
Deadlock-free Routing Based on Ordered Links

Dah Ming Chiu, Miriam Kadansky, Radia Perlman, John Reynders†∗,
Guy Steele, Murat Yuksel‡†

Sun Microsystems Laboratories, Burlington MA
dahming.chiu@sun.com, miriam.kadansky@sun.com, radia.perlman@sun.com, guy.steele@sun.com

Abstract

This paper describes a new class of deadlock-free rout-
ing algorithms for irregular networks based on ordered
links. In this case, the links are ordered by partitioning them
into a set oflayers, each layer containing a spanning tree
(when possible). Deadlock free routes can then be derived
by using links with non-decreasing order. The deadlock-
freedom property is proved. Two different implementations
of the routing algorithm are studied. The resultant per-
formance of these algorithms is then compared to other
known algorithms: the shortest-path algorithm (which may
result in deadlocks) and the up*/down* algorithm. Various
performance metrics are considered, including path-length,
network capacity, fault tolerance and time of computation.
We argue that network capacity is the most important met-
ric to optimize. It is shown that the proposed algorithms are
promising since they usually achieve higher network capac-
ity than up*/down*, while they perform only slightly worse
than up*/down* in other metrics.

1. Introduction

Recently interest has increased in building large-scale
data center computer systems interconnected by a switched
fabric (network). Infiniband(tm)[2] is one example of an
industrial standard of high-speed interconnect for this pur-
pose.

It is common in such networks to use hop-by-hop flow
control rather than dropping packets. Therefore it is nec-
essary for routing to be *deadlock-free*. In traditional,
e.g., IP-based networks, routing is just required to be loop-
free, which means that any individual route is loop-free.
Deadlock-freedom is an additional requirement whereby

∗†Reynders contributed to this work while he was at Sun Labs. He is
now at Celera Genomics.

†‡Yuksel contributed to this work while he was an intern at Sun Labs
during the summer of 2001. He is now a graduate student at Rensselaer
Polytechnic Institute.

routes which are individually loop-free do not interact in
a way that can cause deadlocks without dropping packets.

Since the routing table is computed centrally, there is
the opportunity to make use of multiple (equal-cost) paths
for load-balancing, maximizing overall system throughput.
This paper describes a new routing algorithm that addresses
these requirements.

The organization of the paper is as follows. In section 2,
we first discuss relevant past work on this topic. In section
3, we formally define the deadlock condition. In section 4,
we describe our algorithm and various methods of computa-
tion. Section 5 contains a performance evaluation of our al-
gorithm, and comparison with other algorithms in terms of
average path length and computation time, for a set of test
topologies. In section 6, we discuss how to make use of al-
ternative (equal-cost) paths for network optimization. This
step can be applied to various routing algorithms if they are
computed centrally. Finally, we conclude and discuss future
work.

2. Past Work on Deadlock-free Routing

Earlier approaches to avoid deadlocks rely on using reg-
ular topologies (such as hypercube or torus). Simple and
fixed routing rules are known to be deadlock-free for such
topologies and can be readily applied. For a (random) ir-
regular topology, however, a deadlock-free routing function
must be computed by a routing algorithm, and there are very
few such algorithms known.

One important deadlock-free routing algorithm is the
up/down algorithm [6]. The up/down algorithm first estab-
lishes adirection, eitherup or downfor each unidirectional
link1 in the network. Then the deadlock-free routing is com-
puted based on the constraint that each route must not con-
tain adownlink before anyup link. An important property
of the up/down algorithm is that it can be computed in a
distributed fashion, and it is very simple.

1In most networks, links can be used for bidirectional communication.
Each bidirectional link should be considered as two unidirectional links for
our discussions.

1



Subsequently, [10] describes a technique that uses alter-
native routes and relies on one subset of the alternatives (for
each source and destination) to be deadlock-free to guar-
antee the routing function to be deadlock-free. This tech-
nique can be used to optimize the performance of known
deadlock-free routes. This technique, however, requires the
switches to support multi-path forwarding, which is not uni-
versally true. For example, Infiniband does not support
multi-path forwarding by the switches. In this paper, we
assume switches aredumband only hold one next-hop for
each destination.

Dally and Seitz in their classic paper [4] established a
necessary and sufficient condition for deadlock-free routing
- there must be no cycles in the channel dependency graph
(to be defined in 3.2 below). In the proof, they deduced
that an acyclic channel dependency graph implies a total or-
dering of channels (links), and deadlock cannot result when
each route uses channels in ascending order.

Our routing algorithm applies and extends the Dally-
Seitz result to avoid deadlocks, and in addition searches
for routes that optimize other metrics, such as shortest path
length and maximum capacity.

3. Basic Concepts

3.1. Network and Routing Table

The network is a directed graph denoted by

Gnetwork = (N, C)

whereN is a set of nodes andC is a set of (unidirectional)
links 2 (called channels in [5]). A routing algorithm com-
putes anN×N routing table, R, whereRij stores the link
used by nodei as the first hop in its route to nodej. When
alternative routes are considered, eachRij stores the list of
alternative first hops on equal-distance routes to nodej. The
routing table is equivalent to the routing function in [5]. A
companion matrix toR is the (shortest) distance matrixS,
where each entrySij is the distance between nodei andj
by using the path according to the routing table.

A basic requirement is thatR must be loop-free. In-
tuitively, a sufficient condition to ensure loop-freedom is
to only allow shortest path routes inR. There exist
many algorithms to compute shortest paths, for example,
the Bellman-Ford algorithm, Dijkstra’s algorithm and the
Floyd-Warshall algorithm[3].

Deadlock-freedom is a new requirement onR. This is
developed in the next section.

2Throughout this paper, we assume each link has a unit cost. It is not
hard to extend most of our results to the case where links have different
positive costs since they are equivalent to multiple unit cost links.

Figure 1. Example topology and routes to il-
lustrate a deadlock condition

3.2. The Deadlock Condition

Each node has a finite number of buffers for each out-
going link. These buffers make each link two unidirec-
tional links (in opposite directions). A deadlock can oc-
cur when a number of routes, each traversing more than
one link, have paths overlapping to form a cycle. Consider
Figure 1 for example. There are four nodes, 1, 2, 3 and
4, connected by eight links (1,2), (2,1), (2,3), (3,2), (3,4),
(4,3), (4,1) and (1,4). The four routes 1→2→3, 2→3→4,
3→4→1, 4→1→2 are all minimum in path length, but form
a cycle and hence can produce a deadlock. In Figure 1,
only the links utilized by the routes are shown, together
with the buffers associated with the links. The number in
each buffer indicates the destination node for all the pack-
ets in the buffer during the deadlock condition. Since all
the buffers are filled and none of the links can make any
progress in forwarding packets, we have a deadlock. This is
a standard example. For more discussions see pages 73-74
of [5].

More formally, the deadlock condition can be defined in
terms of a cycle in the link dependency graph (in [5], this is
called thechanneldependency graph):

Gdependency = (C, E)

Note, the vertices of theGdependency , C, corresponds to the
set of (unidirectional) links inGnetwork, andE is the set
of link dependencies defined by the routes inR as follows.
Wheni andj are two consecutive links in a route inR, then
an edge (i, j) is an element ofE. Clearly,Gdependency is
also a directed graph.

There are a number of algorithms to check for cycles in
a directed graph. One way is by using the adjacency matrix
D of Gdependency . The Floyd-Warshall algorithm[3] can be
used to compute the transitive closure ofD, denotedD∗.
There is a cycle in the link-dependency graph if and only if
some of the diagonal elements ofD∗ are non-zero.



Even with this precisely defined condition, it is not prac-
tical to keep checking it while constructing shortest path
routes, as the computation cost is quite high. The approach
taken below, is therefore to find some constraint that pre-
vents cycles from forming during the construction of short-
est path routes. Such an approach may not derive the opti-
mal routing table, but is much faster.

4. Deadlock-free Routing Based on Ordered
Links

4.1. Deadlock-freedom and Ordered Links

We now establish another equivalent condition for
deadlock-free routes which can be more readily used in a
routing algorithm.

Let us assign a uniquerank to each link in the network,
so that the links are ordered. If the successive links used by
each route have increasing ranks, then these routes cannot
cause a cycle in the link dependency graph. Let us assume
there is a cycle formed by these routes; and let us start with
one of these routes in the cycle and follow the links; and
then follow the links of the route that overlap with the cur-
rent one, and so on. The ranks of these links must continue
to increase; but when we get back to a previously used link
(since there is a cycle), it implies that the rank of the very
first link is higher than the other links traversed so far - a
clear contradiction.

Further, we note that the inverse must also be true,
namely, if a set of routes does not form a cycle in the link
dependency graph, then there must exist an ordering of links
such that the links used by each route follow an increasing
sequence. This can be proved constructively (start with a
set of routes and assign order to links). Since there are no
cycles, there must exist at least one route whose first link
does not overlap with other routes. Start with this link and
do atopological sortby following the subsequent routes. It
should be intuitive that the lack of cycles in the dependency
graph means the procedure will terminate with an ordering
of all links used in the routes.

These statements essentially prove the following result
originally established by Dally and Seitz.

Theorem 1 A set of routes is deadlock-free if and only if
there exists an ordering of the links such that all the routes
use links in increasing order.

Although this theorem does not by itself construct
deadlock-free routes, we show how it can be used to de-
velop algorithms that do.

4.2. The Layered Algorithms

The links ofGnetwork, C, can be partitioned to form a
set of subnetworks

Gi = (Ni, Ci) i = 1, ..., m

such that

Ci

⋂
Cj = ∅ ∀i, j i 6= j

m⋃

i=1

Ci = C

Further, we can consider these subnetworks as orderedlay-
ers of the original network, where for exampleG1 is the
lowest layer,G2 is the next layer up and so forth.

The basic idea is decomposition. We decompose the net-
work into small enough subnetworks such that we know
how to compute deadlock-free routes for the subnetworks.

Consider the following algorithm, to be referred to as a
layeredalgorithm:

1. Partition the links ofGnetwork into a set of ordered
layers.

2. Compute a deadlock-free route for each pair of nodes
(if connected) in each layer.

3. Find better routes by possibly concatenating routes
from different layers, subject to the constraint that the
links in each route must belong to layers in a non-
descending order.

Before we explain how each step is done, let us first
establish that this algorithm will produce deadlock-free
routes.

Following theorem 1, we can assign a rank to each link
in a layer after step 2 such that each route computed in step
2 will consist only of links in non-descending order. If we
obey the constraint in step 3, the optimized routes will also
consist of links in non-descending order. Again due to the-
orem 1, we know the optimized routes (after step 3) are
deadlock-free.

Corollary 2 The routes produced by the layered algorithm
are deadlock-free.

It is important to note that the layered algorithm no
longer guarantees inclusion of all possible deadlock-free
routes, hence it may not be optimal. We will have much
more to say about this later when we evaluate the algo-
rithms.

Secondly, depending on the partitioning ofGnetwork

(step 1) used, the layered algorithm cannot guarantee it will
compute a deadlock-free route for every pair of nodes in



step 2. In other words, it does not guarantee the routing ta-
ble (routing function) isconnected[5]. This problem, how-
ever, can be easily fixed.

A sufficient condition to ensure the routing table is con-
nected is to require that at least one of the layers contains a
route for each pair of nodes. We call such a layer aspanning
layer.

4.3. Partitioning into Ordered Trees

We now consider a specific way of doing step 1 of the
layered algorithm, called ordered trees partitioning. Let us
partitionGnetwork by successively removing links from it
to form a minimum spanning tree. There are a couple of
points worth clarifying. First, the notion of a spanning tree
is based on bidirectional links spanning the set of nodes in
a graph. So, if there is a bidirectional link included in a
spanning tree, we are including both unidirectional links
between the same pair of nodes. Secondly, it is clear that
sooner or later we will not have enough links in the remain-
ing graph to form a partition that is a spanning tree. In that
case, what is extracted from the remaining graph is a max-
imally spanning forest, which means we extract as many
links as possible without forming any loops.

A well-known algorithm - Kruskal’s minimum spanning
tree algorithm[3] - can be applied to partition the graph
Gnetwork into spanning trees. Kruskal’s algorithm extracts
a minimum spanning tree from a graph. The ordered trees
partitioning is done by applying Kruskal’s algorithm repeat-
edly until all the links in the original graph are exhausted.
Kruskal’s algorithm is very efficient (O(e), wheree is the
number of links).

The basic motivation for organizing the layers as span-
ning trees (and forests) is so that the routing table is con-
nected.

Kruskal’s algorithm extracts the minimum spanning tree
based on the order of the links given to the algorithm. An
interesting question is whether given a topology it is advan-
tageous to try to put certain links in as low a layer as possi-
ble. In particular, certain links seem to be connecting nodes
that are ahub for the rest of the nodes. We experimented
with a scheme that ranked links according to this weight
before giving them to Kruskal’s algorithm. The results will
be discussed later.

Since we are going to consider only ordered tree par-
titions, we call the layered algorithm theordered-treeal-
gorithm for deadlock-free routing. We also call the cor-
responding deadlock-free condition theordered-tree condi-
tion.

4.4. Routing Table computation

The next task is to compute the routing table, satisfying
the constraint that each route uses links only from layers
of non-descending order (i.e. ordered-tree condition). This
can be done by adapting variousshortest pathsalgorithms
to satisfy our ordered-tree condition.

We describe two such algorithms that we studied. One is
to adapt the dynamic programming algorithm for all-pairs
shortest paths via matrix multiplication3. We refer to the
resultant algorithm as the All Pairs Ordered Tree (APOT)
algorithm. The other is an adaptation of the Bellman-Ford
algorithm4. This is referred to as the Bellman-Ford Ordered
Tree (BFOT) algorithm. The latter algorithm can be adapted
for distributed computation as well.

Note, in most scenarios where deadlock-free routing
is required, the routing table computation is carried out
centrally by a network manager. The resultant routing
information is then downloaded to the switches. This is
why we are mainly considering centralized algorithms.

4.4.1 APOT. In the regular all-pairs matrix multiplication,
in each iteration a newn×n distance matrix is computed,
each entry of which represents a path with at mostt hops
(where t is the iteration number andn is the number of
nodes).

In APOT, each intermediate result is ann×n×m matrix,
Q, whereqijk represents the cost of a path fromi to j us-
ing links up to layerk, with at mostt hops (wheret is the
iteration number, andm is the number of layers).

The pseudo code of APOT is shown in Figure 2.
Note, P is a working matrix used in each iteration to

hold the result for thetth iteration whileQ is holding the
result from the(t − 1)th iteration. The variablesi, j, andk
have their equivalents in the regular all-pairs matrix multi-
plication algorithm. The variablel references thelth layer
entry of the intermediate result; and the variableh iterates
through all layers higher thanl.

The pseudo code to compute the shortest routes and al-
ternative routes follows the same logic. It is not included as
it does not shed more insight on the complexity.

In [3], it is shown that the complexity of all-pairs
matrix multiplication isO(n4). For the APOT algorithm,
the intermediate result hasn×n×m elements and each
element takesn×m steps to compute. So each iteration
takesO(n4m2) steps. Roughly,m is e/n (where e is
the number of links). Therefore, APOT’s complexity is
O(n2e2). It is very compute intensive.

4.4.1 BFOT.Here, we start with describing the distributed
version of the Bellman-Ford Ordered Tree algorithm, which

3a clear description can be found in Chapter 26.1 of [3].
4a clear description can be found in Chapter 25.3 of [3].



for (t=0; t<n; t++) {
init(P);
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
for (l=0; l<m; l++) {

for (k=0; k<n; k++) {
for (h=l; h<m; h++) {

distance =
Q(i,k,l) + S(k,j,h);

if (distance < P(i,j,h))
P(i,j,h) = distance;

}
}

}
}

}
Q = P;

}

Figure 2. Pseudo code for APOT

is more general. The algorithm is best visualized from the
computation of best route and distance from a single node’s
point of view.

Initially, a node A knows the shortest path to reach all its
neighbors (which by definition is one hop). The neighbors
all tell node A their shortest distance to reach the rest of the
nodes, using the following message:

route-info(destination, distance, layer)
The route-info message says there is a path from the

neighbor (that sends this message) todestinationusing links
in the givenlayeror higher, with the givendistance.

When multiple legal routes to reach a destination are
found, each node keeps allequi-distanceshortest-distance
routes as alternatives. When informing its neighbors, how-
ever, only the alternative that is the least constraining (i.e.
the layer of the first-hop link is highest in comparison to the
other alternatives) is sent in theroute-info message5.

When node A receives aroute-info message from its
neighbor, it first determines if it helps to produce a shorter
route (satisfying the ordered-tree condition) than the cur-
rent set of alternative routes. If not, theroute-info message
is ignored. If the information given in theroute-info mes-
sage produces a new (alternative) route to thedestination
(satisfying the ordered-tree condition), then node A must
notify the neighbor that sent theroute-info message using
the following message:

route-constrain(destination, layer)
Node A sends theroute-constrainmessage to the neigh-

bor, say B, that has been chosen to forward node A’s packets

5This is an optimization that is carried out when one or more constrain-
ing alternative route(s) are subsequently discovered

Figure 3. Example protocol exchange be-
tween node A and its neighbors B and C, in
which node A originally routes to node D via
C, but discovers a new route to node D via B

for the givendestination. Node B will be called thefor-
warding neighborfor the given destination.

Node B, upon receiving theroute-constrain message
from node A, must check to see if any of the alternative
routes to reach thedestinationuses a link in alayer lower
than that given in theroute-constrain message. If so, those
alternatives must be marked asunusabletogether with a list
of neighbors that rendered the route unusable. This list is
called aconstraint list. This ensures the ordered-tree condi-
tion is not violated.

Upon adopting a new route, node A (in addition to send-
ing the route-constrain message) must itself send (addi-
tional) route-info messages to other neighbors about its
newly discovered route fordestination. Further, if a for-
warding neighbor for the given destination will no longer
be used, the following message is sent:

route-constrain(destination, 0)
This is used to tell the forwarding neighbor that the con-

straint previously imposed on it is no longer necessary. This
is why those alternative routes that violate the constraint are
only marked as unusable rather than discarded. Upon the re-
ceipt of the above unconstraining message, the correspond-
ing routes previously marked unusable will have their cor-
responding constraining neighbor removed from the con-
straint list. When the constraint list is empty, an unusable
route becomes usable again.

All other nodes in the network follow the same procedure
as node A. Figure 3 shows an example protocol exchange
between node A and its neighbors. In this case, node A
originally uses node C to forward packets to node D. Upon
receiving aroute-info message from node B, it switches to



Figure 4. Example topology when BFOT does
not compute optimal routes

use node B to forward packets to node D. Note, this is possi-
ble because the link from A to B is in layerj, which is lower
thani, the layer B starts with when forwarding packets to
D.

Other than theroute-constrain messages, this is basi-
cally the Bellman Ford algorithm which is known to con-
verge and terminate, assuming the protocol exchanges are
reliable. In a distributed implementation of BFOT, it will
take additional engineering to ensure the robustness and
convergence of the protocol.

In our case, we had a centralized implementation of
BFOT, so there are no communication reliability issues. All
the messages, together with the identities of sender and re-
ceiver, are put on a centralized queue. The algorithm termi-
nates when the centralized queue empties.

The computational complexity of Bellman-Ford is
known to beO(ne) for a single source, and therefore
O(n2e) for all source and destinations. BFOT introduces
the additional processing due to theroute-constrain mes-
sages, which are used

1. in response to aroute-info message

2. in correcting an earlierroute-constrain message

Neither of these uses exceed the number ofroute-info mes-
sages. Therefore the computational complexity of BFOT
remainsO(n2e). It is a factor ofe better than APOT.

The downside, however, is that BFOT does not necessar-
ily compute the optimal routes. This can be illustrated by
the example in Figure 4.

The number next to each link is the layer the link (both
unidirectional links) belongs to. There are nine links be-
tween node C and E, all in layer 1. Let us focus on what
happens at node A, in searching for a route to node D. Node
A receivesroute-info messages from its neighbors B and
C:

route-info(B, D, 1, 1)
route-info(C, D, 10, 1)

Although the route through B to D is shorter, it violates
the layered rule. So node A has to reach D via C, a route
that takes 11 hops.

With a more global view, one can see that node B has an-
other route to D which uses layer 2 links and is 2 hops long.
Although this is not the shortest route from node B to node
D, it can dramatically cut down the cost for node A to reach
node D. If node B offered this to A, however, node B will get
a route-constrain from node A and node B’s route to node
D will also become 2 hops. This is a rather small sacrifice
for node B and will produce lower average path lengths. It
is this kind of trade-off, which requires more global consid-
erations, that is missed by the BFOT algorithm.

Nonetheless, as will be shown in the next section, for
many topologies we considered, the BFOT’s average path
length is almost as good as the optimum computed by
APOT.

5. Comparisons of Path Length and Computa-
tion Time

In this section, we compare the two implementations of
the ordered tree algorithms, APOT and BFOT, to the uncon-
strained shortest path, OPT (that may have deadlocks) and
the up*/down* algorithm, UD (which is deadlock-free).

We used IRFlexSim[1], a public domain analysis and
simulation tool for deadlock-free routing algorithms pro-
duced by the SMART group of USC, for much of our eval-
uation. We added our implementations of BFOT and APOT
and various other algorithms for utilizing alternative paths.
We relied on IRFlexSim for topology generation, compu-
tation of the unconstrained optimal routing function, and
up*/down* routing function.

We noticed that the equal-cost alternative routes in the
up*/down* routing table may contain routes that produce
deadlocks. One way to avoid deadlocks is to use switches
that can enforce the up*/down* rule in real time. Alter-
natively, we added a function to remove those alternative
routes that violate the up*/down* rule from the routing ta-
ble. Later, we found out that this problem had also been dis-
covered by Sancho, Robles and Duato [7]. They did a thor-
ough analysis and concluded that removing the deadlock-
causing alternative routes only slightly affects the average
path length of the up*/down* algorithm.

We compared algorithms, denoted OPT (optimal), UD
(up*/down*), APOT and BFOT. The extra column BFOT+
is the same as BFOT except we sorted the links6 before
running them through the Kruskal’s algorithm repeatedly to

6In this particular case, we sorted the links as follows. First rank all
the nodes based on the number of links connecting the node; then rank the
links by adding the rank of the two nodes at the end of each link. This
metric tries to put the more highly connected links in the lowest partitions.



partition the network. BFOT+ was included to see the effect
of different partitionings.

To compare the different algorithms, we used the topolo-
gies listed in Table 1. The names of the topologies roughly
follow the convention:

type-nodes-links-otherparam...
Most topologies have the number of nodes and links en-

coded in the topology name. For type=random, the other
parameters are: minimum and maximum degree, and a seed
for the random number generator. Only those topologies
with a dup in it have duplicate links (between a pair of
nodes).

The topologyrndm-nicehas 16 nodes and 29 links with-
out duplicate links; we gave it that name because it was the
first random topology we used for which BFOT+ performed
particularly well.

Table 2 summarizes the comparison, in terms of the total
time to compute for all topologies, and average path length
(normalized by the optimal average path length).

Let dOPT , dUD, dAPOT anddBFOT denote the average
path lengths of the four algorithms, andtOPT , tUD, tAPOT

andtBFOT denote the time of computation for these algo-
rithms respectively. As expected,

dOPT ≤ dAPOT ≤ dBFOT

dOPT ≤ dUD

In addition, we note the following:

1. dUD is usually somewhat better thandAPOT and
dBFOT , but it is not always true. The differences be-
tween all these values are rather small (within 10% or
so).

2. The difference betweendAPOT anddBFOT is really
small. This confirms our belief that the suboptimality
of dBFOT is not a problem in practice.

3. The effect of sorting the links (dBFOT+ − dBFOT )
seems to be more significant than the difference be-
tween BFOT and APOT. Similar effects are observed
when picking a different node as the root in the
up*/down* algorithm, as noted in [9].

Based on the path length metric, there is no strong reason
for using any one particular algorithm.

In terms of computation time, we observe

tOPT < tUD < tBFOT < tAPOT

The algorithms for computing OPT, UD and BFOT (and
BFOT+) are all derived from the Bellman-Ford algorithm.
This explains why their computation times are quite similar.
But tAPOT is significantly higher than the other three. This
is also expected, as we showed the computational complex-
ity of APOT is worse than BFOT by a factor ofe.

Table 1. Network topologies
Random topologies regular topologies
rndm-16-24-1-8-4005 hypercube-32-80-5
rndm-16-25-1-8-4004 hypercube-64-102-6
rndm-16-26-1-8-4003 ring-32-32
rndm-16-27-1-8-4002 ring-64-64
rndm-16-28-1-8-4001 torus2-16-32-4-4
rndm-16-32-1-8-3001 torus2-64-128-8-8
rndm-16-32-1-8-3002 torus3-16-32-2-2-4
rndm-16-32-1-8-3003 torus3-32-72-2-4-4
rndm-16-32-1-8-3004 torus3-48-116-3-4-4
rndm-16-32-2-6-3009 torus3-64-160-4-4-4
rndm-16-32-2-6-3010
rndm-16-32-2-6-3011
rndm-16-32-2-6-3012
rndm-16-48-1-8-3013
rndm-16-48-1-8-3014
rndm-16-48-1-8-3015
rndm-16-48-1-8-3016
rndm-16-48-d-5-5003
rndm-16-48-d-9-5001
rndm-16-48-d-9-5002
rndm-16-48-d-9-5004
rndm-32-96-1-8-1005
rndm-32-96-1-8-1006
rndm-32-96-2-8-1007
rndm-32-96-2-8-1008
rndm-64-128-1-8-2001
rndm-64-128-1-8-2002
rndm-64-128-1-8-2003
rndm-64-128-1-8-2004
rndm-64-160-1-8-2009
rndm-64-160-1-8-2010
rndm-64-192-1-8-2013
rndm-64-192-1-8-2014
rndm-64-192-1-8-2015
rndm-64-192-1-8-2016
rndm-nice

Table 2. Comparison of optimality and com-
pute times of various algorithms

Total Time Path length (normalized)
Optimal 0.42 1.0
Up*/Down* 2.83 1.057
Layered (MM) 2891.86 1.096
Layered (BF) 6.49 1.102



Figure 5. The network optimization step

Based on these results, we chose to use BFOT instead
of APOT. Solely based on average path length and time of
computation, however, the ordered tree algorithm does not
show any advantage over UD.

6. Alternative Paths & Network Optimization

In high-speed networks where deadlock-free routing is
required, the design center is usually aimed at using dense
interconnections to increase total throughput and fault-
tolerance. This is the case for Infiniband(tm)[2], for exam-
ple. These are the metrics when evaluating the performance
of Autonet[8], and other high-speed networks[5] as well.

In this section, we consider how these metrics can be op-
timized. This is done as a separate step, after the routing
algorithm has computed the shortest paths as shown in Fig-
ure 5.

Given any source and destination, there are typically sev-
eral alternative (equal-distance) shortest paths7. The abil-
ity to optimize for throughput and fault-tolerance lies in the
way these alternative paths are used.

6.1. How Alternative Paths Are Used

In one paradigm, information about alternative paths is
contained in the switch’s forwarding table. In this case, the

7As an easy way to prevent loop-freedom, we are only considering
equal-distance alternative paths.

actual forwarding decision can be made at the time of for-
warding, based on locally observed, but dynamic network
conditions. The drawback of this approach is that the dy-
namic information is local, and it is not clear decentralized
decision-making necessarily converges. Due to such con-
cerns, randomized forwarding is often adopted.

In the other paradigm, each switch’s forwarding table
contains only one pre-selected path for each destination. In
this case, the selection of which alternative path to include
in the forwarding table is pre-computed as part of the rout-
ing algorithm. The drawback here is that there is no dy-
namic input. The computation has to assume certain traffic
patterns exist. The advantage is that the centralized com-
putation can take into consideration various metrics for net-
work optimization.

For Infiniband, the switches store only one path for each
destination (the latter case). This is done presumably to
simplify the switch. Adaptive use of multi-paths based on
dynamic information can still be tried at the source. This
requires multiple addresses be given to each host, one cor-
responding to each different path. How to take advantage of
this approach will be future work.

In this paper, we focus on the problem of how to pres-
elect a path for the forwarding table that optimizes the fol-
lowing network metrics:

• network capacity

• fault tolerance

6.2. Maximum Flow and Capacity

When the network workload is given in terms of a set
of flows, one may formulate a network problem to maxi-
mize the throughput of all the flows. In the abstract form8,
the problem is known as themaximum flowproblem. This
problem is often considered for road traffic routing, for ex-
ample.

We focus on the case when the flows are not known. The
first question is how to generate a random set of flows for a
given (random) topology.

We consider the given network topology theswitch
topology, and generate a given number ofendnodesto at-
tach to the switch topology. The flows are then defined by
then(n − 1) source-destination pairs between each pair of
endnodes. The intensity of the traffic can be controlled by
the number of endnodes we attach to the original topology.

Different algorithms may be used to attach endnodes to
the given topology. For example, concentration of endnodes
attached to strategic parts of the network can artificially cre-
ate congestion points (orhot spots) for study. By default, we

8Without the assumption of using routing tables that force all sources
to the same destination to share the same partial routes, and the constraint
of only considering equal-distance shortest path routes.



apply an algorithm that attaches endnodes to a switch with
the smallest degree first. In physical terms, a switch with
the smallest degree corresponds to one with the most ports
left (assuming they all have the same number of ports).

Now the network capacity optimization problem can be
stated as the problem of finding the best way to use the alter-
native routes so as to maximize the throughput of the given
flows.

We build a heuristic search procedure to tackle this prob-
lem since we know finding the optimal solution will be very
time consuming. We define theusagelevel,U(i), of a link
(i) to be the number of flows traversing it. Since we are us-
ing only equal-cost paths, the average link usage for allL
links is constant:

U =
L∑

1

U(i) = n(n − 1)D/L

This is because no matter which alternative paths we use,
the average link usage can be derived from the average path
distanceD, as shown above.

However, as we try different alternative paths, the vari-
ance of the link usage changes. Intuitively, the smaller
the variance ofU , the higher the simultaneous traffic the
switching network is able to carry. Therefore, for our
heuristic search algorithm we use the variance ofU as the
criterion to try to minimize.

6.3. Fault Tolerance

Fault tolerance is easier to define. For each source and
destination, the goal is to have an alternative path available
that is as different from the optimal path as possible. The
fault tolerance,F (i, j) between endnodesi and j is thus
defined as the percentage of difference between the optimal
path and the most differing alternative path. The fault toler-
ance of the network is thus the average fault tolerance over
all the endnode pairs.

6.4. Network Optimization Algorithms

The optimization algorithm for maximizing capacity has
three steps:

1. Remove duplicate links between nodes, and compute
equal-distance alternative paths at the time the routing
table is built;

2. Add duplicate links back, and load-balance flows
across the duplicate links;

3. Consider other alternative paths using a hill-climbing
algorithm.

The reason duplicate links are treated separately is that
we find it very effective (computation time-wise) to single
them out in maximizing the capacity. The idea is very sim-
ple. When you add a duplicate link to your network, sud-
denly all the flows going through the original link can be
load-balanced. Since the routing table does not depend on
the source of the flow, the balance of load between the du-
plicate links may not be perfect.

More specifically, let the added duplicate link bei→j,
and let us definefik as the number of flows passing through
link i→j via i. We sortfi (the vector offik) in descending
order. Then we iteratively assign the elements offi to the
duplicate link that has the smaller amount of traffic.

In step 3, we consider the rest of the alternative routes.
This is somewhat more complicated. We put all the pos-
sible choices of alternative routes in a combined list, and
randomly (or use some other criterion to) pick one; swap
the alternative with the current optimal path; check for im-
provement. We accept the alternative only if there is an
improvement. AfterT trials without further improvements,
the algorithm stops. The value ofT is set to a percentage of
the number of potential alternative paths that can be tried.
Obviously, a large value ofT will give potentially a more
optimal result, but take a long time, and vice versa.

The same hill-climbing technique can be applied to op-
timize fault tolerance. Since we cannot optimize for both
criteria at the same time, we chose to optimize the capacity
and measure the resulting fault tolerance of the network.9

6.5. Comparison

For each of the protocols (OPT, UD and BFOT) we used
the hill-climbing algorithm to minimize the standard devi-
ations10. Protocol OPT is consistently better then UD and
BFOT. Protocol OPT does not have the deadlock-free con-
straint, hence there are more alternative routes, so OPT is
expected to perform better. Our interest is really in how
BFOT and UD compared. Out of the 46 topologies, BFOT
out-performed UD 35 to 11 times.

The fact that BFOT performs better than UD is very en-
couraging. Our speculation is that since UD is based on a
tree, for many topologies the root becomes a natural con-
centration point for traffic. The ordered-tree approach, on
the other hand, can better avoid such a single point of con-
centration. As we discussed earlier, however, the perfor-
mance of the ordered-tree algorithm is quite sensitive to
how the partition is done. This is definitely an area wor-
thy of further investigation.

9If a given level of fault tolerance is required, then it is also possible to
optimize network capacity using the given fault tolerance level as a con-
straint.

10Recall that a smaller standard deviation indicates betterload-
balancing, hence potentially higher achievable throughput.



The fault-tolerance metric measures the percentage of
the time in which a link is removed that an alternative route
is readily available. In this case, OPT again consistently
perform better as expected. This time protocol UD beat
BOPT 38 times out of 46.

7. Concluding Remarks

7.1. Summary

There are several results in this paper:

1. First, we introduced a new method of computing
deadlock-free routing tables, called the Ordered-tree
algorithm, and proved its correctness.

2. Second, we described two implementations of the new
algorithm. One (APOT) gives the best result but takes
longer to compute, while the other (BFOT) gives al-
most optimal results but is much faster and the compu-
tation can be distributed.

3. Third, we developed several metrics for evaluating the
different algorithms: average path length, time of com-
putation, network capacity, and fault-tolerance.

4. And finally, we compared the algorithms using these
metrics.

We believe the Ordered-tree algorithm demonstrates
great potential, especially considering the metric of network
capacity.

7.2. Other Observations and Future Work

We have a third implementation of the ordered tree algo-
rithm (in addition to APOT and BFOT), based on Fibonacci
heaps. This implementation produced a dramatic improve-
ment over APOT in terms of time of computation. Unlike
BFOT, it still computes optimal routes. In comparison to
BFOT, its computation time is still significantly higher (an
order of magnitude for the topologies we tried).

As we alluded to several times in the paper, an interest-
ing direction for future work is to investigate how to better
partition the network in the ordered-tree algorithm. In other
words, given a topology, how to evaluate which links belong
to lower layers. We have tried some methods in prioritizing
the links, but the results were not consistent across different
topologies. But the results show that sorting the links can
make a significant impact and is worthy of further studies.

Another important aspect not addressed in this paper is
how to compute incremental updates to the routing informa-
tion for small changes to the topology. In such situations,
it is desirable to avoid recomputation of the whole routing
table and provide speedy updates to the switches that need
them.

8. Acknowledgements

We are grateful to Jose Duato for his help in introduc-
ing us to the literature on this topic, and Timothy Pinkston
and Wai Hong Ho for providing us IRFlexSim and support.
We have enjoyed interesting discussions with Lev Markov
about alternative approaches to this problem. We also thank
Bob Sproull for reading the manuscripts and giving us valu-
able comments.

References

[1] http://www.usc.edu/dept/ceng/pinkston/tools.html.

[2] I. T. Association. Infiniband(tm) architecture specifi-
cation.http://www.infinibandta.com.

[3] T. Cormen, C. Leiserson, and R. Rivest.Introduction
to Algorithms. McGraw Hill, 1996.

[4] W. J. Dally and C. L. Seitz. Deadlock-free message
routing in multiprocessor interconnection networks.
IEEE Transactions on Computers, 1987.

[5] J. Duato, S. Yalamanchili, and L. Ni.Interconnection
Networks: An Engineering Approach. 1997.

[6] M. Schroeder et al. Autonet: A high-speed, self-
configuring local area network using point-to-point
links. IEEE Journal on Selected Areas in Communi-
cations, Vol. 9, No. 9, October, 1991.

[7] A. Robles J.C. Sancho and J. Duato. Effective strategy
to compute forwarding tables for infiniband networks.
ICPP01, 2001.

[8] S. S. Owicki and A. R. Karlin. Factors in the perfor-
mance of the an1 computer network. Technical report,
Systems Research Center, DEC, Research Report 88,
1992.

[9] J. C. Sancho and A. Robles. Improving the
up*/down* routing scheme for networks of worksta-
tions. CANPC00, 2000.

[10] F. Silla and J. Duato. High-performance routing in net-
works of workstations with irregular topology.TPDS,
2000.


