
Reliable Multicasting in the Xpress Transport Protocol

J. William Atwood Octavian Catrina
Concordia University Pol'ehnica University
Montreal, Quebec Bucharest

Canada Romania

Abstract

The Xpress Transport Protocol (ATP) is designed to
meet the needs of distributed, real-time, and multimedia
systems. This paper describes the genesis of recent im-
provements to XTP that provide mechanisms for reliable
management of multicast groups, and gives details of the
mechanisms used

Introduction
The Xpress Transport Protocol (XTP)1*2*3 is a high-

performance transport protocol designed to meet the
needs of distributed, real-time, and multimedia systems
in both unicast and multicast environments. The XTP
protocol definition is maintained by the XTP Forum; the
current definition is Revision 4.0 published in March,
1995. There is an Addendum to the X T P 4.0 Specifica-
tion that refines and replaces some of the XTP 4.0 multi-
cast mechanisms. This paper describes the genesis of
these changes and how they work.
XTP is a very flexible protocol, in that it consists of a

number of independent features: flow control, error con-
trol, delivery priority, unicasting/multicasting, various
data delivery semantics, parametric addressing, and traf-
fic specification. The emphasis in the design of XTP has
always been on the provision of basic mechanisms, from
which the user can consmct a,service well-suited to the
application at hand.

Multicasting has always been a part of the XTP
specification. Revision 3.6l of the specification required
the receivers to multicast their control responses to the
entire group. An appendix to the specification described
the bucket algorithm for managing responses from the
receivers, and introduced the ideas of damping and slot-
ting, with a goal of minimizing the control traffic from
the receivers. Certain aspects of the bucket algorithm
were subsequently shown to have undesirable features4.
Multicasting of the responses is problematic in widely-
distributed networks5, and the suppression of responses
from the receivers prevents the achievement of fully-reli-

John Fenton
Mentat, Inc.

Los Angeles, CA
U.S.A.

W. Timothy Strayer
Sandia National Laboratories

Livermore, CA
U.S.A.

able data transfer.
In revision 4.03, the procedures were substantially

revised. The recommendation to suppress response
packets was removed, and control packets are unicast
(sent only to the.transmitter) by the receivers. Mecha-
nisms were introduced to uniquely identify the partici-
pants in an association. In addition, a comprehensive
mechanism for the negotiation and re-negotiation of
traffic specifications was introduced. However, the
mechanisms for uniquely identifying receivers involve
potentially inefficient mappings, which could substan-
tially reduce the performance of a system. Further, it is
not possible to learn the transport-level addresses of the
receivers in certain cases. Finally, there is no convenient
mechanism for determining the initial size of the window
at the receivers.
. In this paper, we outline a solution to the above
deficiencies.

Multicast Concepts

Multicast communication involves one transmitter
(the initiator), and one or more receivers (1:N multicast-
ing). (There are several ways to construct M N multi-
casting using the 1:N multicast facilities.) The existence
of the association is governed by rules established by the
transmitter. These rules can vary from "I do not care" to
"I must know the exact membership". In the first case,
all receivers will be passive receivers, whose control in-
formation (if ever issued) will be ignored by the transmit-
ter. In the second case, all receivers will be active re-
ceivers, whose control information will be used by the
transmitter in managing the group and assessing the pro-
gress of the data transmission. Clearly, a variety of poli-
cies can be envisaged that will allocate the receivers be-
tween the active and passive groups in different ways.
The active group integrity is concerned with the mainte-
nance of the membership of the group of active receivers:
the set of rules that decide when the initial group has
formed, govern admission and withdrawal of active re-
ceivers, and decide when the group must be dissolved.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not neassarily state or
reflect those of the United States Government or any agency thereof.

Reliable Multicast Protocols

Many protocols have been developed to support data
exchange among various communications participants.
Some of these protocols, such as MTP (Multicast Trans-
port P r ~ t o c o l) ~ ~ ~ , and RMP (Reliable Multicast Protocol*,
implement a centralized control and error correction
scheme providing a totally-ordered multicast delivery.
The central instance controlling data transfer may b e
come a bottleneck when dealing with numerous receiv-
ers. An approach based on the establishment of multicast
servers is given by Carleg. The approach used in XTP
Revision 3.6, of damping "redundant" responses, furthers
the scalability of the protocol, but prevents achievement
of full reliability. SRM (Scaleable Reliable Mu1ticast)'O
integrates a mechanism to implement receiver-based er-
ror control, and uses timers carefully set to avoid a flood
of retransmission requests. However, the correct setting
of the timers will be very difficult for highly dynamic
networks with quickly changing load and frequently
changing network structure. The Local Group Concept
of H~fmann'~ presents a scaleable multicasting facility
well adapted to a variety of environments.

All of the referenced protocols solve a particular
problem in reliable multicasting. Some of them provide
a total ordering of the delivered data from multiple
senders. We do not attempt this; our goal is to present a
protocol that permits constructing the service required by
a wide range of applications, from totally unreliable, to
fully reliable, without requiring the implementation of
any paaicular policy for managing the active group.

Association Management in XTP

P
In this section, we will briefly introduce the features

of XTP salient to the discussion of XTP's reliable multi-
cast service. The current complete definition of the proto-
col is given in the ~pecification3. XTP is a connec-
tion-oriented protocol, where connections are referred to
as associations between conrexts at the endpoints of the
communication. A context is essentially, a collection of
information concerning the end-point and the progress of
an association. Individual contexts on a host are identi-
fied using a key value, assigned by the host to be unique
within the host. The key is used on all outgoing packets
to differentiate flows from different contexts. Returning
packets carry a return key value (the same key with its
most significant bit set), which uniquely maps the packet
onto the appropriate context, thus making it easy to ref-
erence the information about the context. A key exchange
is a procedure by which the initiator of the association is
told the key value assigned to the responder context, so
that return keys may be used in both directions.

Mapping incoming packets onto the appropriate con-

text requires either the returned key (in which case the
mapping is direct, since the return key identifies the con-
text), or the (non-return) key and sender's source address
(since this source address is where the key was created).
The first case is called an "abbreviated context lookup"
because the mapping is fast. The second is called a "full
context lookup" because the mapping requires a transla-
tion from the (sender address, key) pair to the proper
context.

There itre seven packet types in XTP 4.0: FIRST,
DATA, CNTL, ECNTL, TCNTL, JOIN and DIAG. The
FIRST packet carries addressing and traffic specification
information; traffk specifications are further negotiated
using a TCNTL packet. The FIRST packet may also
carry data.' Subsequent data are carried in DATA packets.
Control information is exchanged using CNTL (normal)
and ECNTL. (errors detected) packets. The JOIN packet
is used for XTP 4.0 multicast mechanisms. The DIAG
packet indicates protocol error conditions.

Before a FIRST packet arrives to establish an asso-
ciation, a context at the receiving host must be in a listen
state. It moves to the active state if the association is ac-
cepted, that is, a FIRST packet meeting the listening con-
text's criteria is received.. ..

In XTP, it is the transmitter that requests status re-
ports from the receiver(s). The SREQ bit in the header is
used for this purpose. The transmitter sets a timer,
WTIMER, when a packet containing SREQ is sent, to
provide protection against loss of the request or the re-
sponse. The response is carried in a CNTL or ECNTL
packet, depending on the information to be reported.

The procedures for association management have
been described thoroughly in the XTP Spe~iIications~-~
and the book by Strayer, et ai2.

Multicast Management

A multicast association consists of one transmitter
context, and 0 or more receiver contexts. Each partici-
pant has a (unicast) transport-level address, and a key
identifying its context. Each host has a (unicast) Deliv-
ery Service address. The group has a (multicast)
transport-level address, and may have a (multicast)
Delivery Service address.

When a multicast association is to be established, the
procedures are similar to those for unicast communica-
tion. The receiving contexts that will form the initial
group must enter the listen state, and establish the crite-
ria for acceptance of an incoming FIRST packet, which
contains the same information as a unicast FIRST packet.
When the FIRST packet arrives at a receiving host,
bearing the Delivery Service address and the key as-
signed to the group, and if it meets the acceptance crite-
ria defined by a receiving context, it is accepted

If multiple contexts are in the listen state when the
FIRST packet arrives at a particular host, the search
through the contexts continues until all contexts have
been examined, and a mapping is constructed between
the (sender address, key) pair and the set of all acceptable
contexts. If no suitable context is found, the packet is

Depending on the desired reliability of the associa-
tion, a response packet may or may not be returned once
the association is established. In Revision 3.6 this is a
CNTL packet; in Revision 4.0 it is a TCNTL (traffic
control) packet, containing a response to the offered
Traffic Specification. In both cases, the transmitter can
learn the key used at each receiver, but the transport-level .
address of the newly-added receiver is unknown. (There
is no field in a CNTL or TCNTL packet to carry this
address.)

At this point, the receiving end-point has learned the
value of the key assigned at the transmitting context, and
can use it as a return key. If the receiver uses this key,
the lookup at the transmitter is efficient, but the re-
sponses from individual receivers cannot be differenti-
ated. Differentiation of the receivers would be possible if
the receivers used their own keys, but this would be
inefficient, as it would force a full-context lookup at the
transmitter for each receiver packet that arrived.

In a reliable system, the transmitter must maintain in-
formation on each participant in the association, during
the lifetime of the association. This information must be
accessed each time that a packet is received from a
receiver. To ensure group integrity, and reliable data
flow, status reports will be requested periodically from
the active receivers. It is essential that the local
information in the transmitter be accessible quickly.

In Revisions 3.6 and 4.0, new receiving contexts may
join an existing group by sending a JOIN packet, which
contains the transport-level addresses of the group and of
the joining receiver, the desired traffk specification, and
keys. In this case the joining receiver is identified at
the transport level, but its key is unknown unless it
chooses to perforin a key exchange. An efficient
mapping mechanism is not provided.

The association is established once the active group
integrity criteria are met at the transmitter. (This is
likely to require knowledge of the transport-level address
of each receiver.) The population of the active receiver
group may vary over time, and each change will trigger
assessment of the integrity criteria for the group.

To properly manage an on-going group with full
reliability requires mechanisms that permit both the full
and unique identification of the receivers, and efficient
access to the information at the transmitter.

simply dropped.

Summary of Changes

The XTP 4.0 Addendum solves several issues that
were outstanding in the XTP 4.0 Specification. These
include:
0 Uniquely identifying every active receiver at the

transmitter
Effectively controlling the membership of the active
receiver group through the lifetime of the association .
Determining the transport-level address of all receiv-
ers in the association
Providing the window size of each receiver to the
transmitter as soon as possible
The solution given in the XTP 4.0 Addendum relies

on assigning unique identifiers to each receiver, and rec-
ognizes that these identifiers can be obtained from the
global key space at the transmitting host. These keys are
then used as return keys by the receiver, achieving effi-
cient lookup. Since neither the JOIN packet nor the
TCNTL packet have sufficient fields to permit communi-
cating the unique identifier (key) to each receiver and
communicating the transport-level address of the receiver
to the transmitter, a new packet type, JCNTL, has been
defined to do this and subsume the functionality of the
JOIN packet.

The rest of this paper discusses the X T P 4.0 Adden-
dum multicast mechanisms and, when appropriate, how
they differ from XTP 4.0.

JCNTL Packet Format

This section introduces the notation required to de-
scribe the reliable multicast procedures, and the packet
format for the new packet type (JCNTL).

Necessary notation

Kg
Kg'
Kr
Kr'
Ki

Ki'

Transmitter's local key, for the multicast group
Transmitter's local key, as a return key
Receiver's local key
Receiver's local key, as a return key
Key assigned by the transmitter, to uniquely
identify receiver i
The same, as a return key

TAg(m)
TAt(u)
TAr(u)
DA

SA
Ag(m)

The multicast Transport Address of the group
The unicast Transport Address of the transmitter
The unicast Transport Address of the receiver
The destination address field in an Address
Segment
The source address field in an Address Segment
The multicast Delivery Service address of the
group (probably a network address. but possibly a
MAC address in restricted environments)
The unicast Delivery Service address of the

transmitter
The unicast Delivery Service address of the
receiver
The destination address used by the Delivery
Service
The source address used by the Delivery Service

&(u)

dest

src
Notes:
1.

2.

3.

The Kx forms (Kg, Kr, Ki) are used in outgoing
packets when there is not yet (or will never be) in-
formation about a return key, so a full context lookup
must be forced at the destination. The Kx' forms
(Kg', Kr', Ki') are used whenever possible, to permit
abbreviated lookups.
The Transport Address values pAg(m), TAt(u),
TAr(u)] will be carried in'the destination address and
source address fields of the address segment of a
JCNTL packet. They will have values appropriate to
the Address Format in use (see section 2.4.1 of the
X T P Specification).
The Delivery Service Address values [Ag(m), At(u),
Ar(u)] will be carried in the destination address and
source address fields of the Delivery Service packets
that encapsulate the XTP packets. They will have
values appropriate to the Address Format used by the
Delivery Service.

The JCNTL packet is assigned packet type 7. The packet
layout is as follows:

Header (key, cmd, dlen, check, sort, sync, seq)

common control part

for alignment
I rseq (8 bytes)

alloc (8 by tes)
echo (4 bytes)
rsvd (4 bytes)
h Y (8 bytes)
Address Segment
Traffic Segment *

NOTE The alloc field in a JCNTL from a receiver must
be interpreted as a window size, because the receiver may
not know what the joining seq value will be, and so can-
not calculate an actual alloc value.

'

Multicast Packet Exchanges
XTP multicast distinguishes between transmitter-

initiated multicast as an "invitation" to join the multicast
association, and the receiver-initiated join as a form of
"polling."

In transmitter-initiated multicast, the packet ex-
change begins with a FIRST packet sent to the group
address soliciting receivers. A receiver sends a JCNTL
packet back to the transmitter, requesting to join the
multicast association. The transmitter decides on the re-
ceiver, and if it is accepted, replies with a YC- packet
telling the receiver that (1) it is now part of the associa-

tion, (2) what its multicast receiver identifier is.
In a receiver-initiated join, a potential receiver sends

a JCNTL packet to the group address requesting admis-
sion from the transmitter. If accepted, the transmitter
replies with a JCNTL packet telling the receiver both
pieces of information as above.

Transmitter-initiated multicast

The transmitter-initiated group formation proceeds as
follows:

FIRST packet from the transmitter to the group:
des t = Ag(m)
src = At@)
key =Kg
DA =TAg(m)
SA = TAt(u)
initial Tspec

When this FIRST packet arrives at a receiving host,
the mapping (At(u),Kg)+(Krl,Kr2, ...) must be added to
the translation table, where (Krl,Kr2, ...) denotes the con-
texts listening at Transport Address TAg(m) that also
satisfy the acceptance criteria as listed in Section 5.3.2 of
the XTP Specification, Revision 4.0.

Unreliable groups:
If SREQ is not set in the FIRST packet, then the

transmitter does not care about receiver membership, and
the receiver should be silent. (This is exactly the same as
the requirement in unicast that the receiver be silent if
the FIRST packet does not have SREQ set.) However,
this does not prevent the transmitter from using
SREQDREQ in the future to gather responses from lis-
tening receivers, and using these responses to advance its
outgoing sequence numbers. These responses will of
necessity be returned with key=Kg'; the transmitter will
need some algorithm for coalescing the responses. Some
level of error detection and correction is therefore still
possible, but reliable reception by a defined group of re-
ceivers cannot be guaranteed.

Reliable groups:
If SREQ is set in the FIRST packet, the FIRST packet

is an "invitation" to join the group. The required re-
sponse is a "JCNTL request packet", with the following
fields:

dest =At(u)
src = Ar(u)
key =Kg'
d o c
xkey =Kr'
DA =TAg(m)
SA = TAr(u)
response Tspec

= the current window size for this receiver

Note that the initial window size for this receiver is
also the alloc value, because the starting seq value is al-
ways zero.

Although this packet is a "response" to the SREQ in
the FlRST packet, which would normally mean that
SREQ should not be set, it is also a "request" to join the
group. The receiver must protect this request with
WTIMER. (Recall that we are dealing with a reliable
group.) Therefore, to ensure completion of the packet
exchange for association establishment, it is required that
this packet have SREQ set.

After the sequence (FIRST packet, JCNTL request
packet) has completed, the transmitter has the key (Kr')
to be used when sending to the new receiver, and the
Transport level address for this receiver, so the transmit-
ter knows uniquely who the new member of the group is.

Since a packet sent with key=Kr' may be returned as a
DUG packet with key==, the transmitter should add
the mapping (Ar(u),Kr)+Ki to its translation table.

The transmitter must now issue a "JCNTL response
packet", to complete the exchange. It allocates a key Ki
from its key space, and communicates this to the re-
ceiver:

dest = Ar(u)
src = At(u)
key =w
xkey =K?
DA =TAr(u)
SA = TAt(u)
Tspec

The Tspec can be the Null Traffic Specifier (tfonnat
0) to indicate "no change" when it occurs in a control
packet.

This JCNTL response packet must not have SREQ
set.

ceiving host, with xkey=Ki', then the receiving host must
record Ki' as the key to be used when sending packets to
the transmitter, and should add the entry (At(u),Ki)+Kr
to its translation table. This enables correct delivery of a
future DIAG packet with key==.

If the contents of the DA field in the JCNTL response
packet do not match the unicast Transport Address value
associated with context Kr, then a protocol error has oc-
curred. This should be signaled with a DIAG packet
containing key==, code = 6 (Protocol Error), and val =
14 (Invalid Address).

If the transmitter does not wish to continue to
uniquely identify each receiver (in spite of having asked
the receivers initially to identify themselves), it sends the
same JCNTL response packet as above, but places Kg' in
the xkey field, In this case there is no Ki allocated, no
record of Kr, and no need to record a mapping between
(Ar(u),Kr) and Ki.

t When the JCNTL response packet arrives at the re-

,

Subsequent packet exchanges

Any packet sent from the transmitter to the whole
group:

dest = Ag(m)
src = At@)
key =Kg

Because the target contexts will have different keys, it,
is always necessary for the receiving host to use a full
context lookup with the pair (At(u),Kg) to find the ap-
propriate contexts (Krl,JSr2, ...) on a target machine.

Any packet sent from the transmitter to a specific
receiver:

dest =Ar(u)
src =At(@
key =w

This uses abbreviated context lookup at the receiving
host, to map to a single receiver context.

Any packet sent from a receiver to the transrm 'tter:
dest = At(u)
src = Ar(u)
key =Kg'orK?

Here the receiver uses Kg', the key that it learned
from the initial FIRST packet, or Ki', the key that it
learned from the JCNTL response packet, depending on
which is available. The transmitting host uses abbrevi-
ated context lookup to map to the appropriate entity.

Receiver-initiated multicast

When a receiver wishes to join an existing multicast
group, it sends a JCNTL request packet, as follows:

dest =Ag(m)
src = Ar(u)
key = o
d o c = window size
xkey =W
DA =TAg(m)
SA = TAr(u)
offered Tspec

This JCNTL request packet must have SREQ set (to cor-
respond with the JCNTL request packet described above).

The transmitter responds with a JCNTL response
packet, as follows:

dest =Ar(u)
src = At@)
key =Kg
d o c =join point
xkey =K?orKg'
DA =TAr(u)
SA = TAt(u)
response Tspec

As for transmitter-initiated multicast, the transmitter

allocates a key Ki from its key space, and sends this as
Ki' in the xkey field. It should also add the mapping
(Ar(u),Kr)+Ki to its translation table.

If the transmitter does not, in fact, wish to uniquely
identify joining receivers, then it sends Kg'. In this case
there is no Ki allocated, no record of Kr, and no need to
record a mapping between (Ar(u),Kr) and Ki.

When the JCNTL response packet arrives at the host
corresponding to Ar(u), if there are no other contexts on
this host associated with the group, the full context
lookup will fail b a u s e the host did not previously know
the (At(u),Kg) pair]. The host will then match the desti-
nation address pAr(u)] against listening contexts, and
will find Kr. It will make an entry translating.(At(u),Kg)
to Kr.

If there are previously-enrolled members of the group
on the host, the full context lookup will not fail, but the
transport address EAr(u)] will not be in the set of con-
texts indexed by the translation table, so an additional
entry will need to be made once the context Kr has been
found. If TAr(u) is already in the set of contexts indexed
by the translation table, the JCNTL is a duplicate.

If no match can be found for TAr(u), then the context
that originally issued the JCNTL request packet has van-
ished. This should be signaled with. a DIAG packet con-
taining key=Kg', cod-3 (Invalid context), and val=O
(Unspecified). This can be handled at the transmitter in
various ways, depending on the reliability semantics of
the group. If the transmitter does not care, the DIAG can
be ignored. If the transmitter has a set of one or more Kr'
values for the receiving host, it can use these values to
single out the departed context, and then act in accor-
dance with the improved information.

(Note that key=Kr' cannot be used in the JCNTL re-
sponse packet, even though it is known to the transmitter,
because Kg must be communicated, even if Ki' is to be
used for reverse traffic. In addition, the use of Kg trig-
gers the update to the translation table, which otherwise
would not happen if the packet were handed directly to
the context Kr'.)

As for transmitter-initiated multicast, if the arriving
JCNTL response packet has xkey=Ki', then the receiving
host should add the entry (At(u),Ki)+Kr to its transla-
tion table. This enables correct delivery of a future
DIAG packet with key&.

If the JCNTL response packet containing Kg is lost, it
will normally be recovered when the WTIMER expira-
tion at the receiver causes the JCNTL request packet to
be reissued. However, some packets with key=Kg may
arrive at the receiver; these will be ignored, but will be
recovered once the JCNTL response packet is resent.
Finally, receipt by the receiver of a packet with key=Kr',
before the receipt of the (sent or resent) JCNTL response

packet will confuse the receiver, because it will know
neither Kg' nor Ki'. In this case the JCNTL request
packet must be re-issued, even if WTIMER has not ex-
pired. (It is clear that at least one round trip time has
elapsed!)

Alternate Joining Procedure:
For a receiver-initiated join, the receiver normally

specifies xkey=Kr' in the JCNTL request packet. How-'
ever, some implementations may find it inconvenient to
allocate Kr at the time that the JCNTL request packet is
issued. The receiver indicates this by setting both key*
and xkey=O in the JCNTL request packet.

The transmitter responds with a normal JCNTL re-
sponse packet, containing key=Kg and xkey=Ki' or Kg'.
If Ki has been allocated, the transmitter records Ki as the
"key to use when addressing this receiver", because it
does not (yet) know Kr.

Use of Ki in this way will require a full context
lookup at the destination. Also there is a window of vul-
nerability here if the JCNTL response packet is lost. If
key== is used to send a packet to this receiver, but the
receiver does not know about E, then a DIAG will be
returned with key=Ki', and the association will be in
danger of being aborted. It is therefore recommended
that the transmitter minimize the use of key=Ki to ad-
dress an individual receiver.

When the JCNTL response packet arrives at the re-
ceiving host, the full context lookup proceeds as it would
for the normal receiver-initiated case: the
(At(u),Kg)+Kr mapping is added, and the
(At(u),Ki)+Kr mapping is created if xkey=Ki'. In addi-
tion, if xkey=Ki', then the receiver may wish to initiate a
key exchange with the transmitter, to send it Kr'. This
should be done by sending a TCNTL (key=Ki', xkey=Kr',
SREQ) containing the Null Traffic Specifier (tformat 0).
The presence of SREQ will solicit a response confirming
the key exchange.

When the TCNTL (key=Ki', xkey=Kr', SREQ) packet
arrives at the transmitter, the transmitter records Kr' as
the "key to use when addressing this receiver", and adds
the mapping (Ar(u),Kr)+Ki to its translation table. The
window of vulnerability mentioned above has now
closed, because the transmitter is now sure that Ki is
known at the receiver. However, the transmitter will
never use Ki for subsequent packets, because it has also
learned Kr'. The transmitter then responds to the SREQ
in the TCNTL in the normal way.

Simultaneous FIRST and JCNTL (key=O) packets

It is possible for the transmitter-initiated and the re-
ceiver-initiated sequences to begin simultaneously. In

principle, it would be possible for an implementation to
drop one of the extraneous packets. However, two differ-
ent implementations might end up dropping both of the
packets, so the association would never get established.
Implementations are therefore required to . respond to
both, with the expectation that the extra JCNTL packets
that result will be dropped by the duplicate detection
mechanisms, once it is assured that the association has
been established. The details are as follows:

During a transmitter-initiated sequence, once the
FIRST (key=Kg) packet has been sent, the transmitter is
expecting a JCNTL (key=Kg') as a reply. If a JCNTL
(keyd) is received instead, the action to be taken is a
combination of the action for JCNTL (keyd) and the
action for JCNTL (key=Kg'): the response of the joining
receiver must be added to the set of responses that will be
communicated to the transmitting user once the criteria
for the new group have been met (see the section below
on Multicast Group Management), and the transmitter
must respond to the receiver using the normal response to
a JCNTL (key+) packet.

During a receiver-initiated sequence, once the JCNTL
(keyd) packet has been sent, the receiver is expecting a
JCNTL (key=Kg). If a FIRST packet arrives, it should be
responded to by issuing a JCNTL request packet with
key=Kg'.

Key Management for Reliable Groups

This section provides further insight for the key man-
agement during multicast associations with fully-reliable
groups. It presents the progress of the knowledge gained
during the packets exchanges, about the keys to be used
while sending information and the keys to be expected in

b arriving packets.

Transmitter state diagram

Figure 1 is a state diagram for the transmitter, show-
ing the key exchanges. A '+' signifies an input and a '-'
signifies an output. Transitions that definitely take place
are shown with a continuous line and transitions that
may take place at some time, but need not ever occur, are
shown with a dashed line. Labeled states in the diagram
represent the progress in the knowledge of the various
keys. The column headings have the following meanings:

TxI Transmitter-initiated
RxI Receiver-initiated
RxA Receiver-initiated; alternate procedure

In the beginning, for a transmitter-initiated exchange
(column TxI), the transmitter knows Kg, and sends it in
a FIRST packet. This progresses the exchange to state
TA. When the transmitter receives a JCNTL request
packet from a joining receiver, it learns Kr', assigns Ki,

+ any packet
not TCN?l&i',Kf)

I with key=Ki' with key=Ki' with key=Ki'
+any packet +any packet

I I I
I I I
I I +TCITI&K?,Kr') +TCNTL(K?,Kr')
I I + + +

C TC

Figure I . State diagram for the transmitter's key
exchanges.

and sends a JCNTL response packet containing xkey=Ki'.
The transmitter records the translation (Ar(u),Kr)+Ki to
permit correct processing of returned DIAG packets.
This progresses the exchange to state TB.

In state TB, the transmitter will use key=Kr' to single
out the receiver, and key=Kg to send to the whole group.
Since the JCNTL response packet may be lost, the only
packet type that can safely be sent to the receiver in this
state is a (repeated) JCN"L(Kr',Ki'). The transmitter ex-
pects packets to be returned to it containing key=Ki'.
However, it is vulnerable to packets with key=Kg', until it
receives any packet with key=Ki', at which time it knows
that the receiver has recorded the value of Ki'. This pro-
gresses the exchange to state TC. (It is likely that this
transition will take place naturally, when the receiver
responds to a packet with key=Kg and SREQ set.)

For a normal receiver-initiated exchange (column
RxI), the transmitter learns Kr' when the (unsolicited)
JCNTL request packet arrives. It sends a JCNTL re-
sponse packet containing key=Kg and xkey=Ki'. The
transmitter records the translation (Ar(u),Kr)+Ki to
permit correct processing of returned DIAG packets. This
progresses the exchange to state TD. The rest of this ex-
change is identical to the steps for a transmitter-initiated
exchange, except that the only packet that can safely be
sent in state TD is a repeated JCNTL(Kg,Ki').

For a receiver-initiated exchange using the alternate
procedure (column RxA), the transmitter learns only the
transport-level address of the receiver when the JCNTL
request packet arrives. It sends a JCNTL response packet
containing key=Kg and xkey=Ki'. This progresses the

exchange to state TE.
In state TE, the transmitter will use Ki to single out

the receiver, and Kg to send to the whole group. Since
the JCNTL response packet containing Ki' may be lost,
the only packet that can safely be sent to the receiver in
state TE is a (repeated) JCNTL(Kg,Ki'). The transmitter
expects packets to be returned to it with key=Ki'.

At some point in the future, the receiver may send the
value of Kr' to the transmitter in the xkey field of a
TCNTL packet. Once it learns Kr', the transmitter will
use Kr' to single out the receiver, instead of using Ki.
The transmitter records the translation (Ar(u),Kr)+Ki to
permit correct processing of returned DUG packets. This
progresses the exchange to state TC. Alternatively, the
transmitter may fust receive some packet (other than a
TCNTL) with key=Ki'. This moves it to state TF, where
it knows that any packet with key=% can safely be sent,
but it still does not know the value of Kr'.

Finally, for any receiver-initiated case, if the JCNTL
response packet is lost, the receiver becomes a member of
the multicast group without knowing it. It has not
learned Kg, so it will not receive any packet sent to the
group, and will not reply to any group synchronization.
If it does not achieve membership in the association
quickly enough [e.g., by repeating the JCNTL(key=O)
packet], the transmitter may remove it from the group.
This may result in the receiver actually "rejoining" the
group rather than "joining" the group.

The knowledge about keys at the transmitter can be
summarized as shown in Table 1. The symbols -, E, K,
P, S, V have the following meanings: -
E
K

P

S
V

the transmitter has no knowledge of this key
packets are expected to arrive with this key
this key is known to the transmitter, but will never be
used
it is possible that a packet will arrive with this key, but
only under error situations
this key will be used to send packets
packets are not expected to arrive with this key, but the
transmitter is nevertheless vulnerable to them
(especially if the packet telling the receiver to use this
key is lost) .

Table I. Transmitter key knowledge
State Kg Kg'
TA S E
T B S V
TC S P
T D S V
m s P
T F S P

Ki

K
K
K
S
S

- Ki' Kr

E P
E P
E P
E -
E

-

Receiver state diagram

Figure 2 is a state diagram for the receiver, showing

TXI RXI RXA
Idle >

1 I I

Figure 2. State diagram for the receiver's key
exchanges.

the key exchanges. The symbols and column headings
have the same meanings as those in Figure 1.

For a transmitter-initiated exchange (column TXI),
the receiver moves to state RA as a result of a "listen"
primitive. When the FlRST packet arrives, the receiver
issues a JCNTL request packet with xkey=Kr'. The re-
ceiver records the translation (At(u),Kg)+(Krl,Kr2, ...)
to permit correct processing of incoming packets ad-
dressed to the group. This progresses the exchange to
state RB.

At this point, the receiver expects packets to arrive
with key=Kg (if intended for the whole group), or with
key=Kr' (if intended for the individual receiver). The
receiver will use Kg' to send packets to the transmitter.
When the JCNTL response packet arrives, the receiver
learns from the xkey field its new key assignment (Ki'),
and will use this in future to send packets to the transmit-
ter. The receiver records the translation (At(u),Ki)+Kr
to permit correct processing of returned DIAG packets.
This progresses the exchange to state RC.

For a normal receiver-initiated exchange, the receiver
moves to state RD as the result of a "join" primitive. It
issues a JCNTL request packet with xkey=Kr'. When the
JCNTL response packet arrives, the receiver learns the
group key (Kg), and its individually assigned key (Ki').
This progresses the exchange to state RC. . The receiver
will expect packets to arrive with key=Kg (if intended for
the whole group), or with key=Kr' (if intended for the
individual receiver). The receiver will use Ki' to send
packets to the transmitter. The receiver records the

translation (At(u),Ki)+Kr to permit correct processing
of returned DIAG packets.

For a receiver-initiated exchange using the alternate
procedure, the receiver moves to state RE as the result of
a "join" primitive. It issues a JCNTL request packet with
xkeyd. When the JCNTL response packet arrives, the
receiver learns the group key (Kg), and its individually
assigned key (Ki'). This progresses the exchange to state
RF. At this point, the receiver expects packets to arrive
with key=Kg (if intended for the whole group), or with
key=Ki (if intended for the individual receiver). The
receiver records the translation (At(u),Ki)+a to permit
correct processing of these individually-addressed pack-
ets. The receiver will use Ki' to send packets to the
transmitter.

The transition to state RG, if it occurs, will inform the
transmitter that the receiver wants the transmitter to use
Kr' in lieu of Ki when sending packets to this specific
receiver. However, the receiver is still vulnerable to
packets with key=Ki, until it receives any packet with
key=Kr', which tells the receiver that the request has
been received, and moves the receiver to state RC. The
translation (At(u),Ki)+a is now only necessary to
permit correct processing of returned DIAG packets.

The knowledge about keys at the receiver can be
summarized as shown in Table 2. The symbols -, E, K,
P, S, V have the same meanings as for the transmitter,
with the roles of the receiver and the transmitter re-
versed.

Table 2. Receiver key knowledge

State Kg Kg' Ki Kit Kr Kf
R A - - - - K - Note1
R I 3 E S - - K E
RC E K P S K E
R D - - - K E
R E - - - - -
W E K E S K -
RG E K V S K E
Note 1: Kr may remain unassigned until the FIRST
packet arrives (transition to state RB)

Multicast Group Management

The XTP Specification concentrates on the mecha-
nisms to be used for gathering information about poten-
tial participants in a multicast group, and leaves un-
specified the policies for deciding on the membership of
the group. These policies may be determined directly by
the transmitting user, or by a module that is closely as-
sociated with the XTP implementation.

When the group is forming, certain actions are rea-
sonable and permitted, but these may become unreason-
able or undesirable after this point. Without implying

any particular implementation, the phrases "before the
group has formed" and "after the group has formed" will
be used to differentiate these two time periods. It is ex-
pected that the event "the group has formed" will be
visible to the transmitter in some way.

Issuing duplicate FIRST and JCNTL packets

Various implementations may have different ideas of'
how hard they will work to ensure that the criterion for
group formation is met. (Fixample criteria would be "at
least K receivers'' or "as many receivers as can be found
within M seconds".) One mechanism for ensuring that
as many potsntial receivers as possible are attracted to
the group is to deliberately send duplicate FIRST packets
upon expiration of the WTIMER that was set when the
SREQ was included in the FIRST packet. While this is
permitted, it is important that the transmitter be "well-
behaved". Therefore, it is required that the transmitter
use a variation of the Synchronizing Handshake to
achieve this-specifically, it is required that the spacing
between duplicated FIRST packets be backed off expo-
nentially, and that the repetitions be limited by "retry
count" or CTIMEOuT (or smaller values). Once this
period of solicitation has completed, the group must be
considered to be formed (or the association must be
aborted), and no further FIRST packets may be sent.

Similarly, in a receiver-initiated join, the joining re-
ceiver is permitted to deliberately send duplicate JCNTL
(keyd) packets after its WTIMER expires, but must also
be "well-behaved"; the receiver is required to use a
variation of the Synchronizing Handshake, as outlined in
the previous paragraph.

Responding to duplicate FIRST packets

In the unicast case, a receiver is required to respond
(using CNTL or TCNTL) to a duplicate FIRST packet
containing SREQ or DREQ. While this is still true, in
general, for the multicast case, because the JCNTL re-
quest packet from a joining receiver may have been lost,
it is not necessary to force the issuing of a JCNTL re-
sponse packet if the receiver is already in possession of
Ki'. In this case, the JCNTL request packet should be re-
issued, but without the SREQ bit being set. It is not ac-
ceptable to ignore the duplicated FIRST packet, because
the formation of the group may depend on getting re-
sponses from all members of the group, with all re-
sponses having the same ECHO value.

Late JCNTL (key=Kg') packets

After a group has been formed, a (late) JCNTL
(key=Kg') packet may arrive. This arrival should be

