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Abstract 
 
This paper presents the new Shortest Best Path Tree 
(SBPT) algorithm for multicast trees.  The SBPT 
algorithm establishes and maintains dynamic multicast 
trees which maximize the bandwidth to be shared by 
multiple receivers and simultaneously guarantee the 
shortest paths for each receiver node.  The SBPT 
algorithm is a distributed algorithm with cost in the same 
order as the sum of the shortest path tree (SPT) algorithm 
and the Greedy algorithm.  The SBPT algorithm reduces 
bandwidth consumption by utilizing partial paths already 
established for other multicast receiver nodes.  The SBPT 
algorithm finds such partial paths when multiple shortest 
paths exist.  Simulation experiments comparing the SBPT 
and SPT algorithms show that the SBPT algorithm 
reduces bandwidth consumption by 5% to 17% when 
node utilization is greater than approximately 25% and 
always achieves the same shortest path lengths. 

 
 

1. Introduction 
 

Different from single-cast applications, the paths for 
a multicasting application are generally established as a 
tree, called a multicast tree, which contains a single 
sending node (the sender) and multiple receiving nodes 
(the receivers).  A good multicast routing algorithm 
should be able to control end-to-end delay and bandwidth 
consumption in order to effectively support real-time 
video and audio applications (see, for example, [10], [11], 
and [17]).  In addition, a good multicast routing algorithm 
should be implemented in a distributed fashion and be 
efficient in execution given rapidly changing populations 
of receivers (see [15]). 

Three different types of multicast trees are described 
in [7]; Steiner trees, center-based trees, and source-based 
trees. Center-based and source-based trees categorize the 
place where the routing operation is initiated.  These trees 
are generally represented by a Shortest Path Tree (SPT) 
(see [3], [6], and [12]) or a tree generated by the Greedy 

algorithm (see [14]).  A Steiner tree, or Steiner Minimal 
Tree (SMT), is the multicast tree that minimizes total path 
cost.  An algorithm to find an exact SMT belongs to the 
class NP-complete, hence heuristic algorithms have been 
studied (see [2], [13] and [16]).  However, due to their 
high algorithm complexity, routing algorithms based on 
SMT heuristics are not popular in actual use. 

One of the advantages of the SPT algorithm is that it 
always guarantees the shortest path from each receiver 
node to the sender.  However, the SPT algorithm cannot 
explicitly route paths so that multicast paths are shared by 
as many receiver nodes as possible.  The Greedy 
algorithm, however, does attempt to share paths to 
maximize bandwidth sharing.  The Greedy algorithm 
develops a multicast tree by connecting each new receiver 
node to its nearest multicast receiver that has been already 
connected to the sender of the target multicast stream.  
However, the Greedy algorithm does not consider path 
length for each receiver node, resulting in longer path 
length than that of the SPT algorithm.  This tradeoff 
between path length (minimized by the SPT algorithm) 
and bandwidth consumption (addressed by the Greedy 
algorithm) is solved in this paper by a new multicast 
routing algorithm called the Shortest Best Path Tree 
(SBPT) algorithm.  Given multiple shortest paths between 
a receiver and a sender, the SBPT algorithm utilizes 
partial paths already established for other multicast 
receiver nodes.  This guarantees that path length is the 
same as from the SPT algorithm, but bandwidth 
consumption is reduced. 

The remainder of this paper is organized as follows.  
Section 2 describes the SPT and the Greedy multicast 
routing algorithms.  A tradeoff relationship between the 
two algorithms is also described.  In Section 3 the 
Shortest Best Path Tree (SBPT) algorithm is introduced.  
Section 4 describes simulation experiments comparing the 
SPT, Greedy, and SBPT algorithms.  In Section 5, the 
experimental results are presented and observations are 
made based on the simulation results.  The final section is 
a summary and is followed by references. 
 



 

 

2. Existing Multicast Algorithms 
 

It is assumed that multicast sessions have a single 
sender and that the root of a multicast tree is always the 
sender of a multicast session (therefore the root is not 
fixed at a specific node).  The second assumption is 
made since it has been shown that a fixed root approach 
(i.e., where the root is not necessarily the sender) can be 
very inefficient (see [4]).  Figure 1 is an example of such 
a multicast tree where the number adjacent to each edge 
represents a hop count and each node, except for the 
root of the tree, represents a receiver (labeled as v1, v2, 
… , v13).  Each hop is assumed to consume a unit of 
bandwidth.  We define TotalB  to be the total amount of 
bandwidth consumed by a multicast tree for a multicast 
session at a given time.  We define TotalP  to be the total 
path length - the sum of the hops from all of the 
multicast receivers to the sender.  A joining node is a 
node that is being connected to the sender. Neighbor 
nodes are multicast receivers that have already been 
connected to the sender.  Neighbor nodes include the 
following two types of nodes; 1) the multicast receivers 
that are receiving a multicast stream from a sender, and 
2) the multicast receivers that are not receiving the 
multicast stream but are on a path already created from a 
receiver node to the sender.  
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Figure 1 - Example network 
 

The SPT algorithm is a multicast tree algorithm that 
minimizes path length by connecting each receiver node 
to the sender using the shortest path.  Figure 2(a) shows 
an example of the resulting multicast tree after the SPT 
algorithm is applied to the network of Figure 1, 
assuming that nodes v1, v2, v13, v9, v10, v12, v11, v8, 
v6, v7, v4, v3, and v5 are connected in that order.  The 
resulting multicast tree has BTotal = 50, which is the sum 
of the hop counts of all the links used for connecting 

nodes.  The total path length, PTotal = (6 + 2 + 5 + 10 + 4 
+ 8 + 11 + 12 + 3 + 6 + 9 + 10 + 4) = 90, with each term 
representing the path length for v1 to v13, respectively.   
Using the SPT algorithm, v7 may choose a shortest path 
to the sender through v6 and v5 based on v7’s shortest 
path calculation.  The Greedy algorithm always connects 
a joining node to its nearest neighbor node.  If such a 
neighbor node does not exist, or if the sender is the 
nearest neighbor node, then the joining node is 
connected to the sender using the shortest path.  Figure 
2(b) shows the resulting multicast tree after the Greedy 
algorithm is applied to the graph of Figure 1 and it has 
BTotal = 40 and PTotal = 153.   
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Figure 2(a) - Multicast tree from SPT algorithm  
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Figure 2(b) - Multicast tree from Greedy algorithm 
 

We can see a tradeoff relationship between BTotal  
and PTotal .  The multicast trees generated by the SPT 
algorithm generally have a larger BTotal than those 
created by the Greedy algorithm.  This is because the 
SPT algorithm does not find paths that necessarily share 



 

 

bandwidth by multiple receivers.  The Greedy algorithm 
reduces the bandwidth consumed.  However, a problem 
in the Greedy algorithm is that it routes paths based on 
the nearest neighbor node.  Therefore, resulting 
multicast trees may not be efficient in path length.  
Waxman’s weighted greedy algorithm has been 
proposed as a solution to the problem of excessive path 
length (see [7]).  However, the weighted greedy 
algorithm requires the existence of special fixed nodes 
called “owner nodes” and the efficiency of its routing 
depends on how these owner nodes are assigned.  There 
is no systematic method to assign these nodes.  

 
3. The SBPT Algorithm 
 

The Shortest Best Path Tree (SBPT) algorithm is 
proposed as a solution for the tradeoff problem 
discussed in Section 2 and is a middle ground between 
the SPT and Greedy algorithms.  In this paper, distance 
between any two nodes is represented by the hop count 
between them.  The following two variables are used in 
the SBPT algorithm. 

• M i s( , ) is the shortest distance from a node i to a 
sender s. 

• D j i( , ) is the distance of the shortest path 
between two nodes, a joining node j and a 
neighbor node i. 

The SBPT algorithm is shown in Figure 3.  The 
algorithm takes three input parameters; the node ID of 
the joining node, j, the node ID of the sender, s, and the 
directed graph G. 

Assuming that the receivers are connected to the 
sender in the same order as in the example in Section 2 
and Figure1, the resulting multicast tree after the SBPT 
algorithm is applied is shown in Figure 4.  This graph is 
created as follows.  First, node v1 is connected to the 
sender using the shortest path through v2.  Node v2 has 
only one shortest path, so it is connected to the sender 
using the shortest path.  Similarly, node v13, v9, v10, 
v11, and v12 have only one shortest path and they are all 
connected by their shortest paths.  When node v8 is 
being connected, it sees v11 as its nearest neighbor on 
one of its four shortest paths 
( M D Mv s v v v s( , ) ( , ) ( , )8 8 11 11= + ) and therefore, v8 is 
connected to v11.  When node v7 is being connected, it 
sees v8 as its nearest neighbor.  However, v8 is not on 
one of v7’s shortest path to the sender 
( M D Mv s v v v s( , ) ( , ) ( , )7 7 8 8< + ).  The nearest neighbor node 
of v7 on one of v7’s shortest paths is v2 
( M D Mv s v v v s( , ) ( , ) ( , )7 7 2 2= + ).  Therefore, v7 is connected 
to v2.  Node v6 sees itself as a neighbor node on its 

shortest path (i.e., D v v( , )6 6 0= ), and it uses the shortest 
path established by v7.  Node v4 sees v6 as its nearest 
neighbor on one of its three shortest paths and is 
connected to v6.  Similar to node v6, node v3 sees itself 
as a neighbor node and uses the shortest path to the 
sender through v2.  Finally, v5 has only one shortest path 
and is connected to the sender using this path.  The 
resulting multicast tree has BTotal = 41 and PTotal  = 90. 

 

 SBPT algorithm(j,s,G) 
 1.  NearestDistance = ∞ 
 2.  Apply an SPT algorithm to graph 
     G with as j its root to  
     determine the shortest distance 
     from j to each node v ∈  G  
     and store the shortest distance 
     for each v in D j v( , )   

 3.  for all i ∈  v 
 4.    if (i is a neighbor of j) 
then 
 5.      if ( ),(),(),( siijsj MDM += ) then 

 6.        if ( D j i( , ) <Nearest) then 

 7.          NearestDistance = D j i( , )  

 8.          NearestNeighbor = i 
 9.        end-if 
 10.     end-if 
 11.   end-if 
 12. end-for 
 13. Establish shortest path between 
     j and i 
 14. end-SBPT 

 
Figure 3 - The SBPT algorithm 
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Figure 4 - Multicast tree from SPBT algorithm 
 



 

 

The total cost of each algorithm can be subdivided 
into three categories.  They are the costs for 
initialization, external operation, and internal operation.  
The cost for initialization is required in a network only 
once when a network is first configured.  The cost for 
external operation is required at each joining node to get 
information from other nodes when a joining node tries 
to find its connecting point.  The difference from the 
initialization cost is that the external cost is required at 
each joining node each time it joins a multicast session.  
The internal cost is the same as the external cost except 
that it is the cost of operations performed inside of a 
joining node to decide a joining node’s connecting point 
based on the information collected by the external 
operation. 

The SPT algorithm takes at least ( )2nO  time where 
n is the number of receiver nodes in a network, assuming 
the Bellman-Ford algorithm to determine the shortest 
path from the sender to each node in a network.  There is 
no external operation and only a constant time for the 
internal cost is required.  The Greedy algorithm does not 
require operations for initialization, it only needs to find 
the nearest neighbor node for each joining node.  Using 
the Bellman-Ford algorithm to create a shortest path tree 
with a joining node as the root, it takes at 
least )( 2nO time to determine the nearest neighbor node.  

The Greedy algorithm takes at least )( 2nO time for the 
external cost to find neighbor nodes and their distance 
and )(nO time for the internal operations to determine 
the nearest node in the found neighbor nodes (using a 
linear search).  The SBPT algorithm takes )( 2nO time 
for initialization since it requires determination of a 
shortest path for each node in a network.  For external 
operation, the SBPT algorithm needs to locate neighbor 
nodes for a joining node and their shortest distance to 
the joining node.  This operation is the same as in the 
Greedy algorithm (line 2 in Figure 3).  The internal 
operation takes )(nO time, where n is the number of the 
neighbor nodes (line 3 in Figure 3).  Table 1 summarizes 
the costs for the three algorithms, which shows that the 
total cost of the SBPT algorithm is in the same order as 
the sum of the SPT and the Greedy algorithm. 

 
 SPT Greedy SBPT 

Initial cost n2       0 n2 

External cost       0 n2 n2 

Internal cost       1       n       n 

Total cost n2+1 n+n n2+n2+1 

 
Table 1 - Algorithm complexities 

 
4. Evaluation of the SBPT Algorithm 
 

The SPT, Greedy, and SBPT algorithms were 
compared using simulation methods.  The simulation 
model was implemented as a time-based simulation 
where all statistics are collected at each discrete clock 
tick.  All continuously distributed random time values 
are truncated to their corresponding integer values.  The 
major variables in the simulation model are network size 
and multicast receiver behavior.  The random network 
model introduced by Billharts et al. (see [3]) was used.  
This network model assumes a grid-patterned square 
network, where a node representing a multicast receiver 
site is located only at each intersection of the grid in a 
network.  Thus, the network model is a non-hierarchical, 
flat structure.  It is predicted that the future Internet will 
tend towards a non-hierarchical, flat network as the 
number of domains increases (see [9] for more details).  

The number of nodes in a network, 2N , represents 
the network size where N is the number of nodes in each 
edge of a square network.  To assign links between 
nodes, the link assignment model proposed by Waxman 
(see [14]) is applied in which the probability of there 
being an edge between nodes u and v is given by: 

 
( ) ( )LdevuP βγ −⋅=,               (1) 

 
where d and L are the Euclidean distance and maximum 
possible link distance between the nodes u and v.  The 
parameters, γ ( 1>γ ), and β ( 1≤β ), control the 
average link distance between u and v. 

A receiver’s activities are assumed to be either a) 
joining a multicast tree, or b) disconnecting itself from 
the multicast tree.  The period between the beginning of 
a connection and the subsequent disconnection is the 
session holding time.  Poisson arrivals are assumed for 
session join requests and both exponential and Bounded-
Pareto (BP) distributed session holding times are 
assumed.  Data set numbers correspond to the 
experiment number.  For data sets 1 through 5, 
exponentially distributed session holding times are 
modeled and for data sets 6 through 10 Bounded-Pareto 
distributed session holding times are modeled.  For 
modeling session holding time, Almeroth suggests using 
the Zipf distribution (see [1]), which is the discrete 
version of Pareto distribution (see [5]).  The BP 
distribution models “heavy tailed” session holding times.  
The probability mass function for ( )α,,kpBP  is, 
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where k is the minimum duration of a session, p the 
maximum session holding time, and α a shape 
parameter.  BP random variables, X, can be generated 
using the inverse transform method as, 
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where, U is uniformly distributed random variable from 
0 to 1.  

The simulation model measures the average 
bandwidth consumption per minute ( ABWC ), and the 
average path length per connection ( APL ) for a 
simulation of T minutes, 
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where cb is the amount of bandwidth consumed in the 
network at clock tick c, il  is the path length of the 
receiver node i at clock tick c ( il = 0 if node i is not 
connected), nc  is the number of receiver nodes joined at 
the clock tick c, and n is the number of nodes in the 
network.  

A range of network sizes, network connectivity, 
session holding times, and session initiation arrival rates 
were considered.  For all the experiments, session 
requests were assumed to be Poisson.  For each of the 
ten experiments, three different network sizes of N 2 = 
100, 400, and 900 were used to model small, medium, 
and large networks.  A simulation time of T = 28800 
minutes (representing twenty days) was used for all 
experiments.  Table 2 summarizes the key parameters 
for each data set.  Average node utilization is defined to 
be the ratio of session holding time to total elapsed time 
at a receiver node.  We classify each data set based on 
its average node utilization as “high utilization” is 
average node utilization over 75%, “medium utilization” 

is about 50%, “low utilization” is about 25%, and “very 
low utilization” is about 5%.  Data sets 1 and 6 simulate 
long-lived receiver sessions.  The parameters for these 
data sets are taken from statistics collected for the 
NASA STS-63 space shuttle audio sessions from 
February 3 to February 11, 1995 on the Mbone 
(Multicast Backbone), while those for the short-lived 
session (data set 2 and 7) are based on the statistics 
collected for Free BSD Lounge also on Mbone (see [1]).  
Data sets 3 and 8 are artificially created to see the effects 
from longer inter-session time (session request inter-
arrival time is doubled from data set 1 and 6), while data 
sets 4 and 9 model shorter session holding time (session 
holding time halved from data set 1 and 6).  Data sets 5 
and 10 were created to see the effects of very low node 
utilization (session request interval time multiplied by 
six while session holding time halved from data set 1 
and 6).  The three parameters for BP distribution are 
chosen as follows.  First, α was chosen to be 0.8 to 
achieve high variance in the resulting session holding 
time (standard deviations range from 95 minutes to 386 
minutes in the five data sets).  The maximum session 
holding time, p, was fixed to be 2880 minutes, assuming 
that a receiver will not stay connected for more than two 
days.  The minimum session holding time, k, was then 
adjusted to achieve the same mean as its corresponding 
set in exponential distribution (see Table 2 for actual 
values).  We chose k to control the mean where the mean 
for a BP random variable X is,  
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  1 35.0 67.5 43.8 ------ ------ ----- 
  2  258.0     7.5 97.8 ------ ------ ----- 
  3 35.0 135.1 25.3 ------ ------ ----- 
  4 17.5 67.6 25.8 ------ ------ ----- 
  5 17.5 405.4   4.2 ------ ------ ----- 
  6 34.7 67.6 45.9 0.8   2.9 2880.0 
  7  258.0   7.5 97.8 0.8 48.2 2880.0 
  8 34.7 135.1 24.2 0.8   2.9 2880.0 
  9 17.2 67.6 23.9 0.8   1.2 2880.0 
10 17.2 405.4   3.8 0.8   1.2 2880.0 

 
Table 2 - Description of the experimental data sets 



 

 

 
5. Experimental Results 
 

Table 3 shows the results from experiments 1 through 
5.  The results from experiment 1 show that the Greedy 
algorithm saves bandwidth consumption by 3% to 9% 
from the SPT algorithm, while the average path length is 
9% to 17% longer than those in the SPT algorithm.  The 
SBPT algorithm saves bandwidth consumption by about 
8% from the SPT algorithm while it achieves the same 
shortest average path length.  Experiment 2 shows that the 
Greedy algorithm achieves the least bandwidth 
consumption, while its average path length is longer by 
9% to 24%.  The SBPT algorithm saves 11% to 17% of 
bandwidth consumption of the SPT algorithm, again with 
the shortest average path length.  Experiments 3 and 4 
show similar results, where the Greedy algorithm saves 
2% to 17% of bandwidth from the SPT algorithm, while 
the increase in the average path length is about 6% to 
15%.  The SBPT algorithm saves bandwidth consumption 
by about 5% from the SPT algorithm.  For experiment 5, 
the SBPT algorithm is about the same as the SPT 
algorithm, while the Greedy algorithm consumes more 
bandwidth than the SPT algorithm by 112% to 282%. 

Figures 5, 6, and 7 show the relative difference of the 
three algorithms for experiments 1, 2, and 3.  Experiments 
6 through 10 show similar results as seen in experiments 1 
through 5, and the results are shown in Table 4.  The only 
exceptions are that they result in larger bandwidth 
consumption in a large network with low utilization and 
longer path length in a small network with high 
utilization. 
 

  Bandwidth (%)  Path Lengths 
   Size 100 400 900 100 400 900 

 Set 1  SPT 100 100 100 100 100 100 
  Greedy 97 91 92 117 113 109 
  SBPT 91 92 92 100 100 100 

 Set 2  SPT 100 100 100 100 100 100 
  Greedy 79 83 83 124 113 109 
  SBPT 83 89 88 100 100 100 

 Set 3  SPT 100 100 100 100 100 100 
  Greedy 117 106 102 114 113 107 
  SBPT 95 95 94 100 100 100 

 Set 4  SPT 100 100 100 100 100 100 
  Greedy 117 103 102 115 112 106 
  SBPT 94 95 94 100 100 100 

 Set 5  SPT 100 100 100 100 100 100 
  Greedy 382 237 212 110 110 106 
  SBPT 100 100 99 100 100 100 

 

Table 3 - The results from experiments #1 through #5  
 

  Bandwidth (%) Path Lengths 
   Size 100 400 900 100 400 900 

 Set 6  SPT 100 100 100 100 100 100 
  Greedy 95 91 91 133 115 108 
  SBPT 90 92 92 100 100 100 

 Set 7  SPT 100 100 100 100 100 100 
  Greedy 77 84 82 120 113 108 
  SBPT 84 89 88 100 100 100 

 Set 8  SPT 100 100 100 100 100 100 
  Greedy 129 111 103 123 110 108 
  SBPT 95 95 94 100 100 100 

 Set 9  SPT 100 100 100 100 100 100 
  Greedy 112 110 104 112 110 106 
  SBPT 95 95 94 100 100 100 

 Set 10  SPT 100 100 100 100 100 100 
  Greedy 342 203 161 121 116 110 
  SBPT 98 97 99 100 100 100 

 
Table 4 - The results from experiments #6 through #10 
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Figure 5(a) - Difference for experiment #1 ( BWCA ) 
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Figure 5(b) - Difference for experiment #1 ( PLA ) 
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Figure 6(a) - Difference for experiment #2 ( BWCA ) 
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Figure 6(b) - Difference for experiment #2 ( PLA ) 
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Figure 7(a) - Difference for experiment #3 ( BWCA ) 
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Figure 7(b) - Difference for experiment #3 ( PLA ) 
 

The following observations are made from the 
experimental results for both the Exponential and 
Bounded-Pareto distributed session holding times: 

1. Except in the networks with high utilization, the 
SBPT algorithm demonstrates the same shortest 
path lengths as the SPT algorithm and the least 
bandwidth consumption of the three algorithms. 

2. For the network with high utilization, the SBPT 
algorithm works better than the SPT algorithm 
(less bandwidth consumption and the same 
shortest path length), but compared to the 
Greedy algorithm the SBPT algorithm consumes 
4% to 6% more bandwidth.  The SBPT 
algorithm results in path length shortened by 9% 
to 24% compared to the Greedy algorithm. 

3. We observe the tradeoff relationship between the 
SPT and the Greedy algorithms in the network 
with high utilization: the Greedy algorithm 
consumes the least bandwidth, but results in the 
longest path length of the three algorithms. 



 

 

4. When the utilization is very low, the 
performance of the SBPT algorithm is roughly 
equal to that of the SPT algorithm.  The Greedy 
algorithm results in very inefficient paths at low 
utilization. 

5. The performance of the three algorithms depends 
more on the average node utilization than on the 
absolute values of the average session holding 
time and the session initiation arrival rate. 

 
6. Summary 
 

In this paper, the Shortest Best Path Tree (SBPT) 
algorithm has been developed and evaluated.  The SBPT 
algorithm is a distributed, polynomial time algorithm that 
solves a trade off problem between the SPT and Greedy 
algorithms.  The SPT algorithm guarantees the shortest 
path for each receiver, while it generally results in larger 
bandwidth consumption than the Greedy algorithm.  On 
the other hand, the Greedy algorithm generally results in 
larger average path length, but usually with less 
bandwidth consumption than the SPT algorithm.  The 
SBPT algorithm utilizes partially established paths for 
other multicast receiver nodes to minimize bandwidth 
consumption.  To find such partial paths, the SBPT 
algorithm uses two variables, M and D.  The variable M is 
the length of a partial path, while D is the length of the 
new path to reach the partial path.  By using these two 
variables the SBPT algorithm solves the tradeoff problem.  
From results obtained from simulation experiments, we 
can make the following conclusions: 1) for networks with 
medium and low utilization the SBPT algorithm consumes 
the least amount of bandwidth while it achieves the same 
shortest path length as achieved by the SPT algorithm, 2) 
the Greedy algorithm is efficient in bandwidth 
consumption only when the utilization is high, and 3) the 
SPT algorithm works best when the utilization is very 
low.  As would be expected, for networks with very low 
utilization, the performance of the SBPT algorithm is 
about the same as that of the SPT algorithm.  The 
complexity of the SBPT algorithm was shown to be the 
same order as that of combined cost of the SPT and 
Greedy algorithms.  
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