
Performance Analysis of Application-Level Traffic Shaping

in a Real-Time Multimedia Conferencing System on Ethernets

Yeali S . Sun
Department of Information Management

National Taiwan University
(sunny @im.ntu.edu. tw)

Chin-Fu Ku Yu-Chun Pan Chia-Hui Wang Jan-Ming Ho
Institute of Information Science

Academia Sinica
{ chinfu, peter, chwang, hoho} @iis.sinica.edu.tw)

Taipei, Taiwan

Abstract

Many real-time, multimedia applications (e.g., releconfer-
encing) have been successful deployed over the Internet
and its overlayed multicast backbone network (MBONE).
However, poor, unpredictable transfer performance of the
continuous media in Internet is common and inevitable
due to the intrinsic “best-effort” transport techniques used.
Before the full-blown of ATM networks or any other net-
works with QoS offerings are in place, Ethernets are still
the most popular networks in today’s office environments.
In this paper, we investigate how application-level traffic
shaping (spacing) can help to reduce possibly drastic per-
formance degradation of real-time multimedia conferenc-
ing applications on a heavily-loaded Ethernet. An
experimental testbed is constructed and all the application
software is implemented in our laboratory. Performance
results measured from the testbed are presented to provide
insights of how the performance degradations occur and to
illustrate how a real-time application can do to lesson the
situation.

1. Introduction

Many real-time, multimedia applications have been suc-
cessful deployed over the Internet and its overlayed multi-
cast backbone network (MBONE)[l] such as vat[2], ivs[3],
nv[4] and vic[5]. However, poor, unpredictable transfer
performance of the continuous media in Internet is common
and unavoidable due to the intrinsic “best-effort” transport
techniques used. Namely, indiscriminated sharing of net-

work resources in Internet makes no guarantee of timely
delivery between senders and receivers of real time appli-
cations.

End-to-end (application-to-application) timely delivery of
continuous media generailly requires complex control on
the sharing of the comniunication network resources as
well as the resources at end systems according to user-spec-
ified Quality-of-Service (QoS) requirements. The manage-
ment of network resources includes proper allocation and
sharing (scheduling) of transmission bandwidth and
switching buffers. The actual performance metrics are such
as network transport delay, delay jitter, and information
loss rate. Significant research has been carried out in this
area for data with real-time characteristics on high speed
networks like ATM. Current practice and consensus is that
prior reservation of resources is necessary to meet real-time
QoS requirements. Various schemes have been proposed
(for example see [6] [7]) and some of them have been imple-
mented in today’s ATM-related products. Unfortunately,
most of the currently-installed networks do not support
timely delivery.

Besides the intermediate networks, proper scheduling of
CPU cycles and physical memory to real-time processes
(vs. non-real time processes) are as well important to
enforce required end-to-end delivery quality. For example,
delay jitter of video frames should be properly translated
into individual delay requirements at sender’s end system,
networks and receiver’s end system. Namely, a maximum
tolerable time ought be slpecified to govern the processing

433
0-8186-7617-5/96 $05.00 0 1996 IEEE

mailto:im.ntu.edu

of digitized audio and video data at the sender from the
time instant the data is generated until the time it is success-
fully transmitted onto the network. Similarly, a maximum
tolerable time duration should be specified at the receiver’s
end system to regulate how fast the corresponding process-
ing threads (a basic unit of CPU control) must process the
received data so to achieve timely presentation to the users.
Resource control at end systems requires a) kernel support
for deadline CPU scheduling[8][9] and the specification of
the period and quantum for threads associated with real-
time connections (or sessions); b) acceptable protocol pro-
cessing time at the communication subsystem; and c) toler-
able queueing delay at local network interface output
buffer. The state-of-the-art operating system design
employs microkernel approach and to give priority sched-
uling to real-time threads, e.g., POSIX p-threads[101.

Several transport protocols have recently been proposed
for real-time information delivery such as RTP[11], ST-
2[12] and Tenet[l3]. Although these protocols have con-
tinuously been revised based on the actual operational
experiences, two schools of approaches are generally taken
in the support of real-time multimedia applications. One
approach presumes the underlying networks can be of dif-
ferent types - some may support guaranteed timely infor-
mation delivery and some may not, As a result, they
consider that multimedia applications themselves must
equip necessary protocols to manage the real-time data
delivery. The other approach is promoted by the people in
communications society who consider guaranteed certain
degree of QoS delivery is best handled by the transport net-
works, e.g., ATM, so to minimize the complexity of the
applications. In reality, many different networking technol-
ogies coexist in Internet and most of them do not provide
QoS service. Therefore, most of the currently proposed
real-time transport protocols consist of two parts of proto-
cols: a data transfer protocol which defines the format and
necessary control information for media data delivery and
a control protocol to manage the transfer quality of the
media. Nevertheless, each of these proposed real-time pro-
tocols has its own design philosophy, thus strength and
weakness in supporting real-time multimedia applications
across an internetwork. For example, RTP exercises no
control over the transfer quality. Instead, it provides mech-
anisms, i.e. sender report and receiver report, to convey sta-
tishcal information about the data delivery between
senders and receivers and let both parties to decide control
policy and have the freedom to exercise any control based
on the collected data. The advantage is that RTP makes no
assumption about the services provided by the underlying
transport networks, completely reflecting the current situa-
tion in Internet. If the underlying subnetwork is Ethernet,
the guarantee of QoS would become application’s respon-

sibility; RTP then provide sufficient mechanisms to allow
applications to take necessary QoS handling procedures.
On the other hand, when the underlying network is ATM,
itself provides service classes to guarantee delivery perfor-
mance, applications can be relieved largely with how to
guarantee network delivery quality. For most of the exist-
ing networks like Ethernet, the approach taken in Tenet
takes completely different approach. A couple of compli-
cated protocols and mechanism are devised to control
bandwidth allocation for the real-time transfer requests and
provide rate control, jitter control and transmission sched-
uling based on QoS parameters. An issue raised here is
whether it is necessary to have similar functions (e.g., QoS
control) repeated at the different layers possibly resulting
in performance overhead and implementation complexity.
Still, a number of issues on the design of a truly appropriate
real time protocols need to be resolved before the full
potential of these new applications can be realized.

Before the full-blown of ATM networks or any other net-
works with QoS offerings are in place, Ethernets are still
the most popular networks in today’s office environments.
Multimedia conferencing systems are emerging as a tool
for effective meeting. It is important and necessary for us
to evaluate and understand the performance of running
multimedia conferencing applications over Ethernets.
Because of the contention-based medium access control
scheme (CSMMCD) used on Ethernet, in general, when
network load is high, poor transmission performance is
inevitable. In fact, at the initial setup of the testbed, we
observed severe video packet dropping under heavy loads
and poor audio reception quality competing network
resources with video packets.

In this paper, we show how traffic shaping (spacing) can be
used in multimedia conferencing applications to reduce
performance degradation under heavy network loads,
while maintaining acceptable transmission and reception
quality of the audio and video information. An experimen-
tal testbed is constructed and all the applications software
is implemented in our laboratory. Performance results
measured from the testbed are presented to provide insights
of how performance degradations occur and to illustrate
how a real-time application can avoid the occurrence of
such situations.

This paper is organized as follows. In Section 2, we
describe in detail the experimental testbed including the
hardware configuration and the structure of the multimedia
conference software implemented. In Section 3, an appli-
cation-level traffic shaping scheme is presented. A queue-
ing model is presented to illustrate the factors that affect
the overall (end-to-end) delivery performance. Three

434

major factors were identified and extensively tested in the
testbed. The first control strategy is to perform traffic shap-
ing at traffic source to avoid local buffer overflow due to
the bustiness of the generated video traffic. The second
strategy is to implement a real-time multimedia application
by a multi-threaded process so that user can give higher
priority scheduling to real-time threads. This is because we
consider the receiving audio information is more important
than receiving video images without audio in teleconfer-
encing applications. In Section 4, we present the perfor-
mance results of our experiments. Finally, Section 5 gives
the conclusion.

Platform

PC

testbed consists of two parts: a real-time data transfer appli-
cation and a conference session control application. FIG-
URE 2. shows the protocol structure of the prototyped
system. The UDP protocol is used for real-time data trans-
mission and the TCP protocol is used for reliable transfer of
conference session control messages.

(router)

Product

486 DX2-66 PC

140.109.20 A+
2. Testbed

The advancement of modern hardware and software tech-
nologies has made real-time, multimedia applications and
services over conventional computer networks such as
Ethernets and Internet possible. One such application is the
use of conferencing applications at office environments for
effective meeting. In view of these, we built an Internet-
based multimedia testbed called Academia Sinica multime-
dia Interactive System (ASIS) to study problems and issues
relevant to the design of communication systems, includ-
ing network protocols, and operating system support for
real-time applications. The first attempt is a prototype mul-
timedia conferencing application. This system is imple-
mented on inexpensive equipment listed in TABLE 1..

I Video device 1 VPON (JPEG)a card I
I Sound device I VPON (Yamaha chip set) I
I Network card I 3COM3C503 I
I Operating system I Mach 2.6 I

a. An FIC-AVCom card contains a C-Cube
CL550 JPEG image compression processor
and YAMAHA YMZ263B audio processor

To provide precise timestamps in real-time video and
audio packets transmission and reception, we implement a
distributed master-slave time protocol to synchronize the
clocks of all the stations in the network. The system clock
is tuned to have resolution down to 1.1 1 1 millisecond.
FIGURE 1. shows the configuration of the testbed.

The multimedia conference software implemented in our

CC: Conference Client
CIS: Conference Information Server
CA: Conference Agent

FIGURE 1. The configuration of the
experimental testbed

Session Real-Time

FIGURE 2. The p~otocol structure of the
multirriedia conferencing system

2.1 Real-time Data Transfer Protocol

The real-time data transfer protocol provides general
packet manipulation functions like media data segmenta-
tion and reassembly, as well as error detection (lost, errored
and delayed frames). In addition, a traffic shaping mecha-
nism is implemented in real-time application programs to
control the sending rate of video packets from the applica-
tion to network interface output buffer. The objective is to
avoid overrunning output buffer by sending large bursts of
data to the network interface output queue. Ethernet is a
complete resource sharing network with no guarantee of
transmission rate to backlogged stations. When the network
load is high, a sending station must compete with other sta-
tions in gaining network access right. Worse, due to the
exponential backoff rebransmission algorithm used in
CSMNCD, an active station delays its packet transmission

435

for even longer period of time. If local applications are
unaware of the situation and keep sending data to an
already heavily backlogged output queue, it will soon be
built up, resulting in packet dropping at the sender’s net-
work interface. For video transmission, video frames are
fetched in a constant rate, e.g., 25-30 frameslsecond in
NTSC and 10 frameskecond in multimedia conferencing.
Each digitized video frame is usually segmented into a
number of packets and send to the network interface as a
burst (back-to-back). This procedure may easily overflow
the sender’s network interface output buffer. To address
this problem, we propose to let applications, particularly
real-time applications, exercise rate control (traffic shap-
ing) in sending data to local network interface to avoid
undesired data loss at the sender’s end system.

Data transferred on Ethernet may experience a wide range
of delays depending on the traffic load in the network, thus
resulting in possibly significant delay variations between
consecutive packets generated from a data source. For
video transmission, a maximum delay variation tolerance
(DVT) is used to indicate the maximum delay jitter
allowed between two adjacent video frames in time,
denoted by DVT,id,,. Similarly, a maximum delay varia-
tion tolerance is set for audio packets, denoted by

VTaudio.

The manipulation of video data is as follows: At the sender
side, video frames are fetched periodically from video card
which is connected to the video camera, e.g., 8 frameslsec-
ond. Each frame is segmented into a number of lKl3ytes
blocks. Each block is encapsulated by a header containing
a sequence number (a combination of frame number and
packet number within the frame), a timestamp and other
medium-relevant control information for video playback at
receiver. Packets are then ready to be submitted to the ker-
nel for network transmission. The submission rate is con-
trolled by the traffic shaping mechanism implemented in
the program. At the receiver, video packets are buffered
and reassembled by the receiving application. If any pack-
ets of a frame are detected lost or a newly-assembled frame
violates DVTyideo (late frame), the entire frame is dis-
carded and marked as a “frame loss” in the QoS perfor-
mance statistics (error frames). Blocks of audio samples,
e.g., 256 byteshlock are fetched aperiodically. A newly-
fetched audio block is sent to the kernel for transmission
immediately. Our interface card is ISA which does not
have DMA. Therefore each call of “sendto” is an U0 oper-
ation. The audio thread has to give away its CPU control
right. Since Mach 2.6 provides only primitive thread
scheduling function, the audio thread will re-gain CPU
control only when the other threads explicitly yield the
control. A packet header is attached to each sample block

containing a sequence number for reassembly and a times-
tamp for resynchronization. Note that both audio and video
packets have its own timing and sequence number space.
Clocks of stations are all synchronized in the testbed. The
timing for media to compute jitter is the wallclock time (an
absolute time). Audio packets that are detected lost (out of
sequence), a “packet loss” is marked in the QoS perfor-
mance statistics (error audio blocks). If a correctly received
audio packet violates DVT,,,,,, the packet is still played
out but a “delayed packet” is marked in the QoS perfor-
mance statistics (late audio blocks).

2.2 Conference Session Control Protocol

A conference session control software is implemented to
manage the admission and termination of a conference call
as well as the join and leave of participants during a con-
ference. The architecture of the system is shown in FIG-
URE 3. which consists of four components: Conference
Information Server (CIS), Conference Mediator (CM),
Conference Agent (CA) and Conference Client (CC). CIS
is responsible for the management and coordination of
multiple conferences in the system, such as routing plan
setup, resource reservation and allocation for each confer-
ence. CM acts as a manager and mediator for a conference
and handles operations specific to the conference, such as
talk-token management and voting management. CA acts
as a dispatcher which accepts requests from end-users, i.e.
CCs and then forward the requests to either CM or CIS as
well as forwards audiolvideo data to another participant
according to a pre-setup routing tables.

FIGURE 3. The architecture of conference
session control system

A CC also provides a graphical user interface through
which an end-user can operate the video conference system
such as to open, register, join or quit a conference, and to
talk or vote. When a user wants to start a conference call,
helshe invokes the local CC process to connect to the CA.

436

Heishe then input information about the conference such as
the conference name and the start time. These information
will be delivered to CA which then forwards it to CIS.
Based on the information received from the user, CIS cre-
ates a pre-setup routing plan and forks a CM process to
handle the conference. Any user who wishes to participate
in a conference will first connects himself/herself to CA by
invoking a local CC process. He/she then sends a request to
CA for a list of currently active conferences. From the list,
one can choose which conference he/she wants to join.
After joining the conference, CC supports application-
level audiohide0 sending and receiving. The user-side
application described in the next section is implemented in
cc.

2.3 Multimedia Conferencing Transport Software

The implementation structure of the real-time data transfer
protocol and the video and audio information flows are
shown in FIGURE 4.. It is implemented as a user-level
multi-threaded process to avoid blocking in system calls.
There are five threads: video-send, video-receive,
audio-senareceive, command-send and
command-receive. The reasons for having separate threads
and communication ports for audio and video are 1) to
increase the degree of concurrent processing in case that
multiple processors are used at end systems; 2) to enable
the use of different network paths or network resource allo-
cations, if appropriate; 3) to enable the monitor of the QoS
for different media; and 4) to have the flexibility that a user
participating in a conference may receive only one medium
if they choose.

D VTvideo . A delayed frame is marked if

(R i - R i - 1) > DVTvideo

where Ri is the arrival tirne of th frame at the receiver.
Delayed frames result in visible unsmooth, broken scenes.
The violation is caused mainly by the network delay.

User
Space

Kernel
Space

FIGURE 4. The software structure of the real-time
multimedia conference application

The video-send thread is implemented as follows: it
fetches a video frame from the video card at a constant rate,
M frameshec. Namely, this thread is executed every 1/M
second. Let us denote this interval by T second. In our
implementation, fetching a video frame takes a non-zero
time (about 70- 100 milliseconds). Frame segmentation and
packetization also incur some processing time (less than IO
millisecond). Let these processing overheads be denoted
by T , . To fetch next frame in time, packets of the current
frame must be sent to the network interface within T-Tp.
This interval is exactly the time buffer (range) that the traf-
fic shaping mechanism can use to manipulate packet sub-
mission rate to the network interface. Let this interval be
denoted by T,.

Operating system support of user-level thread scheduling
is important to real-time applications to enforce required
end-to-end delivery quality. Mach 2.6 provides only prim-
itive thread scheduling function. A Mach 2.6 thread will
continuously hold CPU control unless it explicitly calls the
cthreudjield() system call. In this environment, control-
ling the period and quantum needed for real-time threads
becomes difficult and complex. For multimedia conferenc-
ing systems, it is consideired that audio data should have
higher transmission priority than the video one when net-
work is congested and the delivery QoS has to be scarified.
In our implementation, video threads always call
cthreudjield() to yield CPU to the audio thread when a

437

choice of the block size of audio samples on each fetch may
result quite different reception quality. For example, sys-
tem that uses block size of 256 bytes generate good audio
reception quality under almost all range of network loads
but stem that uses 1024-byte audio blocks produces broken
words at receivers.

ing

In Ethernets, because of the contention-based medium
access control scheme - CSMMCD, when network load
increases, data transmission and reception performance
degrades. In our case, real-time video and audio packets,
together with other non-real time data packets may be
simultaneously queued at the local interface output buffer,
waiting to siege the channel access right. Because of the
limited capacity of the network output buffer, if application
processes are unaware of network transmission status and
keep sending packets to the output buffer, it will easily
overload the queue, resulting in severe packet dropping
(loss) at the sender’s network interface. In practice, almost
all the conventional operating systems like UNIX and
Mach do not provide such information like the queue
length of the network interface buffer to the applications
(i.e. no relevant system calls exist). Moreover, from our
experience of packet switched networks in the past, the rule
of thumb to avoid congestion at a buffer queue is not to
send a big burst of data at one time, especially when net-
work is heavily loaded. In our case, because a video frame
is usually pretty large and needs to be segmented into a
number of packets suitable for network transmission, we
think possible output buffer overrun can be pre-cautioned
by equipping some flow control mechanisms in real-time
applications. Thus, they would take self-constrained
actions in traffic generation into the network interface as
well as the network. In this paper, we propose an applica-
tion-level traffic shaping (spacing) mechanism to control
the sending rate of the video packets into the kernel.
Instead of sending a bulk of packets belonging to the same
video frame, they are divided into a number of smaller
groups and spaced out their submission times to the kernel.
The goal is to reduce the degree of burstiness of the traffic
arriving into the local system’s interface output buffer.
This is especially important when network load is high, i.e.
interface output rate is low and the buffer queue starts to
pile up. Through extensive experiments on our testbed,
results show that proper setting of the burst size and spac-
ing interval of real-time media like video is greatly helpful
in avoiding drastic performance degradation, i.e. delay jit-
ter and packet loss, in Ethernets under heavy traffic loads.

Two parameters are defined in the traffic shaping method:

size of a burst, denoted by Sbursr which is to manages the
size of packets sent in each sending event; and the constant
inter-burst interval, denoted by Tbursr which is to control
the packet sending rate from the application into the buffer
so to avoid overflowing the Ethernet output buffer. The
resulting video traffic arriving into the interface output
buffer queue can be modeled by a tandem queueing net-
work as shown in FIGURE 5.. Node 1 models the traffic
shaping mechanism in the application-level transport pro-
tocol software of the video thread. Let yvf be the video
frame generation rate (frameshecond) and h be the average
number of packets per video frame(packets/frame). Note
that the number of packets generated from a frame is
dependent upon the contents of the frame. Node 1 is a
DbulklDIl queueing system[141. The arrival process has
bulk arrivals with constant interarrival time T where
T = 1/yvf. The server in Node 1 models the traffic shaping
task by taking multiple number of packets into service at a
time. This shapes the arriving burst of average number of
packets h into groups of packets of size Sbursr. Thus, a
frame will produce h/Sb,,,, bulks. The service time at the
server is a constant and represents the interarrival time of
bulks that belong to the same frame, i.e.

video
frame

T

hernet

Node1 : Node2
(Traffic Shaping) ,- (Output Buffer)

/

packet loss
due to output
buffer overflow

FIGURE 5. The queueing model of video packet
transmission at the sender’s end

Node 2 models sender’s network interface output buffer
queue. In reality, there are also audio packets as well as
other data traffic generated by the local application pro-
cesses. Since the goal of the analysis here is to evaluate the

438

effect of using traffic shaping on the video transmission
performance, for simplicity and mathematical tractable-
ness, we assume only video packets are generated and
queued at local output buffer. Thus, S2 can be modeled as
a Gb,,~klGlllK. The arrival process has two states: active
and idle. At the active state, packets arrive output buffer in
bulks at constant interarrival time. The duration of the
active state is a constant of T,. The duration of the idle state
is also a constant of T,. The service time at Node 2 is very
complex. It is the time for a packet to be successfully trans-
mitted over Ethernet when it becomes the head-of-line
(HOL) of the output buffer queue. It is a time function of
several dynamic factors such as the number of busy sta-
tions in Ethernet, the total traffic load in the network, and
how Ethernet frames from this station collide with those of
the other busy stations. The exponential backoff algorithm
will determine how long a collided packet should wait until
it is tried again. Also note that the buffer capacity is limited.
Therefore, there is a non-zero probability that packets may
be dropped due to output buffer full. The queueing analysis
of this system is of great complexity. In the next section,
performance results measured from the testbed is pre-
sented.

4. Performance Results

A series of experiments are conducted on our testbed to
investigate the performance of using the proposed traffic
shaping method on video data transmission and priority
scheduling of network transmission for audio and video
data. In the following we show some representative results.

A three-party multimedia conference is established on our
Ethemet-based testbed network. The network load is the
sum of background UDP traffic plus the traffic generated
by the three stations in the conference. Video frames are
fetched from video card every 250ms; a video frame is seg-
mented into an average of 6 packets depending on the
movement of persons in the conference; each video packet
is of 1K bytes long; and T , is about looms. Three traffic
sending strategies, two of them employing traffic shaping,
are studied and compared in the following experiments.
FIGURE 6. shows the packet transmission patterns of the
four strategies. In Strategy A, packets of a video frame are
equally spaced out within T , , i.e. Si$,, = 1 and
Tit?,, = 25ms. In Strategy B, packets of a video frame are
clustered into groups of size 3 whose sending times are
e ually spaced within T, , i.e. Si:;,, = 3 and
Tbursr = 60ms (it is 60ms rather 75ms because we found
the processing overhead T , increases to about 1140ms. In
Strategy C, there is no traffic shaping; all the video packets
of a frame are sent to the kernel back to back, i.e.
S6$,, = 6 . Besides the conferencing application, a UDP

?E)

packets traffic generator running on two other stations are
used to produce the “background” traffic over the network.
In the literature, studies have showed that in a typical TCP/
IP-based network, 85% traffic is TCP. We know the TCP
protocol employs slow start and congestion avoidance win-
dow flow control schemes which will throttle TCP packet
sending on a congested (or heavily-loaded) network. In the
testbed, we want to study the worse case performance of
transmitting real-time data on Ethernets, therefore, we
choose UDP protocol for the generated traffic rather than
TCP. The effect of the proposed traffic shkping method is
expected to perform better than that in actual TGPAP Eth-
ernets.

StrategyA

Strategy B d-

Strategy C A

FIGURE 6. Packet transmission patterns of
the four traffic sending strategies

FIGURE 7. shows the average video packet loss ratio per-
formance of the three conferencing stations under different
traffic shaping strategies. A packet is considered lost if it is
never received by the receiver. Such loss is caused by
buffer overflow at the sender andor the receiver’s network
interface. In Strategy A, packets of a video frame are
equally spaced out within the time interval before the next
video frame is fetched, naimely packets entering the output
buffer one by one in a constant rate. The result shows that
Strategy A performs well under all range of network load
than the performance of strategies B and C, although in B,
traffic is divided into two groups and spaced out over
150ms. This is easily understood because under heavy
load, the output rate from a station would be slowed down;
the output buffer starts to pile up. Suppose the queue is cur-
rently full. Under Strategy A, since packets are spaced out,
it is more likely that within the packet interarrival time to
the output queue that the station will have a successfully
transmission. Thus, the next packet arrival to the queue will
find a buffer space. In contrast, under Strategy C, since
packets arrive the queue in bulk. When network load is
high, it is less likely that there will have suflicient buffer

439

space left to accommodate a bulk of h packets. Subsequent
big bulk packet arrivals would easily overcrowd the queue,
resulting in buffer overflow. For Strategy B, its packet loss
ratio is better than that of Strategy C when the network is
modestly loaded. But its burst size is considered large
under heavy loads and therefore has similar packet loss
performance with Strategy C. In other words, the inter-
burst arrival time, i.e.

In FIGURE 8., we show the frame loss ratio performance
which includes frames whose constituent packets were
dropped either at the sender’s interface buffer or the
receiver’s buffer due to buffer overflow, or discarded at the
receiver due to transmission error. We can see that Strategy
A has good frame loss performance at all range of network
load. It again shows employing source traffic shaping
mechanism can surely improve the quality of the video
reception performance.

In this experiment, a total of 5000 video frames are sent
which produce about 60000 packets in 21 minutes. During
the experiment, we observed quite a number of duplicate
packets. Since both Ethernet and UDP/IP do not provide
packet sequencing function; the detection of packet dupli-
cation and broken video frames (frames with at least one
lost packet) as well as frame reassembly are performed by
our real-time transport protocol software. TABLE 2. com-
pares the total number of duplicate packets for the three
strategies. Strategy A has much less packet duplicates than
strategies B and C. Such duplication is mainly caused by
the specific implementations of the Ethernet interface
cards.

In FIGURE 9. and FIGURE lo., we show the delay perfor-
mance of video frames under different network loads and
traffic shaping strategies. The delay is measured from the
instant that the first packet of a video frame is sent to the
kernel at the sender’s machine until the instance that a
video frame is correctly received and assembled by the
real-time transport protocol. The average delay of all the
strategies remains under the maximum tolerable inter-
video frame interval, i.e. 250ms minus frame processing
overhead T , . The average delays for Strategy A remain
constant about 15Oms. This is understood because all pack-
ets of a video frame are sent equally spaced within 150ms.
Similarly, Strategy B and C have delays around 75ms and
3Oms, respectively. However, strategies with traffic shap-
ing have smaller delay variations than that of Strategy C .
But, the value is smaller enough not to affect the end-to-
end frame delay requirement. From these two figures, we
know that although the average frame delay for Strategy A
is higher than the other three strategies but fortunately they
are all under the maximum delay tolerance. Most impor-

tantly, it has the least packet loss ratio performance. In
FIGURE 11 ., we show the average packet delay. For the
three strategies, the packet delay remains at a rather con-
stant value until the network load reaches 8Mbps. How-
ever, we can see the delay for Strategy C is higher than
those of the other two strategies. This is because by sending
a big burst of packets into the output buffer, the dominant
factor of the delay is due to the queueing delay in the
buffer. Whereas in the other three cases, packets are spaced
out therefore experiencing less delay in the buffer.

5. Conclusions

In this paper, we first described a prototype real-time mul-
timedia conferencing system implemented in our labora-
tory. It consists of two parts: a real-time data transfer
application and a conference session control application.
The conference client software is implemented as a multi-
threaded process to exploit concurrent processing and to
enable the monitoring of the QoS for different media. This
design also has the flexibility that a user participating in a
conference may receive only one medium if they choose.
To implement precise timestamps in real-time video and
audio packets transmission and reception, the Mach kernel
is modified and a distributed master-slave time protocol is
implemented to synchronize the clocks of all the stations in
the network. The system clock is tuned to have resolution
downto 1.1 1 1 millisecond.

By observing severe packet dropping of real-time data in
Ethernet and a wide range of delay variations between con-
secutive real-time packets when the network load is high or
when the number of participants or the number of confer-
ences is large. We propose an application-level traffic
shaping (spacing) mechanism to control the sending rate of
the video packets to the kernel. The goal is to reduce the
degree of burstiness of the traffic arriving the local end sys-
tem’s interface output buffer, especially when network
load is high where the interface output rate is low and the
buffer queue starts to pile up. Two parameters are defined
in the traffic shaping method: size of a burst which controls
the size of packets sent in each sending event and the con-
stant inter-burst interval which spaces out the sending
events into the buffer so to avoid overflowing the Ethernet
output buffer.

Through extensive experiments on our testbed, the results
show that applications that employ source traffic shaping
mechanisms outperform applications that do not in packet
loss ratio performance, while maintaining acceptable frame
delay performance without affecting the reception quality
of the video information. The smaller the burst size the bet-

440

ter the result and the best result occurs when packets within
a frame are equally spaced out during the inter-frame
arrival time (i.e. Strategy A). Such good packet loss perfor-
mance sustains even under heavy network load.

References

H. Eriksson, “Mbone: The Multicast Backbone”,
Communications of ACM, No. 37, Vol 18., pp.

V. Jacobson and S. McCanne, “Visual Audio
Tool”, Laurence Berkeley Laboratory. Software
on-line: ftp://ftp.ee.lbl.gov/conferencing/vat.

T.Turletti, “INRIA Video Conferencing System
(ivs)”,Institut National de Recherche en Informa-
tique en an Automatique. Software on-line: ftp://
www .inria.fr/rodeo/ivs. html.

R. Frederick, “Experiences with Real-time Soft-
ware Video Compression”, 6th International
Workshop on Packet Video, 1994.

S. McCanne and V. Jacobson, “Vic: A Flexible
Framework for Packet Video”, ACM Multimedia,
November, 1995.

ATM Forum UNI 3.0, “Computer Networks”,
2nd edition, 1988, Prentice Hall.

J. Turner, “Leaky bucket”, IEEE Software, Vol.

K. Jeffay, D. L. Stone and F. Donelson Smith,
“Kernel Support for Live Digital Audio and
Video”, 2nd International Workshop on Net-
works, Operating System Support for Digital
Audio and Video, 1991.

G. Coulson, A. Campbell, P. Robin, G. Blair, M.
Papathomas and D. Shepherd, “The Design of a
QoS-Controlled ATM-Based Communications
System in Chorus”, IEEE Journal of Selected
Areas in Communications, September, May,

J. Boykin, D. Kirschen, A. Langerman and S.
LoVerso, “Programming under Mach”, chapter
10, Addison Wesley, 1993.

H. Schulzrinne, S. Casner, R. Frederick and V.
Jacobson, “RTF? A Transport Protocol for Real-
Time Applications”, Internet Engineering Task
Force, Audio-Video Transport Working Group,
RFC 1889, January, 1996.

54-60, 1994.

2, NO. 3, pp. 49-61, 1985.

1995, pp. 686-698.

L. Delgrossi and I,. Berger, editors, “Internet
Stream Protocol Version 2 (ST2) Protocol Speci-
fication Version ST2+”, Internet Engineering
Task Force, Audio-Video Transport Working
Group, RFC 1819, August, 1995.

A. Banerjea, D. F~~rrari, B. Mah, M. Moran, D,
Verma, and H. Zhlang, “The Tenet Real-Time
Protocol Suite: Design, Implementation, and
Experiences”, UC-Berkeley , TR-94-059, Novem-
ber, 1994.

L. Kleinrock, “Queueing Theory:”, Volume 1,
1976.

FIGURE 7. The video packet loss ratio

0.4 t

0.1

0

FIGURE 8. The viideo frame loss ratio

441

ftp://ftp.ee.lbl.gov/conferencing/vat

LE 2. The video packet duplication ratio
Strategy A +-
stratsgy 0 +-
stretegy c Q-

~ Policy

30

25

I Strategy-A

I I I I
Strategy A +-
strategy 0 +-
strategic Q-. -

I Strategy-B

2w

150

1w

50

0

Backgroud external traffic

Slrategl A +
Slralegl B +
slrategy c Q

0

2 4 6 8
NeWo& Load (MbiVs)

E 9. The average end-to-end video
frame delay

0 # I I
2 4 6 8 10

NemR Load (M b W

0 I I I I I
0 2 4 6 8 10

Nerwork Load (MblVs)

E 11. The average packet delay

E 10. The standard deviation of
end-to-end video frame delay

442

