. Ratio of CPU time with maximum segment size
equals 1024 bytes

-

Write_Socket

CPU time (Sec)

6.90% 80
() O write_Socket
Driver g Tep
(25.27%) @ e 601
[Oriver °
3 —a~- Sender CPU
-~ time
g 201 ~- Write Socket
2 g 0 - Receiver CPU
] Time
P] S
(7.68%) Tcp 20
= ~4 (60.15%)
gCPU : 80286 (12MHz) o
Max Segment : 1024 B! 0
9 yies 0 20000 40000 60000 80000
- . b
Figure 7. Ratio of CPU time with 80286 CPU Packet Number
Figure 9. Sender CPU time versus the number of
packet sent
80w 80
N\ 70
601 60
—&~ Sender CPU -
time 3 501 —-m-Sender
—*— Write Socket 3 wk ~o~ Receiver
407 T % Receiver CPU o 407 W’ss*‘S:ndhs)r
) us
Time ,—E 30 ~o— Receiver
ﬁ. (Push)
201 201
10
0 y T - [+ T T Y T T T T
256 512 768 1024 1280 0 128 256 384 512 640 768 896 1024

MAX. Segment Size (Bytes)

Figure 8. Sender CPU time versus different
maximum sizes

574

Stream Size (Bytes) -

Figure 10. Sender CPU time versus different
stream size (stream size=64,128,
256,512,1024 bytes)

80
-o—Total CPU
;o‘ 60 Time
a —+— Write Socket
- —e-TCP Output
£ = {P Output
= 401 -=—Driver Output
.y —o- Driver Input
3 (ACK)
._._._/ = 'P lnpul
20 ..a-—-——-"'/ (ACK)
—=~TCP Input
! (ACK)
0+ ’
[20000 40000 60000 80000

Send Packet Number

Figure 11. CPU time versus different maximum
segment size

T

T

575

