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Abstract

Traditionally the routing in passive optical networks
is based on an embedded regular virtual topology.
However one important fact that has been neglected
in the past is that the wavelength assignment to
transceivers actually creates additional (logical) links
not present in the virtual topology. Such side e�ect
can be utilized to signi�cantly reduce the number
of hops between a pair of stations. This observa-
tion leads to the concept of super topology. This pa-
per considers the hypercube as the embedded virtual
topology. The ideas contained here are easily applica-
ble to networks employing other virtual topologies as
well. We present the structure of the super topology,
the optimal routing algorithm, the distance between
any pair of stations and the diameter in the super
topology.
Keywords: WDM, optical network, routing, vir-

tual topology, super topology, distance, diameter.

1 Introduction

Optical passive star couplers [6, 8] provide a simple
medium to connect nodes in a local or metropolitan
area network [11]. Figure 1 shows a typical Wave-
length Division Multiplexing (WDM) passive optical
network in which each node is connected to the star
coupler via a pair of unidirectional �bers. Each sta-
tion has a set of transmitters and receivers. Each
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transmitter (receiver) is tuned to a speci�c wave-
length channel from which it transmits (receives)
light signals into (from) an optical �ber. The light
signals entering the star coupler are evenly divided
among all the output ports. A transmission from one
station to another station is accomplished by tuning
a transmitter of the sending station and a receiver of
the receiving station to the same wavelength. Trans-
missions with di�erent wavelength channels can take
place simultaneously. If the number of wavelength
channels is less than the number of transmitters
(or receivers), the wavelength channels can be shared
among them in the time-division multiplexing man-
ner, which results in Time and Wavelength Division
Multiplexing (TWDM) media access protocols [5, 7].
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Figure 1: An N -node optical passive star network

The transceivers at each station could be either
�xed or tunable. The �xed transceivers have several
advantages over the tunable transceivers. Currently,
the tunable transceivers cost much more than the
�xed transceivers. The tuning speed of the tunable
transceivers is very slow comparing to the transmis-
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sion speed of optical �bers and is inverse to its tun-
able range. Furthermore, the tunable transceivers re-
quire accurate pre-transmission coordination. How-
ever, the �xed transceivers also have some disadvan-
tages. The main disadvantages include that they are
bulky and the transmission concurrence may be lim-
ited by the �xed transceivers. For these reasons, pas-
sive optical networks with a small number of �xed
wavelength transceivers have been proposed in the
past. As show in [13], this con�guration can greatly
improve the performance while being able to emulate
the tunability of the tunable transceivers without suf-
fering tuning delay.
Traditionally, the routing in a passive optical

network with a small number of �xed-wavelength
transceivers adopts the same routing algorithm de-
veloped in the regular interconnection topology that
is embedded in the passive optical network [9, 10].
However, one important fact that has been ignored
in the past is that the process to realize or embed
the regular interconnection topology actually creates
some by-products, the additional (logical) links not
present in the original regular interconnection topol-
ogy. Thus the actual logical interconnection pattern
is a super graph of the embedded regular intercon-
nection topology, and hence is referred to as super
topology. Because of the better connectivity in the
super topology, such side-e�ect can be exploited to
reduce the distance in terms of the number of hops
among stations. This can be illustrated in the fol-
lowing simplest example. Consider a passive optical
network of eight stations into which a 3-cube is em-
bedded as follows. Each station has a single trans-
mitter and a single receiver. The transmitters at sta-
tions 000; 011; 101; 110 and the receivers at stations
001; 010; 100; 111 are assigned with wavelength �0,
while the receivers at stations 000; 011; 101; 110 and
the transmitters at stations 001; 010; 100; 111 are as-
signed with wavelength �1. Such wavelength assign-
ment realizes the 3-cube. Now we consider the rout-
ing from station 000 to station 111. If the routing is
simply based on the routing in the 3-cube, then the
shortest distance is three hops. However, notice that
the transmitter at station 000 and the receiver at the
station 111 have the same wavelength �0, the station
000 can talk to the station 111 directly, and therefore

their distance is just one. A graph theoretic expla-
nation to this improvement is the di�erence between
the embedded 3-cube and the actual super topology.
Figure 2 shows the super topology of the above wave-
length assignment. It is the super graph of 3-cube.
In addition to the links in the 3-cube, four additional
links are present in the super topology: the link be-
tween 000 and 111, the link between 001 and 110, the
link between 010 and 101, and the link between 100
and 011. It's easy to see that the diameter of this
super topology is two, in contrast to the fact that the
diameter of the 3-cube is three.
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Figure 2: The super topology of the embedded 3-
cube.

The above observation leads to the question on
how better is the super topology than the original
regular interconnection topology in terms of the net-
work properties such as routing, the load balancing
and fault tolerance. This paper characterizes the su-
per topologies in passive optical hypercube networks
with various numbers of transceivers. The algorithms
for optimal routing are presented. The di�erence be-
tween any pair of stations and the diameters are also
given in terms of the number of hops.

The remaining of this paper is arranged as follows.
Section 2 introduces some key concepts such as trans-
mission graph, subnetworks and their relations to the
super topology. Section 3 presents the structure of
the super topology, the optimal routing algorithm,
the distance between and pair of stations and the di-
ameter in the super topology when the number of
transmitters at each station is equal to the number
of receivers at each station. Section 4 studies the
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same issues when the number of transmitters at each
station is less than the number of receivers at each
station. Finally Section 5 concludes the paper.

2 Preliminaries

To embed a given interconnection topology into a
passive optical network, one must �rst partition the
outgoing links at each station into a number of groups
with one for each transmitter; and similarly, parti-
tion the incoming links at each station into a num-
ber of groups with one for each receiver. The par-
tition determines a transmission graph, a bipartite
digraph whose vertex sets are all transmitters and all
receivers, and there is a link from a transmitter to
a receiver if and only if they are responsible for one
common link in the interconnection topology to be
realized. It's obvious that the number of links in the
transmission graph is the same as that in the inter-
connection topology.
The partition imposes a constraint on the wave-

length assignment of the transmitters and receivers as
explained below. Since the transmitters and receivers
are �x-tuned, any transmitter (receiver) and its ad-
jacent receivers (transmitters) in the transmission
graph are forced to have the same wavelength chan-
nels of the transmitter (receiver). Therefore any pair
of transceivers must have the same wavelength chan-
nel if there is path between them assuming the links
in the transmission graph are bidirectional. This key
observation leads to the concept of subnetworks. In
the transmission graph, a set of transmitters and re-
ceivers form a subnetwork if there is a path between
any two of them if we ignore the unidirectional nature
of the links1. Thus all transmitters and receivers in
the same subnetwork must have the same wavelength
channel. In this paper, we assume that the number of
transceivers are selected such that each subnetwork
has a unique wavelength.
The structure of subnetworks provides a way to

determine the super topology of a wavelength assign-
ment. In general, there is a link from station a to

1The subnetwork concept is similar to the concept of con-

nected component in the graph theory. The only di�erence is

that here we ignore the unidirectional nature of the links.

station b in the super topology if and only if a has a
transmitter and b has a receiver which are in the same
subnetwork. The characterization of the structure of
subnetworks is reported in a separate paper [14]. In
this paper, we �rst determine from the structure of
subnetworks the set of neighbors of each station and
the nodal degree in the super topology. After that
we present the optimal routing algorithm in the su-
per topology. Finally we give the analytic expression
for the diameter in terms of the number of hops in
the super topology.
Due to the symmetry of the hypercube, swapping

the number of transmitters and receivers does not
change the connectivity of the super topology. Thus
we only consider the cases that the number of trans-
mitters is no more than the number of receivers. Sec-
tion 3 studies the con�guration in which the number
of transmitters is equal to the number of receivers.
Section 4 studies the con�guration in which the num-
ber of transmitters is less than the number of re-
ceivers.
For the simplicity of discussion, we �rst intro-

duce some notations. We use T and R to denote
the number of transmitters and the number of re-
ceivers respectively at each station. For any S �
f0; 1; � � � ; n� 1g and any n-bit binary number a, we
use ajS to denote the jSj-bit binary number consist-
ing of the bits of a at positions in S, and ajS to denote
the (n� jSj)-bit binary number consisting of the bits
of a at positions not in S. For any two stations a and
b, we use H(a; b) to denote their distance in terms
the number of hops in the super topology.

3 Case 1: T = R

3.1 Super Topology

We begin with the simplest case that T = R. The n
dimensions are consecutively partition into T groups
D0; D1; � � � ; DT�1 with

jDtj =

� �
n
T

�
for 0 � t < n mod T;�

n
T

�
for n mod T � t < T:

The transmitter (a; t) is responsible for the outgoing
links at a along dimensions in Dt, and the receiver

3
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(a; r) is responsible for the incoming links at a along
dimensions in Dr. Then according to [14], the sub-
network that the transmitter (a; t) belongs to consist
of all transmitters

�
(b; t) : (a� b) jDt

is even and (a� b) jDt
= 0

	
and all receivers

�
(b; t) : (a� b) jDt

is odd and (a� b) jDt
= 0

	
:

Thus in the super topology, the adjacent stations of
the station a is

T�1[
t=0

�
b : (a� b) jDt

is odd and (a� b) jDt
= 0

	
:

So the nodal degree of each station in the super topol-
ogy is

T�1X
t=0

2jDtj�1

= (n mod T ) 2d
n
T e�1 + (T � n mod T ) 2b

n
T c�1

= (T + n mod T ) 2b
n
T c�1:

As

(T + n mod T ) 2b
n
T c�1 = n

if and only if T > n
2
, each station has more neighbors

in the super topology if T � n
2
, and thus may reduce

the distances between some nodes.

3.2 Optimal Routing

Now let's look at the optimal routing in the super
topology. The routing from station a to station b is
equivalent to changing the bits of a to the bits of
b according to certain rules. In the super topology
with T = R, at each step any odd number of bits
at positions in some Dt are allowed to be reversed
simultaneously. Recall that in the original n-cube,
only one bit can be changed at a time. Thus the dis-
tance in terms of the number of steps/hops to change
a to b should be smaller.
Note that at each step the reversing of bits at po-

sitions in some Dt has no impact on the bits in other

positions. Thus to change the bits of a at positions
in Dt to the bits of b at positions in Dt, we only have
to look at (a� b) jDt

. Suppose that (a� b) jDt
= 0

and (a� b) jDt
6= 0. Then

� if (a� b) jDt
is odd, then a single hop is needed

from station a to station b;

� if (a� b) jDt
is even, then two hops are needed

from station a to station b;

Therefore, the routing can be performed sequen-
tially for each 0 � t < T . The optimal routing given
in Table 1 is very similar to the well-known Z-routing
in the hypercube. It is given in the recursive format
for the simplicity of description.

Algorithm Routing1(a; b)
if a = b; stop;
�nd the smallest t with (a� b) jDt

6= 0;
if (a� b) jDt

is odd then
pick any a0 satisfying that
(a0 � b) jDt

= (a0 � a) jDt
= 0

and (a0 � a) jDt
is odd ;

a transmits to a0 via transmitter (a; t);
Routing1(a0;b);

else
pick any a0 satisfying that
(a0 � a) jDt

= 0
and (a0 � a) jDt

is odd;
pick any a00 satisfying that
(a00 � b) jDt

= (a00 � a) jDt
= 0;

a transmits to a0 via transmitter (a; t);
a0 transmits to a00 via transmitter (a0; t);
Routing1(a00;b);

End-Algorithm

Table 1: Optimal routing from a to b when T = R.

3.3 Distance And Diameter

In the next we will study the distance between any
pair of stations and the diameter of the super topol-
ogy.

4
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For any binary number a and amy 0 � t < T , we
de�ne ht(a) as follows.

� if ajDt
= 0, then ht(a) = 0;

� if ajDt
6= 0 and ajDt

is odd, then ht(a) = 1;

� if ajDt
6= 0 and ajDt

is even, then ht(a) = 2.

Then the distance between the station a and the
station b is given by

H(a; b) =

T�1X
t=1

ht(a� b):

It's easy to see that for any 0 � t < T , the maxima
of ht(a) is two if jDtj > 1, and is one if jDtj = 1.
Therefore, if n � 2T , the diameter is equal to 2T .
Now we assume that n < 2T . For any 0 � t < n�T ,
jDtj = 2 and thus the maxima of ht(a) is two. For
any n�T � t < T , jDtj = 1 and thus the maxima of
ht(a) is one. Therefore the diameter is

2(n� T ) + (2T � n) = n:

In summary, when T = R, the diameter of the
super topology is min fn; 2Tg. Hence the fewer the
number of transmitters/receivers, the shorter the di-
ameter. However, the fewer number of transmitters
may cause larger number of transmitters/receivers in
each subnetwork and result in longer channel access
delay. The worst number of time slots can be as large
as

2T � 2d
n
T e�1 = T2d

n
T e

which might decrease as T increase.

4 Case 2: T < R

4.1 Super Topology

Now we consider the con�guration with 0 < T < R <

n. The n dimensions are consecutively partitioned
into T groups D0; D1; � � � ; DT�1 with

jDtj =

� �
n
T

�
for 0 � t < n mod T;�

n
T

�
for n mod T � t < T:

The transmitter (a; t) is responsible for the outgoing
links at a along dimensions in Dt. For each 0 � t <

R mod T , Dt is further consecutively partitioned into�
R
T

�
subgroups

Dt;0; Dt;1; � � � ; Dt;dRT e�1

of arbitrary sizes, and the receiver (a; t
�
R
T

�
+ i) is

responsible for the incoming links at a along dimen-
sions in Dt;i for any 0 � i <

�
R
T

�
. For each

R mod T � t < T;Dt is further consecutively par-
titioned into

�
R
T

�
subgroups

Dt;0; Dt;1; � � � ; Dt;bRT c�1

of arbitrary sizes, and the receiver (a;R mod T +
t
�
R
T

�
+ i) is responsible for the incoming links at a

along dimensions in Dt;i for any 0 � i <
�
R
T

�
. Then

if 0 � t < R mod T the subnetwork that the trans-
mitter (a; t) belongs to consists of all transmitters

�
(b; t) : (a� b) jDt

= 0; (a� b) jDt;i
is even

for any 0 � i <

�
R

T

��
:

and all receivers

dRT e�1[
i=0

�
(b; t

�
R

T

�
+ i) : (a� b) jDt

= 0; (a� b) jDt;i

is odd and (a� b) jDt;j
is even for any j 6= i

	
:

If R mod T � t < T the subnetwork that the trans-
mitter (a; t) belongs to consists of all transmitters

�
(b; t) : (a� b) jDt

= 0; (a� b) jDt;i

is even for any 0 � i <

�
R

T

� �

and all receivers

bRT c�1[
i=0

�
(b; R mod T + t

�
R

T

�
+ i) : (a� b) jDt

= 0;

(a� b) jDt;i
is odd, and (a� b) jDt;j

is even for any j 6= ig :
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Thus in the super topology, the adjacent stations of
the station a is

RmodT�1[
t=0

dRT e�1[
i=0

�
b : (a� b) jDt

= 0; (a� b) jDt;i
is

odd, (a� b) jDt;j
is even 8j 6= i

	
[

T�1[
t=RmodT

dRT e�1[
i=0

�
b : (a� b) jDt

= 0; (a� b) jDt;i
is

odd, (a� b) jDt;j
is even 8j 6= i

	
So the nodal degree of each station in the super topol-
ogy is

RmodT�1X
t=0

�
R

T

�
2jDtj�dRT e +

T�1X
t=RmodT

�
R

T

�
2jDtj�bRT c

which can be simpli�ed as follows:

� If n mod T = R mod T , then the degree is

R2
n�R
T :

� If n mod T < R mod T , then the degree is

R2d
n�R
T e + (n mod T �R mod T )

�
R

T

�
2b

n�R
T c:

� If n mod T > R mod T , then the degree is�
R+ ((n�R) mod T )

�
R

T

��
2b

n�R
T c:

4.2 Optimal Routing

Now let's look at the optimal routing in the super
topology. We again treat the routing from a to b as
a number of steps to change the bits of a to the bits
of b. For any 0 � t < T , any odd number of bits at
positions in some Dt;i and any even number of bits
at positions in any Dt;j with j 6= i are allowed to be
reversed simultaneously within a single step. Note
that at each step the reversing of bits at positions
in some Dt has no impact on the bits in other posi-
tions. Thus to change the bits of a at positions in Dt

to the bits of b at positions in Dt, we only have to
look at (a� b) jDt

. Suppose that (a� b) jDt
= 0 and

(a� b) jDt
6= 0. Then

� if (a� b) jDt;i
is even for all i, then two hops are

needed from station a to station b;

� otherwise, the minimal number of hops required
from station a to station b is equal to the number
of i's with odd ajDt;i

.

Such procedure can be repeated sequentially for
each 0 � t < T . The recursive version of an optimal
routing algorithm is given in Table 2.

Algorithm Routing2(a; b)
if a = b; stop;
�nd the smallest t with (a� b) jDt

6= 0;
�nd the set S =

�
i : (a� b) jDt;i

is odd
	
;

if S = ; then
choose any a0 satisfying that
(a0 � a) jDt

= 0

and (a0 � a) jDt;i
is odd for some i;

choose any a00 satisfying that
(a00 � b) jDt

= (a00 � a) jDt
= 0;

a transmits to a0 via transmitter (a; t);
a0 transmits to a00 via transmitter (a0; t);
Routing2(a00;b);

else
for each i 2 S in the increasing order do
if i is the last one in S then
choose any a0 satisfying that
(a0 � b) jDt

= (a0 � a) jDt
= 0

and (a0 � a) jDt;i
is odd ;

else
choose any a0 satisfying that
(a0 � a) jDt

= 0, (a0 � a) jDt;i
is odd

and (a0 � a) jDt;j
is even 8 j 6= i;

a transmits to a0 via transmitter (a; t);
replace a by a0;

Routing2(a;b);
End-Algorithm

Table 2: Optimal routing from a to b when T < R.

4.3 Distance And Diameter

For any binary number a and any 0 � t < T , we
de�ne ht(a) as follows.

6
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� if ajDt
= 0, then ht(a) = 0;

� if ajDt
6= 0 and ajDt;i

is even for all i, then
ht(a) = 2;

� if ajDt
6= 0 and ajDt;i

is odd for some i, then
ht(a) is equal the number of i's satisfying that
ajDt;i

is odd.

Then the distance between the station a and the
station b is given by

H(a; b) =

T�1X
t=1

ht(a� b):

Thus the diameter is the sum of the maxima of ht(a)
over all 0 � t < T . In general, if the number of
receivers at each station that are responsible for the
links along dimensions in Dt is more than one, the
maxima of ht(a) is equal to such number. If there is
only one receiver at each station that is responsible
for the links along dimensions inDt, then the maxima
of ht(a) is equal to two if jDtj > 1 and equal to one
if jDtj > 1.
If R � 2T , then

�
R
T

�
�
�
R
T

�
� 2. Thus for any

0 � t < T , there are at least two receivers that are
responsible for the links along dimensions in Dt. This
implies that the maxima of ht(a) is equal to the num-
ber of receivers at each station that are responsible
for the links along dimensions in Dt. So the diameter
is equal to R, the total number of receivers at each
station.
If T < R < 2T � n, then

�
n
T

�
�
�
n
T

�
� 2. For

0 � t < R � T , there are exactly two receivers that
are responsible for the links along dimensions in Dt,
hence the maxima of ht(a) is 2. For R � T � t < T ,
jDtj � 2 while there is only one receiver at each sta-
tion that is responsible for the links along dimensions
in Dt. So the maxima of ht(a) is also equal to two.
Therefore the diameter is 2T .
If T < R < n < 2T , we show that the diameter is

n. In fact, for 0 � t < R � T , jDtj =
�
n
T

�
= 2 and

there are exactly two receivers that are responsible
for the two links along dimensions in Dt. Hence the
maxima of ht(a) is 2. For R � T � t < n � T ,
jDtj =

�
n
T

�
= 2 but there is only one receiver at

each station that is responsible for the two links along

dimensions in Dt. So the maxima of ht(a) is also
equal to two. For N�T � t < T �1, jDtj =

�
n
T

�
= 1

and there is only one receiver at each station that is
responsible for the link along dimension in Dt. So
the maxima of ht(a) is equal to one. Therefore the
diameter is

2(R� T ) + 2(n� T ) + (2T � n) = n:

In summary, when 0 < T < R < n, the diameter
is equal to min fn;max fR; 2Tgg.

5 Conclusion

Traditionally the routing in passive optical networks
is based on an embedded regular virtual topology.
However the wavelength assignment that realizes the
embedding actually creates a logical connectivity
which can be represented as a super graph of the em-
bedded virtual topology. This paper studies how to
explore such side e�ect to reduce the number of hops
between a pair of stations in a passive optical hyper-
cube network. We present the structure of the super
topology, the optimal routing algorithm, the distance
between any pair of stations and the diameter in the
super topology. The ideas and approaches contained
in this paper are easily applicable to passive optical
networks embedded into with other virtual topologies
such as the de Bruijn graph [12], the star graph [1],
and the rotator graph [4] as well.
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