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Abstract 
Closed-form reliability functions for the well-known 

dual homing con.guration for the Fiber Distributed Data 
Inte#ace (FDDI) are derived by the familiar combinuto- 
rial method. The new reliabilityfunctions are then com- 
pared to that of the dual ring con.guration via numerical 
examples, which again show that in most cases the dual 
homing network is more reliable than the dual ring net- 
work; however, the model analysis also shows that dual 
homing is recommended only if certain network parameter 
constraints are met. 

1. Introduction 

Fiber Distributed Data Interface (FDDI) is a high-speed, 
fiber-optic token network consisting of two counter-rotat- 
ing rings [l]. In addition to the fault tolerant level pro- 
vided by the dual rings, the reliability of an FDDI network 
is enhanced by the use of station bypass switches or con- 
centrators (CONs) [l, 2, 31. A station equipped by a 
bypass switch is switched out of the ring when the station 
experiences a power failure. A CON facilitates the con- 
nection of stations to the ring and also switches out of the 
ring any faulty station connected to it. The use of reliable 
CONs to interconnect stations is the heart of the dual hom- 
ing configuration. 
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Fig. 1 - Dual ring network 
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The simplest way to form an FDDI network of N dual 
attach stations (DASs) is to interconnect the stations as 
shown in Fig. 1. To use the reliability provided by two 
counter-rotating rings, DASs must be used in the FDDI 
network. The DASs can be any type of dual attach nodes 
such as gateways, CONs, or servers. This simple configu- 
ration (Fig. 1) is called the dual ring nefwork. The reliabil- 
ity function rft) of the dual ring is given in Ref. 2. Suppose 
that optical bypass switches in the DASs are working per- 
fectly, then 

where N is the number of DASs andflt) is the reliability 
function of one of the 2N links. A dual homing analogy of 
Eq. (1) is derived in the next section. Equation (1) is valid 
under the assumption that the dual ring is reliable as long 
as the ring is not segmented. Optical bypass switches in 
DASs switch any station that has no power out of the ring; 
therefore, the reliability of the ring is not affected unless 
the number of activated optical bypass switches is exces- 
sive. However, the loss caused by activated bypass 
switches affects both the dual ring and the dual homed net- 
work almost equally. This paper will not take the DAS 
faults into consideration. Keep in mind that these results 
can be extended straightforwardly to incorporate the DAS 
faults into the model as is done in Ref. 2. 
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An alternative for the dual ring network is the dual hom- 
ing network, which is shown in Fig. 2. As expected, the 
reliability of the dual homing network is improved in 
many cases by using two additional reliable CONs and 
4(N + 1) fiber links instead of using only the 2N fiber links 
that were used in the dual ring network. The quantification 
of this observation is given in Sections 2 and 3. In addition 
to providing further reliability, the dual homing network is 
highly structllred and hence facilitates network manage- 
ment as well as network expansion/reduction; stations 
may be added to or removed from the network without 
altering its structure. 

The FDDI dual homing architecture has been proposed, 
studied, and implemented for several years. The compari- 
son between dual homing and other types of configura- 
tions is reviewed in Ref. 3. The availability of the path 
between user and backbone is discussed in Ref. 4 for mul- 
tiple level FDDI dual homing. The goal of this paper is to 
derive reliability results of the dual homing network 
shown in Fig. 2 (as well as its extensions shown in Fig. 3), 
where each CON has an arbitrary reliability function c(t), 
N is the number of DASs, each of the four links connect- 
ing the two CONs has a general reliability function .?(r), 
and each of the 4N links connecting DASs to the two 
CONs has an arbitrary reliability function At). It is 
assumed that all components fail independently and that 
each CON is capable of handling N DASs. It is important 
to note that the link fault can be any fault that causes the 
ring to wrap or to be segmented and can include many 
types such as fiber cuts, severe dB loss, or faulty station 
transceivers. This simple dual homing model is fundamen- 
tal for the following reasons: 

The model is the dual homing counterpart of the dual 
ring shown in Fig. 1. Most FDDI backbone rings can be 
transformed into either one of these two configurations 
since FDDI standards require that the FDDI backbone 
be connected by dual attach nodes. 

0 Many other FDDI configurations involving dual homing 
can be analyzed by using this dual homing model as the 
basic building block (Sections 2 and 3); with the use of 
only one pair of CONs as shown in Fig. 2, the insight 
can be gained more easily from this simple dual homed 
network model. 
It is desirable to have a closed form and yet simple for- 
mula, which is a dual homing counteqmt of Eq. (1) and 
can be computed in a straightforward manner (Theorem 
1). 
The model analysis shows that dual homing is beneficial 
only if certain network parameter constraints are met 
(Theorem 2). 

2. Reliability Results for Dual Homing 
Network of Figure 2 

This section is devoted to the derivation of the reliability 
function for the dual homing network posed in Section 1. 
Then a numerical example is given to apply the derived 
formula, followed by a theorem about network parameter 
constraints for a proper dual homing implementation. A 
more general model is analyzed in the next section. 

Let At), f (  r )  , c(t), and R(t) be reliability functions of 
the link connecting DASs to the CONs, of the link con- 
necting two CONs, of the CON, and of the dual homing 
network respectively (Fig. 2). Furthermore, let N be the 
number of DASs. The network is said to be operational 
(i.e., reliable) if there is a communication path among all 
DASs (i.e., the network is not segmented). 

Theorem 1 

ProoE Let X be the random variable representing the 
operational time of the dual homing network shown in Fig. 
2. For each t > 0, consider two mutually exclusive and 
exhaustive events A(t) and B(t) for the CONs: A(t) is the 
event that two CONs are still operational at time t and B(t) 
is the event that only one CON is still operational at time C .  
Then 

P r { A ( t ) }  = c(r)’and 

~ r { ~ ( t ) }  = 2c(r )  [ i -c (r) ] .  (2) 

Let Al( t )  be the event that the root ring (i.e., the ring 
connecting the two CONs) is not segmented before t. Then 
from Eq. (1) with N = 2 

(3) 

Let AZ(t) be the event that the root ring is segmented 
before t. Then from Eq. (3) 

,. 

Then P r  { X  > tl A (I), A ,  ( I )  } is computed as follows: 
With the presence of the two operational CONs, effec- 
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tively the fiber links always fail in pairs with a new reli- 
ability function f ( t )2  for each pair. Each DAS is 
disconnected from the dual homed network when both 
pairs (each with reliability function f (  t) ') fail; that is, the 
reliability associated with each DAS is 

R ( r )  = ( ( ; ? f ( t ) ~ - - f ( t ) ~  N [ 2 f ( ~ ) 2 - ~ ( t ) 4 ~  
2 

+f(r)2N[1 -f(r)'] ) ~ ( t ) ~ + f ( r ) ~ ~ 2 c ( r )  [ l - c ( t ) ] .  

Remarks 

Eq. (5 )  is used several times in the computation in the next 
section. 

For the case where the root ring is segmented, which 
results in two identical rings of single attach stations 
(SASS), Pr {X > 4 A ( t )  , A,  (t) } is computed as follows: 
Note that the second ring is no longer considered reliable 
because if it is reliable, then all of the links at port B would 
have to fail simultaneously; this is impossible as At) is 
associated with a continuous random variable by assump- 
tion. Port B links are always active unless there are faults 
associated with them. Therefore, 

Suppose that two perfect CONs with c(t) = 1 are used 
and that the root ring is not segmented (i.e., f ( t )  = 1). 
Then Theorem 1 becomes 

which must be an upper bound for the reliability func- 
tion R(t) of the dual homing network. This upper 
bound can be approached as close as desirable by using 
two very reliable CONs as well as four very reliable 
(e.g., very short) links. 
The reliability function in Theorem 1 is dependent on 
f , J  and c ; i.e., R = R (f , j  c)  (here, for ease of writing, 
the time variable tis suppressed). Then an upper bound 
for the reliability function R, which is tighter (and 
more complicated) than Eq. (9), is given by 

P r  {X> 4 A ( t )  , A ,  ( t )  } = f(t)  ' N .  

From Eqs. (3) to (6) and the fact that 

Pr{X> tl A ( t )  ) 

= {x > ti A ( t )  , A ,  ( t )  1 

+ p r  { x> A ( 1 1 ,  A ,  

{ A  , ( r )  I A ( t )  1 

1 p r  { A ~  (1 )  1 A ( q  1 , 

the time measured, for instance, in days. This will give the 
mean time to failure O M T f F )  of both the CON and fiber 
link the value of 1/0.001 = lo00 days. Then the reliability 
of the dual ring as well as the dual homing network for 
various values of f and N (the number of DASs) is given in 
Table 1 (M is the number of CON pairs, M = 1 in this 
example). 

Pr{X> tl A (1)  } 

= [ 2f( r> -f(t) 4~ 'I [2j(t) - j ( ~  4~ 

+f(t)  2N [ 1 - j (  $1 
From Table 1, for small  network sizes (e.g., N = 5), the 

(7) 

Note that dual ring network is slightly more reliable than the dual 
homing network since it is less likely that the small dual 
ring will be segmented. For larger values of N (N > 9), 
dual homing consistently becomes more reliable than dual 
ring. Finally, as expected, the reliability upper bound value 
for dual homing is the greatest among the three values. 
The following theorem confmns the superiority of dual 
homing (Eq. (9)) to dual ring (Eq. (1)) when dual homing 
is properly implemented (i.e., when N 2 4 and the reliabil- 

P r { X > t l B ( t ) }  = f ( t ) ?  (8) 

Then from Eqs. (2), (7), (8) and the fact that 

R ( t )  = P r { X > t }  = P r { X > t l A ( t ) } P r { A ( t ) }  

+ P r  {X > tl B ( t )  1 P r  { B  ( t )  1 , ity bound 0% (9)) is ap~mached). 
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Table 1 - Reliability of Dual Homing and Dual Ring Network 
~ 

t =  10 
0.9980 

0.9961 

0.9962 
0.9961 

0.9925 

0.9841 
0.9941 

0.9890 

0.9653 
0.9922 

0.9857 

0.9411 
0.9918 

0.9850 

M = l  
N=5 

N=10 

- 
N=15 

N=20 

N=21 

- 
N=30 

- 
Nr39 

NE40 

Nr48  

- 
NrSO 

~~~ 

tr5O 
0.9555 

0.9200 

0.9255 
0.9130 

0.8577 

0.7548 
0.8724 

0.8062 

0.5751 
0.8336 

0.7621 

0.4200 
0.8261 

0.7531 

computed 
network 

0.9742 

0.8196 
0.9844 

t - 5  
0.9995’ 

0.99902 

0.999d 
0.9990 

0.9980 

0.9958 
0.9985 

0.9971 

0.9905 
0.9980 

0.9962 

0.9833 
0.9979 

0.9960 

0.6309 

0.1033 
0.6950 

0.9928 

0.9398 
0.9953 

0.9915 

0.9173 
0.9951 

0.9912 

0.9113 

0.9817 0.9358 0.3929 
I 0.9970 I 0.9883 I 0.7612 I 

0.9737 0.6251 

0.8124 0.0954 
0.9814 0.6462 

0.9692 0.5802 

0.7542 0.0498 
0.9806 0.6345 

0.9683 0.5697 

0.7395 0.0422 

I 0.9945 I 0.9795 I 0.6879 1 
0.9642 0.8814 0.2069 

1 0.9961 I 0.9848 I 0.7013 

0.9929 

0.9424 
0.9960 

computed from Theorem 1: reliability for dual homing network 
computed from Eq. (1): reliability for dual ring network 

Theorem 2 

(a) NfN-’- (N- l)fN> ( 2 t - f ) N  

for N = 1,2,3 and all f~ (0 , l ) .  That is, a small dual 
ring network is more reliable than a small dual homing 
network with the same number of DASs N = 1 , 2 , 3  (see 

(b) NfN-’- ( N - l ) f N <  (23-f)” 

forall N 1 4 a n d a l l  f~ [ h / Z , l ) . T h a t i s , i f c  = 1 and 
3 = 1, dual homing is more reliable than dual ring for 
N 2 4  andf2 &2 (see Eq. (9)). 

Eq. (9)). 

hoot (a) is CleaJy true for3N = 1,2. For N = 3, 
observe that 3 (1 -f) >3 (1 -f) , which can be written 
after some algebra as 

Therefore (a) is also true when N = 3. 

When N = 4,  (b) becomes 4f - 3f < (23 -f) , which 
4 

can be written after some algebra as 

O <  (1-3)’[(-4+113-6f) +PI; 
however, - 4 + 11t - 6f 2 0 when f” 2 112 or 
fr &2 = 0.7071 ... . Therefore (b) is true at N = 4. Note 
that numerid computation shows that (b) is also true 
when N = 4 if f = 0.69183 and is false if f = 0.69182. 
Then (b) is proved for all N 2 4 and all f1 &/2 by induc- 
tion as follows. Suppose that (b) is true at N. Then since 

(1-3) = 1 -23+f>O, it can be shown after some 
algebra that 

2 

therefore, from induction hypothesis ((b)), 

(2f - f )N+1> (N+ l ) t N - N f N + 2  

= (N+ l ) f ( N + l )  - z -Nf (N+l ) .  

Thus (b) is also true at N + 1 ; hence the induction proof is 
completed. 

Theorem 2 shows that in most cases, dual homing is 
more reliable than dual ring; however, to better use the 
dual homing technique, the following should be met 

the number of DASs Nmust be at least four 
the link reliabilityfif) is at least &/2  = .7071.. . 
the ring comprising two CONS must be reliable. 

3. An Extension 

This section analyzes the dual homing network as 
shown in Fig. 3, which is a natural extension of the net- 
work of Fig. 2. Specifically, let M be the number of CON 
pairs (one such pair looks like the one shown in Fig. 2). As 
before, each CON can serve N DASs and has reliability 
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function c(t). The ring consisting of 2M CONs is called the 
root ring. 

? ( t )  

Fig. 3 - Extended dual homing network 

Furthermore, each of the (fiber) links used for intercon- 
necting 2M CONs has reliability function f (r )  , and f ( t )  is 
the reliability function for each of 4MN links used for con- 
necting DASs to CONs. All components are assumed to 
fail independently. Other definitions from the previous 
section such as X and R(t) (Theorem 1) are also carried 
into this section. Note that the number of DASs now 
becomes MN. 

Then the reliability function R(t) of the dual homing 
network shown in Fig. 3 is given by 

P r { X > t }  = P r { X > r l  therootringisnotsegmented} 
x P r  {the root ring is not segmented } 

+ P r { X >  r, the root ring is segmented} . (11) 

Each of the two unknown components in the above 
summation is computed as follows: 

First let L be the number of working CON pairs. Then 
from the analysis in Section 2 (Eq. (5) )  

P r  { X > 1) L = M - m, the root ring is not segmented } 

P r { L =  M - m }  = ( f n l ) ~ ( t ) ~ ( ~ - ~ )  ( 2 c  ( 0  [ 1 - c ( t )  1 1". 

Therefore from the above two equations, 

P r  {X> rJ the root ring is not segmented} 

m = O  

Letting N = 2M in EQ. (1) gives 

P r  {the root ring is not segmented } 

From the above two equations, 

P r  { X  > tl the root ring is not segmented } 

x P r  { the root ring is not segmented} 

m = O  

Then by the same argument used in the previous section, 
an upper bound for the reliability function R(t) is 

Note that the remarks after Theorem 1 as well as Theo- 
rem 2 in the previous section remain valid, with slight 
modification, in this case (Eq. (9)). 

The probability P r  { X > t ,  the root ring is segmented } is 
computed as follows, depending on two cases: M = 2 and 
M # 2 .  

Case 1: A4 = 2 .  This is the case where there are four 
CONs. Given the fact that X > t and the root ring is seg- 
mented, there are only two types of ring segmentations: 

The ring is segmented evenly resulting in two identical 
and parallel rings: the first ring consists of CON(1,l) 
and CON(2,1), and the second ring consists of 
CON(1,2) and CON(2,2). Note that the second ring is no 
longer considered reliable because if it is reliable, then 
all of the links at port B would have to fail simulta- 
neously, which is an impossible event asflt) is associ- 
ated with a continuous random variable. Port B links are 
always active unless there are faults associated with 
them. 
The ring is segmented unevenly resulting in two differ- 
ent rings: one ring has only one CON and the other ring 
has three CONs. 
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First note that for L = 0, 

P r  { X > t, L = 0 ,  the root ring is segmented unevenly } 

= P r  { X  > 4 L = 0, the root ring is segmented unevenly } 

x P r  { the root ring is segmented unevenly I L = 0 } 

x P r { L = O }  

= 4f(f)4N2c ( 9 2  [ 1 - c ( t )  l 2  (4  (1 -j(  f )  ) 3( t ) 6  

+ 4 (1 -j(t) ) > ( r )  + f ( t )  (1 -j(t) ) ) . 

Similarly, 

P r  { X >  t, L = 0 ,  the root ring is segmented evenly} 

= P r  { X > tl L = 0, the root ring is segmented evenly } 

x P r { L = O }  

X P r  {the root ring is segmented evenly I L = 0 } 

= f( t p 2 C  [ 1 - c ( t )  J 2  (4 ( 1 -j(  t )  ) 's( 
4 

+ 4 ( 1 - j ~ ~ ) ) ~ ~ ~ ) 5 + j ( r ~ 4 ( 1 - 3 ( t ) )  ) .  (14) 

Summing the above two equations gives 

Pr  { X > t, L = 0 ,  the root ring is segmented } 

= lof(t)4Nc ( r ) Z  [ l  - c ( f )  1 2  (4 (1 - j ( f )  ) ) ( f ) 6  

+ 4 ( 1  - j ( t ) ) > ( f ) 5 + j ( f ) 4 ( l  - j ( r ) ) 4 ) .  (15) 

For L = 1, 

Pr  { X > t ,  L = 1, the root ring is segmented evenly } 

= f ( t )  4N4c (t) [ 1 - c ( 1 )  ] (4  (1  - j ( t ) ) 3 ( t ) 6  
4 

+ 4 ( 1 -30) ) h t )  +m ( 1 - j ( t )  ) 

and 

P r  { X > t, L = 1, the root ring is segmented unevenly } 

= ( [ 2 f ( r ) 2 - f ( f ) 4 I r ( ? ) P N ) 4 C ( f ) 3 [ 1  - C ( f ) ]  x 

[4 (1 -?(f) )h06 + 4 (1 -?W) >(Q5  +fW (1 -?(f) 12. 

Then summing the above two equations gives 

For L = 2, 

P r  { X > t, L = 2, the root ring is segmented evenly } 

= f ( r )  4NC ( f )  4 (4 ( 1 -j(r) ) )( t ) 6  

+ 4 (1 - j ( f )  1 h5 +m4 ( 1  -3w 1 1 
4 

and 

P { X > t, L = 2, the root ring is segmented unevenly ] 

= 4 [ 2 f ( f )  2 - m )  4] N f ( f )  2Nc ( t ) 4  (4 (1 -j( r )  ) 's( t p  

4 
+ 4 (1  - j ( t ) )  ) ( t )  + j ( t )  (1  - j ( t ) )  ) . 

Hence by summing the above two equations, 

P r { X > f , L = 2 ,  therootringissegmented} 

= (4 [ 2f( 0 * - f (O 4l i C t )  +f(O "1 

x c (I) (4 ( 1 -f( t) ) )( t )  

+ 4 (1 - f ( t )  ) ) ( t )  ' + j ( ~ ) ~  (1 - j ( t ) )  4 ,  . (17) 

Then by summing Eqs. (15), (16) and (17): 

P r  { X > f ,  the root ring is segmented } 
2 

= C P r  { X  > t, L = i ,  tbe root ring is segmented 1 
i = O  

Case 2: M # 2 .  Note that the necessary condition for the 
segmented network to be reliable in this case is that At 
most one CON is isolated. Then it can be shown that 
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P r  { X > t, the root ring is segmented } 

(N = 7) 
MN = 39 

Table 2 - Reliability of Dual Ring and Extended Dual Homing 
Network 

0.99472 0.9795 0.6492 
0.9961 0.9848 0.7013 

= P r  { X > t ,  only one CON is isolated } 

( N =  13) 
M N = 4 8  

( N =  la) x (4 (l-f(t))2f(t)4M-2+4(l-f(t)) 3* f ( t )  4M-3 

0.9913 0.9669 0.5137 
0.9953 0.9814 0.6462 

0.9897 0.9609 0.4624 

M=3 t r 5  t =  10 I t r 5 O  
MN = 21 I 0.9979‘ I 0.9918 I 0.8261 I 

’ computed from &. (13): upper bound for dual homing network 
computed from Theorem 3: extended dual homing network 

x C f ( t ) 2 N ( M - m )  +m[2f( t )2- f ( t )41T.  (19) 

Then by combining Eqs. (ll), (12), (18), and (19) 
results in the following theorem, which is an extension of 
Theorem 1. 

Theorem 3 

where S (M, I )  = P r  { X > t, the root ring is segmented } , 
which is given by Eq. (18) if M = 2 and by Eq. (19) if 
M # 2 .  

Note that Theorem 3 reduces to Theorem 1 when M = 1. 
Theorem 2 in the previous section remains valid if N 
DASs, which were used in that theorem, are replaced by 
MN DASs in this section. 

Example 2 

Suppose that Example 1 in the previous section now is 
extended to include six CONs (i.e., M = 3). Then the reli- 
ability values computed at t = 5,10, and 50 days are given 
in Table 2. 

Note that, by comparing Table 2 with Table 1 in the pre- 
vious section, the dual homing network with M = 1 is more 
reliable than that with M = 3 even though their reliability 
upper bounds (Eqs. (9) and (13)) remain the same. 

4. Conclusion 

Closed form reliability functions for the FDDI dual 
homing networks are derived (Theorems 1 and 3). In most 
cases, dual homing is more reliable than dual ring; how- 
ever, dual homing technique is beneficial only if the fol- 
lowing conditions are met (Theorem 2): 

the number of DASs must be at least four 
the link reliability should be at least &/2 = .7071.. . 
the root ring comprising CONs must be reliable 
the number of CON pairs on the root ring should be 
as small as possible 
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