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Abstract 

Many real-time, multimedia applications (e.g., releconfer- 
encing) have been successful deployed over the Internet 
and its overlayed multicast backbone network (MBONE). 
However, poor, unpredictable transfer performance of the 
continuous media in Internet is common and inevitable 
due to the intrinsic “best-effort” transport techniques used. 
Before the full-blown of ATM networks or any other net- 
works with QoS offerings are in place, Ethernets are still 
the most popular networks in today’s office environments. 
In this paper, we investigate how application-level traffic 
shaping (spacing) can help to reduce possibly drastic per- 
formance degradation of real-time multimedia conferenc- 
ing applications on a heavily-loaded Ethernet. An 
experimental testbed is constructed and all the application 
software is implemented in our laboratory. Performance 
results measured from the testbed are presented to provide 
insights of how the performance degradations occur and to 
illustrate how a real-time application can do to lesson the 
situation. 

1. Introduction 

Many real-time, multimedia applications have been suc- 
cessful deployed over the Internet and its overlayed multi- 
cast backbone network (MBONE)[l] such as vat[2], ivs[3], 
nv[4] and vic[5]. However, poor, unpredictable transfer 
performance of the continuous media in Internet is common 
and unavoidable due to the intrinsic “best-effort” transport 
techniques used. Namely, indiscriminated sharing of net- 

work resources in Internet makes no guarantee of timely 
delivery between senders and receivers of real time appli- 
cations. 

End-to-end (application-to-application) timely delivery of 
continuous media generailly requires complex control on 
the sharing of the comniunication network resources as 
well as the resources at end systems according to user-spec- 
ified Quality-of-Service (QoS) requirements. The manage- 
ment of network resources includes proper allocation and 
sharing (scheduling) of transmission bandwidth and 
switching buffers. The actual performance metrics are such 
as network transport delay, delay jitter, and information 
loss rate. Significant research has been carried out in this 
area for data with real-time characteristics on high speed 
networks like ATM. Current practice and consensus is that 
prior reservation of resources is necessary to meet real-time 
QoS requirements. Various schemes have been proposed 
(for example see [6] [7]) and some of them have been imple- 
mented in today’s ATM-related products. Unfortunately, 
most of the currently-installed networks do not support 
timely delivery. 

Besides the intermediate networks, proper scheduling of 
CPU cycles and physical memory to real-time processes 
(vs. non-real time processes) are as well important to 
enforce required end-to-end delivery quality. For example, 
delay jitter of video frames should be properly translated 
into individual delay requirements at sender’s end system, 
networks and receiver’s end system. Namely, a maximum 
tolerable time ought be slpecified to govern the processing 
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of digitized audio and video data at the sender from the 
time instant the data is generated until the time it is success- 
fully transmitted onto the network. Similarly, a maximum 
tolerable time duration should be specified at the receiver’s 
end system to regulate how fast the corresponding process- 
ing threads (a basic unit of CPU control) must process the 
received data so to achieve timely presentation to the users. 
Resource control at end systems requires a) kernel support 
for deadline CPU scheduling[8][9] and the specification of 
the period and quantum for threads associated with real- 
time connections (or sessions); b) acceptable protocol pro- 
cessing time at the communication subsystem; and c) toler- 
able queueing delay at local network interface output 
buffer. The state-of-the-art operating system design 
employs microkernel approach and to give priority sched- 
uling to real-time threads, e.g., POSIX p-threads[ 101. 

Several transport protocols have recently been proposed 
for real-time information delivery such as RTP[11], ST- 
2[12] and Tenet[l3]. Although these protocols have con- 
tinuously been revised based on the actual operational 
experiences, two schools of approaches are generally taken 
in the support of real-time multimedia applications. One 
approach presumes the underlying networks can be of dif- 
ferent types - some may support guaranteed timely infor- 
mation delivery and some may not, As a result, they 
consider that multimedia applications themselves must 
equip necessary protocols to manage the real-time data 
delivery. The other approach is promoted by the people in 
communications society who consider guaranteed certain 
degree of QoS delivery is best handled by the transport net- 
works, e.g., ATM, so to minimize the complexity of the 
applications. In reality, many different networking technol- 
ogies coexist in Internet and most of them do not provide 
QoS service. Therefore, most of the currently proposed 
real-time transport protocols consist of two parts of proto- 
cols: a data transfer protocol which defines the format and 
necessary control information for media data delivery and 
a control protocol to manage the transfer quality of the 
media. Nevertheless, each of these proposed real-time pro- 
tocols has its own design philosophy, thus strength and 
weakness in supporting real-time multimedia applications 
across an internetwork. For example, RTP exercises no 
control over the transfer quality. Instead, it provides mech- 
anisms, i.e. sender report and receiver report, to convey sta- 
tishcal information about the data delivery between 
senders and receivers and let both parties to decide control 
policy and have the freedom to exercise any control based 
on the collected data. The advantage is that RTP makes no 
assumption about the services provided by the underlying 
transport networks, completely reflecting the current situa- 
tion in Internet. If the underlying subnetwork is Ethernet, 
the guarantee of QoS would become application’s respon- 

sibility; RTP then provide sufficient mechanisms to allow 
applications to take necessary QoS handling procedures. 
On the other hand, when the underlying network is ATM, 
itself provides service classes to guarantee delivery perfor- 
mance, applications can be relieved largely with how to 
guarantee network delivery quality. For most of the exist- 
ing networks like Ethernet, the approach taken in Tenet 
takes completely different approach. A couple of compli- 
cated protocols and mechanism are devised to control 
bandwidth allocation for the real-time transfer requests and 
provide rate control, jitter control and transmission sched- 
uling based on QoS parameters. An issue raised here is 
whether it is necessary to have similar functions (e.g., QoS 
control) repeated at the different layers possibly resulting 
in performance overhead and implementation complexity. 
Still, a number of issues on the design of a truly appropriate 
real time protocols need to be resolved before the full 
potential of these new applications can be realized. 

Before the full-blown of ATM networks or any other net- 
works with QoS offerings are in place, Ethernets are still 
the most popular networks in today’s office environments. 
Multimedia conferencing systems are emerging as a tool 
for effective meeting. It is important and necessary for us 
to evaluate and understand the performance of running 
multimedia conferencing applications over Ethernets. 
Because of the contention-based medium access control 
scheme (CSMMCD) used on Ethernet, in general, when 
network load is high, poor transmission performance is 
inevitable. In fact, at the initial setup of the testbed, we 
observed severe video packet dropping under heavy loads 
and poor audio reception quality competing network 
resources with video packets. 

In this paper, we show how traffic shaping (spacing) can be 
used in multimedia conferencing applications to reduce 
performance degradation under heavy network loads, 
while maintaining acceptable transmission and reception 
quality of the audio and video information. An experimen- 
tal testbed is constructed and all the applications software 
is implemented in our laboratory. Performance results 
measured from the testbed are presented to provide insights 
of how performance degradations occur and to illustrate 
how a real-time application can avoid the occurrence of 
such situations. 

This paper is organized as follows. In Section 2, we 
describe in detail the experimental testbed including the 
hardware configuration and the structure of the multimedia 
conference software implemented. In Section 3, an appli- 
cation-level traffic shaping scheme is presented. A queue- 
ing model is presented to illustrate the factors that affect 
the overall (end-to-end) delivery performance. Three 
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major factors were identified and extensively tested in the 
testbed. The first control strategy is to perform traffic shap- 
ing at traffic source to avoid local buffer overflow due to 
the bustiness of the generated video traffic. The second 
strategy is to implement a real-time multimedia application 
by a multi-threaded process so that user can give higher 
priority scheduling to real-time threads. This is because we 
consider the receiving audio information is more important 
than receiving video images without audio in teleconfer- 
encing applications. In Section 4, we present the perfor- 
mance results of our experiments. Finally, Section 5 gives 
the conclusion. 

Platform 

PC 

testbed consists of two parts: a real-time data transfer appli- 
cation and a conference session control application. FIG- 
URE 2. shows the protocol structure of the prototyped 
system. The UDP protocol is used for real-time data trans- 
mission and the TCP protocol is used for reliable transfer of 
conference session control messages. 

(router) 

Product 

486 DX2-66 PC 

140.109.20 A+ 
2. Testbed 

The advancement of modern hardware and software tech- 
nologies has made real-time, multimedia applications and 
services over conventional computer networks such as 
Ethernets and Internet possible. One such application is the 
use of conferencing applications at office environments for 
effective meeting. In view of these, we built an Internet- 
based multimedia testbed called Academia Sinica multime- 
dia Interactive System (ASIS) to study problems and issues 
relevant to the design of communication systems, includ- 
ing network protocols, and operating system support for 
real-time applications. The first attempt is a prototype mul- 
timedia conferencing application. This system is imple- 
mented on inexpensive equipment listed in TABLE 1.. 

I Video device 1 VPON (JPEG)a card I 
I Sound device I VPON (Yamaha chip set) I 
I Network card I 3COM3C503 I 
I Operating system I Mach 2.6 I 

a. An FIC-AVCom card contains a C-Cube 
CL550 JPEG image compression processor 
and YAMAHA YMZ263B audio processor 

To provide precise timestamps in real-time video and 
audio packets transmission and reception, we implement a 
distributed master-slave time protocol to synchronize the 
clocks of all the stations in the network. The system clock 
is tuned to have resolution down to 1.1 1 1 millisecond. 
FIGURE 1. shows the configuration of the testbed. 

The multimedia conference software implemented in our 

CC: Conference Client 
CIS: Conference Information Server 
CA: Conference Agent 

FIGURE 1. The configuration of the 
experimental testbed 

Session Real-Time 

FIGURE 2. The p~otocol structure of the 
multirriedia conferencing system 

2.1 Real-time Data Transfer Protocol 

The real-time data transfer protocol provides general 
packet manipulation functions like media data segmenta- 
tion and reassembly, as well as error detection (lost, errored 
and delayed frames). In addition, a traffic shaping mecha- 
nism is implemented in real-time application programs to 
control the sending rate of video packets from the applica- 
tion to network interface output buffer. The objective is to 
avoid overrunning output buffer by sending large bursts of 
data to the network interface output queue. Ethernet is a 
complete resource sharing network with no guarantee of 
transmission rate to backlogged stations. When the network 
load is high, a sending station must compete with other sta- 
tions in gaining network access right. Worse, due to the 
exponential backoff rebransmission algorithm used in 
CSMNCD, an active station delays its packet transmission 
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for even longer period of time. If local applications are 
unaware of the situation and keep sending data to an 
already heavily backlogged output queue, it will soon be 
built up, resulting in packet dropping at the sender’s net- 
work interface. For video transmission, video frames are 
fetched in a constant rate, e.g., 25-30 frameslsecond in 
NTSC and 10 frameskecond in multimedia conferencing. 
Each digitized video frame is usually segmented into a 
number of packets and send to the network interface as a 
burst (back-to-back). This procedure may easily overflow 
the sender’s network interface output buffer. To address 
this problem, we propose to let applications, particularly 
real-time applications, exercise rate control (traffic shap- 
ing) in sending data to local network interface to avoid 
undesired data loss at the sender’s end system. 

Data transferred on Ethernet may experience a wide range 
of delays depending on the traffic load in the network, thus 
resulting in possibly significant delay variations between 
consecutive packets generated from a data source. For 
video transmission, a maximum delay variation tolerance 
(DVT) is used to indicate the maximum delay jitter 
allowed between two adjacent video frames in time, 
denoted by DVT,id,,. Similarly, a maximum delay varia- 
tion tolerance is set for audio packets, denoted by 

VTaudio. 

The manipulation of video data is as follows: At the sender 
side, video frames are fetched periodically from video card 
which is connected to the video camera, e.g., 8 frameslsec- 
ond. Each frame is segmented into a number of lKl3ytes 
blocks. Each block is encapsulated by a header containing 
a sequence number (a combination of frame number and 
packet number within the frame), a timestamp and other 
medium-relevant control information for video playback at 
receiver. Packets are then ready to be submitted to the ker- 
nel for network transmission. The submission rate is con- 
trolled by the traffic shaping mechanism implemented in 
the program. At the receiver, video packets are buffered 
and reassembled by the receiving application. If any pack- 
ets of a frame are detected lost or a newly-assembled frame 
violates DVTyideo (late frame), the entire frame is dis- 
carded and marked as a “frame loss” in the QoS perfor- 
mance statistics (error frames). Blocks of audio samples, 
e.g., 256 byteshlock are fetched aperiodically. A newly- 
fetched audio block is sent to the kernel for transmission 
immediately. Our interface card is ISA which does not 
have DMA. Therefore each call of “sendto” is an U0 oper- 
ation. The audio thread has to give away its CPU control 
right. Since Mach 2.6 provides only primitive thread 
scheduling function, the audio thread will re-gain CPU 
control only when the other threads explicitly yield the 
control. A packet header is attached to each sample block 

containing a sequence number for reassembly and a times- 
tamp for resynchronization. Note that both audio and video 
packets have its own timing and sequence number space. 
Clocks of stations are all synchronized in the testbed. The 
timing for media to compute jitter is the wallclock time (an 
absolute time). Audio packets that are detected lost (out of 
sequence), a “packet loss” is marked in the QoS perfor- 
mance statistics (error audio blocks). If a correctly received 
audio packet violates DVT,,,,,, the packet is still played 
out but a “delayed packet” is marked in the QoS perfor- 
mance statistics (late audio blocks). 

2.2 Conference Session Control Protocol 

A conference session control software is implemented to 
manage the admission and termination of a conference call 
as well as the join and leave of participants during a con- 
ference. The architecture of the system is shown in FIG- 
URE 3. which consists of four components: Conference 
Information Server (CIS), Conference Mediator (CM), 
Conference Agent (CA) and Conference Client (CC). CIS 
is responsible for the management and coordination of 
multiple conferences in the system, such as routing plan 
setup, resource reservation and allocation for each confer- 
ence. CM acts as a manager and mediator for a conference 
and handles operations specific to the conference, such as 
talk-token management and voting management. CA acts 
as a dispatcher which accepts requests from end-users, i.e. 
CCs and then forward the requests to either CM or CIS as 
well as forwards audiolvideo data to another participant 
according to a pre-setup routing tables. 

FIGURE 3. The architecture of conference 
session control system 

A CC also provides a graphical user interface through 
which an end-user can operate the video conference system 
such as to open, register, join or quit a conference, and to 
talk or vote. When a user wants to start a conference call, 
helshe invokes the local CC process to connect to the CA. 
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Heishe then input information about the conference such as 
the conference name and the start time. These information 
will be delivered to CA which then forwards it to CIS. 
Based on the information received from the user, CIS cre- 
ates a pre-setup routing plan and forks a CM process to 
handle the conference. Any user who wishes to participate 
in a conference will first connects himself/herself to CA by 
invoking a local CC process. He/she then sends a request to 
CA for a list of currently active conferences. From the list, 
one can choose which conference he/she wants to join. 
After joining the conference, CC supports application- 
level audiohide0 sending and receiving. The user-side 
application described in the next section is implemented in 
cc. 

2.3 Multimedia Conferencing Transport Software 

The implementation structure of the real-time data transfer 
protocol and the video and audio information flows are 
shown in FIGURE 4.. It is implemented as a user-level 
multi-threaded process to avoid blocking in system calls. 
There are five threads: video-send, video-receive, 
audio-senareceive, command-send and 
command-receive. The reasons for having separate threads 
and communication ports for audio and video are 1) to 
increase the degree of concurrent processing in case that 
multiple processors are used at end systems; 2) to enable 
the use of different network paths or network resource allo- 
cations, if appropriate; 3) to enable the monitor of the QoS 
for different media; and 4) to have the flexibility that a user 
participating in a conference may receive only one medium 
if they choose. 

D VTvideo . A delayed frame is marked if 

( R i  - R i -  1) > DVTvideo 

where Ri is the arrival tirne of th frame at the receiver. 
Delayed frames result in visible unsmooth, broken scenes. 
The violation is caused mainly by the network delay. 

User 
Space 

Kernel 
Space 

FIGURE 4. The software structure of the real-time 
multimedia conference application 

The video-send thread is implemented as follows: it 
fetches a video frame from the video card at a constant rate, 
M frameshec. Namely, this thread is executed every 1/M 
second. Let us denote this interval by T second. In our 
implementation, fetching a video frame takes a non-zero 
time (about 70- 100 milliseconds). Frame segmentation and 
packetization also incur some processing time (less than IO 
millisecond). Let these processing overheads be denoted 
by T ,  . To fetch next frame in time, packets of the current 
frame must be sent to the network interface within T-Tp. 
This interval is exactly the time buffer (range) that the traf- 
fic shaping mechanism can use to manipulate packet sub- 
mission rate to the network interface. Let this interval be 
denoted by T,.  

Operating system support of user-level thread scheduling 
is important to real-time applications to enforce required 
end-to-end delivery quality. Mach 2.6 provides only prim- 
itive thread scheduling function. A Mach 2.6 thread will 
continuously hold CPU control unless it explicitly calls the 
cthreudjield() system call. In this environment, control- 
ling the period and quantum needed for real-time threads 
becomes difficult and complex. For multimedia conferenc- 
ing systems, it is consideired that audio data should have 
higher transmission priority than the video one when net- 
work is congested and the delivery QoS has to be scarified. 
In our implementation, video threads always call 
cthreudjield() to yield CPU to the audio thread when a 
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choice of the block size of audio samples on each fetch may 
result quite different reception quality. For example, sys- 
tem that uses block size of 256 bytes generate good audio 
reception quality under almost all range of network loads 
but stem that uses 1024-byte audio blocks produces broken 
words at receivers. 

ing 

In Ethernets, because of the contention-based medium 
access control scheme - CSMMCD, when network load 
increases, data transmission and reception performance 
degrades. In our case, real-time video and audio packets, 
together with other non-real time data packets may be 
simultaneously queued at the local interface output buffer, 
waiting to siege the channel access right. Because of the 
limited capacity of the network output buffer, if application 
processes are unaware of network transmission status and 
keep sending packets to the output buffer, it will easily 
overload the queue, resulting in severe packet dropping 
(loss) at the sender’s network interface. In practice, almost 
all the conventional operating systems like UNIX and 
Mach do not provide such information like the queue 
length of the network interface buffer to the applications 
(i.e. no relevant system calls exist). Moreover, from our 
experience of packet switched networks in the past, the rule 
of thumb to avoid congestion at a buffer queue is not to 
send a big burst of data at one time, especially when net- 
work is heavily loaded. In our case, because a video frame 
is usually pretty large and needs to be segmented into a 
number of packets suitable for network transmission, we 
think possible output buffer overrun can be pre-cautioned 
by equipping some flow control mechanisms in real-time 
applications. Thus, they would take self-constrained 
actions in traffic generation into the network interface as 
well as the network. In this paper, we propose an applica- 
tion-level traffic shaping (spacing) mechanism to control 
the sending rate of the video packets into the kernel. 
Instead of sending a bulk of packets belonging to the same 
video frame, they are divided into a number of smaller 
groups and spaced out their submission times to the kernel. 
The goal is to reduce the degree of burstiness of the traffic 
arriving into the local system’s interface output buffer. 
This is especially important when network load is high, i.e. 
interface output rate is low and the buffer queue starts to 
pile up. Through extensive experiments on our testbed, 
results show that proper setting of the burst size and spac- 
ing interval of real-time media like video is greatly helpful 
in avoiding drastic performance degradation, i.e. delay jit- 
ter and packet loss, in Ethernets under heavy traffic loads. 

Two parameters are defined in the traffic shaping method: 

size of a burst, denoted by Sbursr which is to manages the 
size of packets sent in each sending event; and the constant 
inter-burst interval, denoted by Tbursr which is to control 
the packet sending rate from the application into the buffer 
so to avoid overflowing the Ethernet output buffer. The 
resulting video traffic arriving into the interface output 
buffer queue can be modeled by a tandem queueing net- 
work as shown in FIGURE 5.. Node 1 models the traffic 
shaping mechanism in the application-level transport pro- 
tocol software of the video thread. Let yvf be the video 
frame generation rate (frameshecond) and h be the average 
number of packets per video frame(packets/frame). Note 
that the number of packets generated from a frame is 
dependent upon the contents of the frame. Node 1 is a 
DbulklDIl queueing system[ 141. The arrival process has 
bulk arrivals with constant interarrival time T where 
T = 1/yvf. The server in Node 1 models the traffic shaping 
task by taking multiple number of packets into service at a 
time. This shapes the arriving burst of average number of 
packets h into groups of packets of size Sbursr.  Thus, a 
frame will produce h/Sb,,,, bulks. The service time at the 
server is a constant and represents the interarrival time of 
bulks that belong to the same frame, i.e. 

video 
frame 

T 

hernet 

Node1 : Node2 
(Traffic Shaping) ,- (Output Buffer) 

/ 

packet loss 
due to output 
buffer overflow 

FIGURE 5. The queueing model of video packet 
transmission at the sender’s end 

Node 2 models sender’s network interface output buffer 
queue. In reality, there are also audio packets as well as 
other data traffic generated by the local application pro- 
cesses. Since the goal of the analysis here is to evaluate the 
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effect of using traffic shaping on the video transmission 
performance, for simplicity and mathematical tractable- 
ness, we assume only video packets are generated and 
queued at local output buffer. Thus, S2 can be modeled as 
a Gb,,~klGlllK. The arrival process has two states: active 
and idle. At the active state, packets arrive output buffer in 
bulks at constant interarrival time. The duration of the 
active state is a constant of T,. The duration of the idle state 
is also a constant of T,. The service time at Node 2 is very 
complex. It is the time for a packet to be successfully trans- 
mitted over Ethernet when it becomes the head-of-line 
(HOL) of the output buffer queue. It is a time function of 
several dynamic factors such as the number of busy sta- 
tions in Ethernet, the total traffic load in the network, and 
how Ethernet frames from this station collide with those of 
the other busy stations. The exponential backoff algorithm 
will determine how long a collided packet should wait until 
it is tried again. Also note that the buffer capacity is limited. 
Therefore, there is a non-zero probability that packets may 
be dropped due to output buffer full. The queueing analysis 
of this system is of great complexity. In the next section, 
performance results measured from the testbed is pre- 
sented. 

4. Performance Results 

A series of experiments are conducted on our testbed to 
investigate the performance of using the proposed traffic 
shaping method on video data transmission and priority 
scheduling of network transmission for audio and video 
data. In the following we show some representative results. 

A three-party multimedia conference is established on our 
Ethemet-based testbed network. The network load is the 
sum of background UDP traffic plus the traffic generated 
by the three stations in the conference. Video frames are 
fetched from video card every 250ms; a video frame is seg- 
mented into an average of 6 packets depending on the 
movement of persons in the conference; each video packet 
is of 1K bytes long; and T ,  is about looms. Three traffic 
sending strategies, two of them employing traffic shaping, 
are studied and compared in the following experiments. 
FIGURE 6. shows the packet transmission patterns of the 
four strategies. In Strategy A, packets of a video frame are 
equally spaced out within T , ,  i.e. Si$,, = 1 and 
Tit?,, = 25ms.  In Strategy B, packets of a video frame are 
clustered into groups of size 3 whose sending times are 
e ually spaced within T, ,  i.e. Si:;,, = 3 and 
Tbursr = 60ms (it is 60ms rather 75ms because we found 
the processing overhead T ,  increases to about 1140ms. In 
Strategy C, there is no traffic shaping; all the video packets 
of a frame are sent to the kernel back to back, i.e. 
S6$,, = 6 .  Besides the conferencing application, a UDP 

?E)  

packets traffic generator running on two other stations are 
used to produce the “background” traffic over the network. 
In the literature, studies have showed that in a typical TCP/ 
IP-based network, 85% traffic is TCP. We know the TCP 
protocol employs slow start and congestion avoidance win- 
dow flow control schemes which will throttle TCP packet 
sending on a congested (or heavily-loaded) network. In the 
testbed, we want to study the worse case performance of 
transmitting real-time data on Ethernets, therefore, we 
choose UDP protocol for the generated traffic rather than 
TCP. The effect of the proposed traffic shkping method is 
expected to perform better than that in actual TGPAP Eth- 
ernets. 

StrategyA 

Strategy B d- 

Strategy C A 

FIGURE 6. Packet transmission patterns of 
the four traffic sending strategies 

FIGURE 7. shows the average video packet loss ratio per- 
formance of the three conferencing stations under different 
traffic shaping strategies. A packet is considered lost if it is 
never received by the receiver. Such loss is caused by 
buffer overflow at the sender andor the receiver’s network 
interface. In Strategy A, packets of a video frame are 
equally spaced out within the time interval before the next 
video frame is fetched, naimely packets entering the output 
buffer one by one in a constant rate. The result shows that 
Strategy A performs well under all range of network load 
than the performance of strategies B and C, although in B, 
traffic is divided into two groups and spaced out over 
150ms. This is easily understood because under heavy 
load, the output rate from a station would be slowed down; 
the output buffer starts to pile up. Suppose the queue is cur- 
rently full. Under Strategy A, since packets are spaced out, 
it is more likely that within the packet interarrival time to 
the output queue that the station will have a successfully 
transmission. Thus, the next packet arrival to the queue will 
find a buffer space. In contrast, under Strategy C, since 
packets arrive the queue in bulk. When network load is 
high, it is less likely that there will have suflicient buffer 
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space left to accommodate a bulk of h packets. Subsequent 
big bulk packet arrivals would easily overcrowd the queue, 
resulting in buffer overflow. For Strategy B, its packet loss 
ratio is better than that of Strategy C when the network is 
modestly loaded. But its burst size is considered large 
under heavy loads and therefore has similar packet loss 
performance with Strategy C. In other words, the inter- 
burst arrival time, i.e. 

In FIGURE 8., we show the frame loss ratio performance 
which includes frames whose constituent packets were 
dropped either at the sender’s interface buffer or the 
receiver’s buffer due to buffer overflow, or discarded at the 
receiver due to transmission error. We can see that Strategy 
A has good frame loss performance at all range of network 
load. It again shows employing source traffic shaping 
mechanism can surely improve the quality of the video 
reception performance. 

In this experiment, a total of 5000 video frames are sent 
which produce about 60000 packets in 21 minutes. During 
the experiment, we observed quite a number of duplicate 
packets. Since both Ethernet and UDP/IP do not provide 
packet sequencing function; the detection of packet dupli- 
cation and broken video frames (frames with at least one 
lost packet) as well as frame reassembly are performed by 
our real-time transport protocol software. TABLE 2. com- 
pares the total number of duplicate packets for the three 
strategies. Strategy A has much less packet duplicates than 
strategies B and C. Such duplication is mainly caused by 
the specific implementations of the Ethernet interface 
cards. 

In FIGURE 9. and FIGURE lo., we show the delay perfor- 
mance of video frames under different network loads and 
traffic shaping strategies. The delay is measured from the 
instant that the first packet of a video frame is sent to the 
kernel at the sender’s machine until the instance that a 
video frame is correctly received and assembled by the 
real-time transport protocol. The average delay of all the 
strategies remains under the maximum tolerable inter- 
video frame interval, i.e. 250ms minus frame processing 
overhead T ,  . The average delays for Strategy A remain 
constant about 15Oms. This is understood because all pack- 
ets of a video frame are sent equally spaced within 150ms. 
Similarly, Strategy B and C have delays around 75ms and 
3Oms, respectively. However, strategies with traffic shap- 
ing have smaller delay variations than that of Strategy C .  
But, the value is smaller enough not to affect the end-to- 
end frame delay requirement. From these two figures, we 
know that although the average frame delay for Strategy A 
is higher than the other three strategies but fortunately they 
are all under the maximum delay tolerance. Most impor- 

tantly, it has the least packet loss ratio performance. In 
FIGURE 11 ., we show the average packet delay. For the 
three strategies, the packet delay remains at a rather con- 
stant value until the network load reaches 8Mbps. How- 
ever, we can see the delay for Strategy C is higher than 
those of the other two strategies. This is because by sending 
a big burst of packets into the output buffer, the dominant 
factor of the delay is due to the queueing delay in the 
buffer. Whereas in the other three cases, packets are spaced 
out therefore experiencing less delay in the buffer. 

5. Conclusions 

In this paper, we first described a prototype real-time mul- 
timedia conferencing system implemented in our labora- 
tory. It consists of two parts: a real-time data transfer 
application and a conference session control application. 
The conference client software is implemented as a multi- 
threaded process to exploit concurrent processing and to 
enable the monitoring of the QoS for different media. This 
design also has the flexibility that a user participating in a 
conference may receive only one medium if they choose. 
To implement precise timestamps in real-time video and 
audio packets transmission and reception, the Mach kernel 
is modified and a distributed master-slave time protocol is 
implemented to synchronize the clocks of all the stations in 
the network. The system clock is tuned to have resolution 
downto 1.1 1 1 millisecond. 

By observing severe packet dropping of real-time data in 
Ethernet and a wide range of delay variations between con- 
secutive real-time packets when the network load is high or 
when the number of participants or the number of confer- 
ences is large. We propose an application-level traffic 
shaping (spacing) mechanism to control the sending rate of 
the video packets to the kernel. The goal is to reduce the 
degree of burstiness of the traffic arriving the local end sys- 
tem’s interface output buffer, especially when network 
load is high where the interface output rate is low and the 
buffer queue starts to pile up. Two parameters are defined 
in the traffic shaping method: size of a burst which controls 
the size of packets sent in each sending event and the con- 
stant inter-burst interval which spaces out the sending 
events into the buffer so to avoid overflowing the Ethernet 
output buffer. 

Through extensive experiments on our testbed, the results 
show that applications that employ source traffic shaping 
mechanisms outperform applications that do not in packet 
loss ratio performance, while maintaining acceptable frame 
delay performance without affecting the reception quality 
of the video information. The smaller the burst size the bet- 
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ter the result and the best result occurs when packets within 
a frame are equally spaced out during the inter-frame 
arrival time (i.e. Strategy A). Such good packet loss perfor- 
mance sustains even under heavy network load. 
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