

The New Shortest Best Path Tree (SBPT) Algorithm for Dynamic Multicast Trees

Hiroshi Fujinoki and Kenneth J. Christensen

Department of Computer Science and Engineering
University of South Florida

Tampa, Florida 33620
Email: {fujinoki, christen}@csee.usf.edu

Abstract

This paper presents the new Shortest Best Path Tree
(SBPT) algorithm for multicast trees. The SBPT
algorithm establishes and maintains dynamic multicast
trees which maximize the bandwidth to be shared by
multiple receivers and simultaneously guarantee the
shortest paths for each receiver node. The SBPT
algorithm is a distributed algorithm with cost in the same
order as the sum of the shortest path tree (SPT) algorithm
and the Greedy algorithm. The SBPT algorithm reduces
bandwidth consumption by utilizing partial paths already
established for other multicast receiver nodes. The SBPT
algorithm finds such partial paths when multiple shortest
paths exist. Simulation experiments comparing the SBPT
and SPT algorithms show that the SBPT algorithm
reduces bandwidth consumption by 5% to 17% when
node utilization is greater than approximately 25% and
always achieves the same shortest path lengths.

1. Introduction

Different from single-cast applications, the paths for
a multicasting application are generally established as a
tree, called a multicast tree, which contains a single
sending node (the sender) and multiple receiving nodes
(the receivers). A good multicast routing algorithm
should be able to control end-to-end delay and bandwidth
consumption in order to effectively support real-time
video and audio applications (see, for example, [10], [11],
and [17]). In addition, a good multicast routing algorithm
should be implemented in a distributed fashion and be
efficient in execution given rapidly changing populations
of receivers (see [15]).

Three different types of multicast trees are described
in [7]; Steiner trees, center-based trees, and source-based
trees. Center-based and source-based trees categorize the
place where the routing operation is initiated. These trees
are generally represented by a Shortest Path Tree (SPT)
(see [3], [6], and [12]) or a tree generated by the Greedy

algorithm (see [14]). A Steiner tree, or Steiner Minimal
Tree (SMT), is the multicast tree that minimizes total path
cost. An algorithm to find an exact SMT belongs to the
class NP-complete, hence heuristic algorithms have been
studied (see [2], [13] and [16]). However, due to their
high algorithm complexity, routing algorithms based on
SMT heuristics are not popular in actual use.

One of the advantages of the SPT algorithm is that it
always guarantees the shortest path from each receiver
node to the sender. However, the SPT algorithm cannot
explicitly route paths so that multicast paths are shared by
as many receiver nodes as possible. The Greedy
algorithm, however, does attempt to share paths to
maximize bandwidth sharing. The Greedy algorithm
develops a multicast tree by connecting each new receiver
node to its nearest multicast receiver that has been already
connected to the sender of the target multicast stream.
However, the Greedy algorithm does not consider path
length for each receiver node, resulting in longer path
length than that of the SPT algorithm. This tradeoff
between path length (minimized by the SPT algorithm)
and bandwidth consumption (addressed by the Greedy
algorithm) is solved in this paper by a new multicast
routing algorithm called the Shortest Best Path Tree
(SBPT) algorithm. Given multiple shortest paths between
a receiver and a sender, the SBPT algorithm utilizes
partial paths already established for other multicast
receiver nodes. This guarantees that path length is the
same as from the SPT algorithm, but bandwidth
consumption is reduced.

The remainder of this paper is organized as follows.
Section 2 describes the SPT and the Greedy multicast
routing algorithms. A tradeoff relationship between the
two algorithms is also described. In Section 3 the
Shortest Best Path Tree (SBPT) algorithm is introduced.
Section 4 describes simulation experiments comparing the
SPT, Greedy, and SBPT algorithms. In Section 5, the
experimental results are presented and observations are
made based on the simulation results. The final section is
a summary and is followed by references.

2. Existing Multicast Algorithms

It is assumed that multicast sessions have a single
sender and that the root of a multicast tree is always the
sender of a multicast session (therefore the root is not
fixed at a specific node). The second assumption is
made since it has been shown that a fixed root approach
(i.e., where the root is not necessarily the sender) can be
very inefficient (see [4]). Figure 1 is an example of such
a multicast tree where the number adjacent to each edge
represents a hop count and each node, except for the
root of the tree, represents a receiver (labeled as v1, v2,
… , v13). Each hop is assumed to consume a unit of
bandwidth. We define TotalB to be the total amount of
bandwidth consumed by a multicast tree for a multicast
session at a given time. We define TotalP to be the total
path length - the sum of the hops from all of the
multicast receivers to the sender. A joining node is a
node that is being connected to the sender. Neighbor
nodes are multicast receivers that have already been
connected to the sender. Neighbor nodes include the
following two types of nodes; 1) the multicast receivers
that are receiving a multicast stream from a sender, and
2) the multicast receivers that are not receiving the
multicast stream but are on a path already created from a
receiver node to the sender.

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11 v12

v13

Sender

4

3

5

4

2

4

2

43

4

3

4

3

3

3

2

3
82

v1

3

Figure 1 - Example network

The SPT algorithm is a multicast tree algorithm that
minimizes path length by connecting each receiver node
to the sender using the shortest path. Figure 2(a) shows
an example of the resulting multicast tree after the SPT
algorithm is applied to the network of Figure 1,
assuming that nodes v1, v2, v13, v9, v10, v12, v11, v8,
v6, v7, v4, v3, and v5 are connected in that order. The
resulting multicast tree has BTotal = 50, which is the sum
of the hop counts of all the links used for connecting

nodes. The total path length, PTotal = (6 + 2 + 5 + 10 + 4
+ 8 + 11 + 12 + 3 + 6 + 9 + 10 + 4) = 90, with each term
representing the path length for v1 to v13, respectively.
Using the SPT algorithm, v7 may choose a shortest path
to the sender through v6 and v5 based on v7’s shortest
path calculation. The Greedy algorithm always connects
a joining node to its nearest neighbor node. If such a
neighbor node does not exist, or if the sender is the
nearest neighbor node, then the joining node is
connected to the sender using the shortest path. Figure
2(b) shows the resulting multicast tree after the Greedy
algorithm is applied to the graph of Figure 1 and it has
BTotal = 40 and PTotal = 153.

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11 v12

v13

Sender

4

3

5

4

2

4

2

43

4

3

4

3

3

3

2

3
82

v1

3

Figure 2(a) - Multicast tree from SPT algorithm

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11 v12

v13

Sender

4

3

5

4

2

4

2

43

4

3

4

3

3

3

2

3
82

v1

3

Figure 2(b) - Multicast tree from Greedy algorithm

We can see a tradeoff relationship between BTotal
and PTotal . The multicast trees generated by the SPT
algorithm generally have a larger BTotal than those
created by the Greedy algorithm. This is because the
SPT algorithm does not find paths that necessarily share

bandwidth by multiple receivers. The Greedy algorithm
reduces the bandwidth consumed. However, a problem
in the Greedy algorithm is that it routes paths based on
the nearest neighbor node. Therefore, resulting
multicast trees may not be efficient in path length.
Waxman’s weighted greedy algorithm has been
proposed as a solution to the problem of excessive path
length (see [7]). However, the weighted greedy
algorithm requires the existence of special fixed nodes
called “owner nodes” and the efficiency of its routing
depends on how these owner nodes are assigned. There
is no systematic method to assign these nodes.

3. The SBPT Algorithm

The Shortest Best Path Tree (SBPT) algorithm is
proposed as a solution for the tradeoff problem
discussed in Section 2 and is a middle ground between
the SPT and Greedy algorithms. In this paper, distance
between any two nodes is represented by the hop count
between them. The following two variables are used in
the SBPT algorithm.

• M i s(,) is the shortest distance from a node i to a
sender s.

• D j i(,) is the distance of the shortest path
between two nodes, a joining node j and a
neighbor node i.

The SBPT algorithm is shown in Figure 3. The
algorithm takes three input parameters; the node ID of
the joining node, j, the node ID of the sender, s, and the
directed graph G.

Assuming that the receivers are connected to the
sender in the same order as in the example in Section 2
and Figure1, the resulting multicast tree after the SBPT
algorithm is applied is shown in Figure 4. This graph is
created as follows. First, node v1 is connected to the
sender using the shortest path through v2. Node v2 has
only one shortest path, so it is connected to the sender
using the shortest path. Similarly, node v13, v9, v10,
v11, and v12 have only one shortest path and they are all
connected by their shortest paths. When node v8 is
being connected, it sees v11 as its nearest neighbor on
one of its four shortest paths
(M D Mv s v v v s(,) (,) (,)8 8 11 11= +) and therefore, v8 is
connected to v11. When node v7 is being connected, it
sees v8 as its nearest neighbor. However, v8 is not on
one of v7’s shortest path to the sender
(M D Mv s v v v s(,) (,) (,)7 7 8 8< +). The nearest neighbor node
of v7 on one of v7’s shortest paths is v2
(M D Mv s v v v s(,) (,) (,)7 7 2 2= +). Therefore, v7 is connected
to v2. Node v6 sees itself as a neighbor node on its

shortest path (i.e., D v v(,)6 6 0=), and it uses the shortest
path established by v7. Node v4 sees v6 as its nearest
neighbor on one of its three shortest paths and is
connected to v6. Similar to node v6, node v3 sees itself
as a neighbor node and uses the shortest path to the
sender through v2. Finally, v5 has only one shortest path
and is connected to the sender using this path. The
resulting multicast tree has BTotal = 41 and PTotal = 90.

 SBPT algorithm(j,s,G)
 1. NearestDistance = ∞
 2. Apply an SPT algorithm to graph
 G with as j its root to
 determine the shortest distance
 from j to each node v ∈ G
 and store the shortest distance
 for each v in D j v(,)

 3. for all i ∈ v
 4. if (i is a neighbor of j)
then
 5. if (),(),(),(siijsj MDM +=) then

 6. if (D j i(,) <Nearest) then

 7. NearestDistance = D j i(,)

 8. NearestNeighbor = i
 9. end-if
 10. end-if
 11. end-if
 12. end-for
 13. Establish shortest path between
 j and i
 14. end-SBPT

Figure 3 - The SBPT algorithm

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11 v12

v13

Sender

4

3

5

4

2

4

2

43

4

3

4

3

3

3

2

3
82

v1

3

Figure 4 - Multicast tree from SPBT algorithm

The total cost of each algorithm can be subdivided
into three categories. They are the costs for
initialization, external operation, and internal operation.
The cost for initialization is required in a network only
once when a network is first configured. The cost for
external operation is required at each joining node to get
information from other nodes when a joining node tries
to find its connecting point. The difference from the
initialization cost is that the external cost is required at
each joining node each time it joins a multicast session.
The internal cost is the same as the external cost except
that it is the cost of operations performed inside of a
joining node to decide a joining node’s connecting point
based on the information collected by the external
operation.

The SPT algorithm takes at least ()2nO time where
n is the number of receiver nodes in a network, assuming
the Bellman-Ford algorithm to determine the shortest
path from the sender to each node in a network. There is
no external operation and only a constant time for the
internal cost is required. The Greedy algorithm does not
require operations for initialization, it only needs to find
the nearest neighbor node for each joining node. Using
the Bellman-Ford algorithm to create a shortest path tree
with a joining node as the root, it takes at
least)(2nO time to determine the nearest neighbor node.

The Greedy algorithm takes at least)(2nO time for the
external cost to find neighbor nodes and their distance
and)(nO time for the internal operations to determine
the nearest node in the found neighbor nodes (using a
linear search). The SBPT algorithm takes)(2nO time
for initialization since it requires determination of a
shortest path for each node in a network. For external
operation, the SBPT algorithm needs to locate neighbor
nodes for a joining node and their shortest distance to
the joining node. This operation is the same as in the
Greedy algorithm (line 2 in Figure 3). The internal
operation takes)(nO time, where n is the number of the
neighbor nodes (line 3 in Figure 3). Table 1 summarizes
the costs for the three algorithms, which shows that the
total cost of the SBPT algorithm is in the same order as
the sum of the SPT and the Greedy algorithm.

 SPT Greedy SBPT

Initial cost n2 0 n2

External cost 0 n2 n2

Internal cost 1 n n

Total cost n2+1 n+n n2+n2+1

Table 1 - Algorithm complexities

4. Evaluation of the SBPT Algorithm

The SPT, Greedy, and SBPT algorithms were
compared using simulation methods. The simulation
model was implemented as a time-based simulation
where all statistics are collected at each discrete clock
tick. All continuously distributed random time values
are truncated to their corresponding integer values. The
major variables in the simulation model are network size
and multicast receiver behavior. The random network
model introduced by Billharts et al. (see [3]) was used.
This network model assumes a grid-patterned square
network, where a node representing a multicast receiver
site is located only at each intersection of the grid in a
network. Thus, the network model is a non-hierarchical,
flat structure. It is predicted that the future Internet will
tend towards a non-hierarchical, flat network as the
number of domains increases (see [9] for more details).

The number of nodes in a network, 2N , represents
the network size where N is the number of nodes in each
edge of a square network. To assign links between
nodes, the link assignment model proposed by Waxman
(see [14]) is applied in which the probability of there
being an edge between nodes u and v is given by:

() ()LdevuP βγ −⋅=, (1)

where d and L are the Euclidean distance and maximum
possible link distance between the nodes u and v. The
parameters, γ (1>γ), and β (1≤β), control the
average link distance between u and v.

A receiver’s activities are assumed to be either a)
joining a multicast tree, or b) disconnecting itself from
the multicast tree. The period between the beginning of
a connection and the subsequent disconnection is the
session holding time. Poisson arrivals are assumed for
session join requests and both exponential and Bounded-
Pareto (BP) distributed session holding times are
assumed. Data set numbers correspond to the
experiment number. For data sets 1 through 5,
exponentially distributed session holding times are
modeled and for data sets 6 through 10 Bounded-Pareto
distributed session holding times are modeled. For
modeling session holding time, Almeroth suggests using
the Zipf distribution (see [1]), which is the discrete
version of Pareto distribution (see [5]). The BP
distribution models “heavy tailed” session holding times.
The probability mass function for ()α,,kpBP is,

() 1

1

−−⋅






−

⋅= α
α

αα x

p
k

kxf (2)

where k is the minimum duration of a session, p the
maximum session holding time, and α a shape
parameter. BP random variables, X, can be generated
using the inverse transform method as,

() a

kp
pkUpUX

1−









⋅

−⋅−⋅−= αα

ααα

 (3)

where, U is uniformly distributed random variable from
0 to 1.

The simulation model measures the average
bandwidth consumption per minute (ABWC), and the
average path length per connection (APL) for a
simulation of T minutes,

∑
=

=
T

c
cBWC b

T
A

0

1
 (4)

and

A
T n

lPL
c

i
i

n

c

T

=










==
∑∑1 1

00

 (5)

where cb is the amount of bandwidth consumed in the
network at clock tick c, il is the path length of the
receiver node i at clock tick c (il = 0 if node i is not
connected), nc is the number of receiver nodes joined at
the clock tick c, and n is the number of nodes in the
network.

A range of network sizes, network connectivity,
session holding times, and session initiation arrival rates
were considered. For all the experiments, session
requests were assumed to be Poisson. For each of the
ten experiments, three different network sizes of N 2 =
100, 400, and 900 were used to model small, medium,
and large networks. A simulation time of T = 28800
minutes (representing twenty days) was used for all
experiments. Table 2 summarizes the key parameters
for each data set. Average node utilization is defined to
be the ratio of session holding time to total elapsed time
at a receiver node. We classify each data set based on
its average node utilization as “high utilization” is
average node utilization over 75%, “medium utilization”

is about 50%, “low utilization” is about 25%, and “very
low utilization” is about 5%. Data sets 1 and 6 simulate
long-lived receiver sessions. The parameters for these
data sets are taken from statistics collected for the
NASA STS-63 space shuttle audio sessions from
February 3 to February 11, 1995 on the Mbone
(Multicast Backbone), while those for the short-lived
session (data set 2 and 7) are based on the statistics
collected for Free BSD Lounge also on Mbone (see [1]).
Data sets 3 and 8 are artificially created to see the effects
from longer inter-session time (session request inter-
arrival time is doubled from data set 1 and 6), while data
sets 4 and 9 model shorter session holding time (session
holding time halved from data set 1 and 6). Data sets 5
and 10 were created to see the effects of very low node
utilization (session request interval time multiplied by
six while session holding time halved from data set 1
and 6). The three parameters for BP distribution are
chosen as follows. First, α was chosen to be 0.8 to
achieve high variance in the resulting session holding
time (standard deviations range from 95 minutes to 386
minutes in the five data sets). The maximum session
holding time, p, was fixed to be 2880 minutes, assuming
that a receiver will not stay connected for more than two
days. The minimum session holding time, k, was then
adjusted to achieve the same mean as its corresponding
set in exponential distribution (see Table 2 for actual
values). We chose k to control the mean where the mean
for a BP random variable X is,

[] ()
()





















−⋅−

−⋅⋅=
−−

α

ααα

α

α

p
k

pkkXE

11

11

 (6)

D
at

a
se

t

Se
ss

io
n

ho
ld

in
g

tim
e

(m
in

)

In
te

r-
se

ss
io

n
tim

e
(m

in
)

U
til

iz
at

io
n

(%
)

B
P

sh
ap

e
pa

ra
m

et
er

(k
)

(p
)

 1 35.0 67.5 43.8 ------ ------ -----
 2 258.0 7.5 97.8 ------ ------ -----
 3 35.0 135.1 25.3 ------ ------ -----
 4 17.5 67.6 25.8 ------ ------ -----
 5 17.5 405.4 4.2 ------ ------ -----
 6 34.7 67.6 45.9 0.8 2.9 2880.0
 7 258.0 7.5 97.8 0.8 48.2 2880.0
 8 34.7 135.1 24.2 0.8 2.9 2880.0
 9 17.2 67.6 23.9 0.8 1.2 2880.0
10 17.2 405.4 3.8 0.8 1.2 2880.0

Table 2 - Description of the experimental data sets

5. Experimental Results

Table 3 shows the results from experiments 1 through
5. The results from experiment 1 show that the Greedy
algorithm saves bandwidth consumption by 3% to 9%
from the SPT algorithm, while the average path length is
9% to 17% longer than those in the SPT algorithm. The
SBPT algorithm saves bandwidth consumption by about
8% from the SPT algorithm while it achieves the same
shortest average path length. Experiment 2 shows that the
Greedy algorithm achieves the least bandwidth
consumption, while its average path length is longer by
9% to 24%. The SBPT algorithm saves 11% to 17% of
bandwidth consumption of the SPT algorithm, again with
the shortest average path length. Experiments 3 and 4
show similar results, where the Greedy algorithm saves
2% to 17% of bandwidth from the SPT algorithm, while
the increase in the average path length is about 6% to
15%. The SBPT algorithm saves bandwidth consumption
by about 5% from the SPT algorithm. For experiment 5,
the SBPT algorithm is about the same as the SPT
algorithm, while the Greedy algorithm consumes more
bandwidth than the SPT algorithm by 112% to 282%.

Figures 5, 6, and 7 show the relative difference of the
three algorithms for experiments 1, 2, and 3. Experiments
6 through 10 show similar results as seen in experiments 1
through 5, and the results are shown in Table 4. The only
exceptions are that they result in larger bandwidth
consumption in a large network with low utilization and
longer path length in a small network with high
utilization.

 Bandwidth (%) Path Lengths
 Size 100 400 900 100 400 900

 Set 1 SPT 100 100 100 100 100 100
 Greedy 97 91 92 117 113 109
 SBPT 91 92 92 100 100 100

 Set 2 SPT 100 100 100 100 100 100
 Greedy 79 83 83 124 113 109
 SBPT 83 89 88 100 100 100

 Set 3 SPT 100 100 100 100 100 100
 Greedy 117 106 102 114 113 107
 SBPT 95 95 94 100 100 100

 Set 4 SPT 100 100 100 100 100 100
 Greedy 117 103 102 115 112 106
 SBPT 94 95 94 100 100 100

 Set 5 SPT 100 100 100 100 100 100
 Greedy 382 237 212 110 110 106
 SBPT 100 100 99 100 100 100

Table 3 - The results from experiments #1 through #5

 Bandwidth (%) Path Lengths
 Size 100 400 900 100 400 900

 Set 6 SPT 100 100 100 100 100 100
 Greedy 95 91 91 133 115 108
 SBPT 90 92 92 100 100 100

 Set 7 SPT 100 100 100 100 100 100
 Greedy 77 84 82 120 113 108
 SBPT 84 89 88 100 100 100

 Set 8 SPT 100 100 100 100 100 100
 Greedy 129 111 103 123 110 108
 SBPT 95 95 94 100 100 100

 Set 9 SPT 100 100 100 100 100 100
 Greedy 112 110 104 112 110 106
 SBPT 95 95 94 100 100 100

 Set 10 SPT 100 100 100 100 100 100
 Greedy 342 203 161 121 116 110
 SBPT 98 97 99 100 100 100

Table 4 - The results from experiments #6 through #10

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

%
 fr

om
 S

PT SPT (BWC)
Greedy (BWC)
SBPT (BWC)

Figure 5(a) - Difference for experiment #1 (BWCA)

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

%
 fr

om
 S

PT SPT (PL)
Greedy (PL)
SBPT (PL)

Figure 5(b) - Difference for experiment #1 (PLA)

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

 %
 fr

om
 S

PT SPT (BWC)
Greedy (BWC)
SBPT (BWC)

Figure 6(a) - Difference for experiment #2 (BWCA)

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

 %
 fr

om
 S

PT SPT (PL)
Greedy (PL)
SBPT (PL)

Figure 6(b) - Difference for experiment #2 (PLA)

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

%
 fr

om
 S

PT SPT (BWC)
Greedy (BWC)
SBPT (BWC)

Figure 7(a) - Difference for experiment #3 (BWCA)

60%
70%
80%
90%

100%
110%
120%
130%

100 400 900

Number of nodes

%
 fr

om
 S

PT SPT (PL)
Greedy (PL)
SBPT (PL)

Figure 7(b) - Difference for experiment #3 (PLA)

The following observations are made from the
experimental results for both the Exponential and
Bounded-Pareto distributed session holding times:

1. Except in the networks with high utilization, the
SBPT algorithm demonstrates the same shortest
path lengths as the SPT algorithm and the least
bandwidth consumption of the three algorithms.

2. For the network with high utilization, the SBPT
algorithm works better than the SPT algorithm
(less bandwidth consumption and the same
shortest path length), but compared to the
Greedy algorithm the SBPT algorithm consumes
4% to 6% more bandwidth. The SBPT
algorithm results in path length shortened by 9%
to 24% compared to the Greedy algorithm.

3. We observe the tradeoff relationship between the
SPT and the Greedy algorithms in the network
with high utilization: the Greedy algorithm
consumes the least bandwidth, but results in the
longest path length of the three algorithms.

4. When the utilization is very low, the
performance of the SBPT algorithm is roughly
equal to that of the SPT algorithm. The Greedy
algorithm results in very inefficient paths at low
utilization.

5. The performance of the three algorithms depends
more on the average node utilization than on the
absolute values of the average session holding
time and the session initiation arrival rate.

6. Summary

In this paper, the Shortest Best Path Tree (SBPT)
algorithm has been developed and evaluated. The SBPT
algorithm is a distributed, polynomial time algorithm that
solves a trade off problem between the SPT and Greedy
algorithms. The SPT algorithm guarantees the shortest
path for each receiver, while it generally results in larger
bandwidth consumption than the Greedy algorithm. On
the other hand, the Greedy algorithm generally results in
larger average path length, but usually with less
bandwidth consumption than the SPT algorithm. The
SBPT algorithm utilizes partially established paths for
other multicast receiver nodes to minimize bandwidth
consumption. To find such partial paths, the SBPT
algorithm uses two variables, M and D. The variable M is
the length of a partial path, while D is the length of the
new path to reach the partial path. By using these two
variables the SBPT algorithm solves the tradeoff problem.
From results obtained from simulation experiments, we
can make the following conclusions: 1) for networks with
medium and low utilization the SBPT algorithm consumes
the least amount of bandwidth while it achieves the same
shortest path length as achieved by the SPT algorithm, 2)
the Greedy algorithm is efficient in bandwidth
consumption only when the utilization is high, and 3) the
SPT algorithm works best when the utilization is very
low. As would be expected, for networks with very low
utilization, the performance of the SBPT algorithm is
about the same as that of the SPT algorithm. The
complexity of the SBPT algorithm was shown to be the
same order as that of combined cost of the SPT and
Greedy algorithms.

References

[1] K. Almeroth and M. Ammar, “Multicast Group

Behavior in the Internet’s Multicast Backbone
(Mbone),” IEEE Communications Magazine,
Vol. 35, No. 6, pp. 124 - 129, June 1997.

[2] K. Bharath-Kumar, and J. Jaffe, “Routing to
Multiple Destinations in Computer Networks,”
IEEE Transactions on Communications,
Vol. COM-31, No. 3, pp. 343 - 351, March 1983.

[3] T. Billharts, B. Cain, E. Farry-Goudreau, B. Rieg,

and S. Batsell, “Performance and Resource Cost
Comparisons for CBT and PIM Multicast Routing
Protocols,” IEEE Journal on Selected Areas in
Communication, Vol. 15, No. 3, pp. 304 - 315, April
1997.

[4] J. Cho, and J. Breen, “Analysis of the Performance

of Dynamic Multicast Routing Algorithms,”
submitted to ICCCN, June 1998. URL: http://cs-
tr.cs.cornell.edu:80/Dienst/UI/1.0/Display/xxx.cs.NI
/9809102.

[5] M. Crovella, M. Harchol-Balter, and C. Murta,

“Task Assignment in a Distributed System:
Improving Performance by Unbalancing Load,”
Technical Report BUCS-TR-1997-018, October
1997.

[6] S. Deering and D. Cheriton, “ Multicast Routing in

Datagram Internetworks and Extended LANs,”
ACM Transactions on Computer Systems, Vol. 8,
No. 2, pp. 85 - 111, May 1990.

[7] C. Diot, W. Dabbous, and J. Crowcroft, “Multipoint

Communication: A Survey of Protocols, Functions,
and Mechanisms,” IEEE Journal on Selected Areas
in Communications, Vol. 15, No. 3, pp. 277 - 290,
April 1997.

[8] H. Fujinoki and K. Christensen, “A Routing

Algorithm for Dynamic Multicast Trees with End-
to-End Path Length Control,” to appear in Computer
Communications.

[9] R. Govindan and A. Reddy, “An Analysis of Internet

Inter-Domain Topology and Route Stability,”
Proceedings of IEEE INFOCOM, pp. 850 - 857,
1997.

[10] M. Hofmann, “A Generic Concept for Large-Scale

Multicast,” International Zurich Seminar on Digital
Communication, Broadband Communications:
Lecture Notes in Computer Science, No. 1044,
Editor: B. Plattner, Springer Verlag, February 1996.

[11] V. Kompella, J. Pasquale, and G. Polyzos,

“Multicasting for Multimedia Applications,”

Proceedings of IEEE INFOCOM, pp. 2078 - 2085,
1992.

[12] C. Noronha and F. Tobagi, “Optimum Routing of

Multicast Streams,” Proceedings of IEEE
INFOCOM, pp. 865 - 873, 1994.

[13] G. Rouskas and I. Baldine, “Multicast Routing with

End-to-End Delay and Delay Variation Constraints,”
Proceedings of IEEE INFOCOM, pp. 353 - 360,
1996.

[14] B. Waxman, “Routing of Multipoint Connections,”

IEEE Journal of Selected Areas in Communications,
Vol. 6, No. 9, pp. 1617 - 1622, December 1988.

[15] L. Wei and D. Estrin, “The Tradeoffs of Multicast

Trees and Algorithms,” Proceedings of the Fourth
International Conference on Computer
Communications and Networks, pp. 150 - 157,
September 1995.

[16] P. Winter, “Steiner Problem in Networks: A

Survey,” Networks, Vol. 17, No. 2, pp. 129 - 167,
1987.

[17] Q. Zhu, M. Parsa, and J. Garcia-Luna-Aceves, “A

Source-Based Algorithm for Delay-Constrained
Minimum-Cost Multicasting,” Proceedings of IEEE
INFOCOM, pp. 377 - 385, 1995.

	2. Existing Multicast Algorithms
	3. The SBPT Algorithm
	4. Evaluation of the SBPT Algorithm
	6. Summary

