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Abstract 

 
Input buffered switches with Virtual Output Queueing 
(VOQ) can be unstable when presented with  unbalanced 
loads.  Existing scheduling algorithms, including iSLIP 
for Input Queued (IQ) switches and Round Robin (RR) 
for Combined Input and Crossbar Queued (CICQ) 
switches, exhibit instability for some schedulable loads.  
We investigate the use of a queue length threshold and 
bursting mechanism to achieve stability without requiring 
internal speed-up.  An analytical model is developed to 
prove that the burst stabilization protocol achieves 
stability and to predict the minimum burst value needed 
as a function of offered load.  The analytical model is 
shown to have very good agreement with simulation 
results.  These results show the advantage of the RR/RR 
CICQ switch as a contender for the next generation of 
high-speed switches. 
 
1. Introduction 

 
High-speed switches are the core of the Internet and 

make possible end-to-end delivery of packets.  These 
switches have been designed typically to have their 
packet buffers at the output ports.  Output Queued (OQ) 
switches require buffer memories that are N times as fast 
as link speed (for N input ports).  Link speeds are 
increasing much more rapidly than memory speeds [11].  
In Input Queued (IQ) switches buffer memories need only 
match the link speed.  Thus, IQ switches have been the 
subject of much research for high-speed switching.  To 
overcome head-of-line blocking in IQ switches, Virtual 
Output Queueing (VOQ) [1, 16, 23] is employed.  VOQ 
switches require switch matrix scheduling algorithms to 
find one-to-one matches between input and output ports.  
VOQ switches can be IQ, Combined Input and Output 
Queued (CIOQ), or Combined Input and Crossbar 
Queued (CICQ).  Fig. 1 shows a generic VOQ switch.  
CICQ switches have limited buffering at the Cross Points 
(CP) and have become feasible with the continued 

increase in density of VLSI technologies [12, 19, 20, 21, 
26, 27, 28].   

The trade-offs in VOQ switch matrix scheduling are 
stability, fairness, and implementation complexity.  
Stability refers to bounded queue length for scheduable 
loads (an unstable queue has an unbounded queue 
length).  IQ cell switches use iterative request-grant-
accept scheduling cycles to achieve a maximal one-to-one 
matching.  Existing scheduling algorithms for IQ cell 
switches based on an unweighted maximal matching 
(such as PIM [1] and iSLIP [16]) are not stable unless 
internal speed-up is used.  A 2x speed-up has been proven 
to be sufficient for stability for all schedulable flows [5].  
If a weighted maximal match is implemented based on 
Oldest Cell First (OCF) or Longest Queue First (LQF), 
stability can be achieved for all schedulable flows without 
speed-up [18].  LQF can be unfair since it can cause 
starvation.  Weighted matching requires state information 
to be exchanged between input and output ports.  CICQ 
switches can use independent round robin (RR) selection 
of VOQs and CP buffers (this is an RR/RR CICQ 
switch).  However, instability occurs unless OCF or LQF 
is used to select VOQs in an input port [12].  Both OCF 
and LQF require comparisons between all N ports during 
each scheduling cycle.  This requires either N sequential 
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comparisons or Log2(N) comparisons with a tree circuit 
containing 1−N  comparators.  Better methods for 
achieving stability are needed.  We address this need. 

In this paper, Section 2 briefly reviews VOQ switch 
architectures and their scheduling algorithms.  Section 3 
describes an unstable scheduling region in iSLIP and 
RR/RR CICQ switches and proposes a burst stabilization 
protocol to overcome this instability.  Section 4 evaluates 
burst stabilization for the RR/RR CICQ switch and 
develops a model to predict the minimum burst values 
required to achieve stability.  Section 5 is a summary. 
 
2. Overview of VOQ Switches 
 

For many years, IQ switches were considered to be an 
academic curiosity due to their poor performance caused 
by  head-of-line blocking.  The breakthrough in IQ switch 
architectures occurred when Virtual Output Queueing 
(VOQ) was invented by Tamir and Frazier [23] in 1988 
and then developed by Anderson et al. [1] and McKeown 
[16] in the early 1990’s for cell-based packet switching.  
In a VOQ IQ switch, each input buffer is partitioned into 
N queues with one queue for each output port (hence the 
name “virtual” output queueing).  

IQ cell switches with bufferless crossbars use iterative 
request-grant-accept scheduling cycles to achieve a 
maximal matching of inputs to outputs.  In Parallel 
Iterated Matching (PIM) [1] the steps are: 

1. Each unmatched input sends a request to every 
output for which it has a queued cell. 

2. If an unmatched output receives any requests, it 
grants to one input by randomly selecting a request 
among those requesting to this output. 

3. If an input receives a grant, it accepts one by 
randomly selecting an output among those granted 
to this output.   

In iSLIP [16], accept and grant counters are maintained in 
each input and output port, respectively, and result in a 
randomized matching at high utilization due to a “slip” 
between counters.  Iterated matching algorithms require 
control flow between all input and output ports.  This 
coupling between ports adds complexity to a switch 
implementation.   

IQ switches with limited buffering in the crossbars – 
CICQ switches – became feasible to implement in the late 
1990’s [21, 27, 28].  Scheduling in a CICQ switch can be 
RR for both the VOQs within the input ports and for the 
CP buffers within the crossbar to achieve an RR/RR 
CICQ switch as shown in Fig. 2.  Each CP buffer needs 
capacity to hold only two cells.  For CICQ switches, 
control flow can be reduced to only requiring knowledge 
at the input ports of crossbar buffer occupancy.  CICQ 
switches thus uncouple input and output port scheduling 

and are less complex than IQ switches with bufferless 
crossbars.  In [27] the design of a 10-Gbps RR/RR CICQ 
switch using off-the-shelf FPGA technology is presented.   
 
3. Unstable Regions in VOQ Switches 
 

In this section, we consider an unstable region in the 
iSLIP and RR/RR CICQ switches.  We assume that 
arrivals are Bernoulli with rate ijλ  for Nji ,,1, �=  
where i is the input port number, j the output port 
number, and .0.10 ≤≤ ijλ   A Bernoulli model is a 
common traffic model for studying switch performance 
(e.g., as used in [1, 12, 16, 18]).  The Bernoulli model is 
described in Section 4.1. 
 
Definition 1 Let λ1 be the offered load at port 1.  The 
fraction f of offered traffic going to: 
 

1. VOQ11 is 111 λλf =  
2. VOQ12 is 121)1( λλf =−  
 

where 12/1 << f . 
 
Corollary 1 12111 λλλ +=  
 
Remark 1 Note that: 1112 1 λλ −≠ unless 11 =λ .  The 
mean interarrival time of cells at port 2 is 1

22
−= λτ .  But 

221 λλ ≡ by virtue of 022 =λ . 
 
In [12] a region of instability for iSLIP IQ and RR/RR 

CICQ switches is demonstrated for a schedulable, 
asymmetric traffic load to two ports.  For any two ports 
arbitrarily identified as ports 1 and 2, let 
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.0 and  ,  , 22122112111 ==+= λλλλλλ   Within a region of 
5.011 >λ  and high offered traffic load, instability occurs.  

This instability condition is not limited to a two-port 
switch, but can occur between any two ports of a large 
switch.  The offered load which causes instability for an 
RR/RR CICQ switch ranges from a low of approximately 
0.9 in the range of 7.06.0 11 << λ  to a high of 1.0 at 

5.011 =λ  and 0.111 =λ .  This instability exists for a 
switch of size N input and output ports where any two of 
the N ports have the traffic load specified above.  The 
instability range for an iSLIP IQ switch is larger in area.  
The simulation models developed and validated in [26] 
are used to reproduce the instability results in [12].  
Infinite size VOQ buffers are assumed for both an iSLIP 
IQ and CICQ switch.  For the iSLIP IQ switch, four 
iterations are used per scheduling cycle.   

As an experimental means to detect instability, 
simulation experiments were run for 100 million cell 
times and terminated as unstable if any queue length 
exceeds 5000 cells.  A similar experimental means of 
detecting instability is used in [8].  Fig. 3 shows the 
simulation results for the iSLIP and RR/RR CICQ 
instability regions and this exactly matches the results in 
[12].  For this same simulation experiment, OCF/RR and 
LQF/RR for a CICQ switch do not exhibit instability.   

The instability in the RR/RR CICQ switch is caused 
when VOQ12 is empty (drained) and VOQ11 is blocked 
from transferring a cell to its cross point buffer (CP11) due 
to CP11 being already full and CP21 transferring to output 
1.  A solution is to service VOQ12 less aggressively so 
that VOQ12 will have queued cells that can be transferred 
(to CP12) when VOQ11 is blocked.  In this case, work 
conservation of input port 1 can be maintained.  Both 
OCF and LQF achieve stability by more aggressively 
draining VOQ11 than VOQ12 in this configuration.  We 
used this observation to propose a burst stabilization 
protocol that does not require comparison of state 
information between VOQs [28].   
 
3.1 Burst stabilization protocol 

 
A good solution to instability in VOQ switches should 

not require internal speed-up or the comparison of state 
information between VOQs.  We propose that when a 
VOQ in an input port is selected for forwarding of a cell 
in the next cycle, a threshold comparison be made.  As 
long as the current VOQ queue length exceeds a set 
THRESHOLD, then up to BURST cells can be transmitted 
from the VOQ before another VOQ from the same input 
port is allowed to be matched.  This is similar in principle 
to T-RRM in [6], except in T-RRM BURST is effectively 
always 1.   

Each VOQ has a cell burst counter which decrements 
on consecutive cell transfers (from the VOQ).  This burst 
counter is set to BURST when a VOQ drains or when the 
accept pointer is incremented (in iSLIP IQ) or the RR poll 
counter is incremented (in RR/RR CICQ).  In an RR/RR 
CICQ switch, if a full CP buffer blocks the currently 
selected VOQ then the input port RR poll counter is 
always incremented.  Specifically, for RR/RR CICQ: 

•  The RR poll counter in an input port is not 
incremented if the currently selected VOQ is above 
THRESHOLD in queue length and the cell counter 
is greater than zero. 

The cell counter decrements on consecutive cell transfers 
from a VOQ.  This counter is set to BURST when a VOQ 
drains or the RR poll counter is incremented (in RR/RR 
CICQ).  If a full CP buffer blocks the currently selected 
VOQ, then the input port RR poll counter is always 
incremented.  This method can also be applied to iSLIP 
switches [28].  For the remainder of this paper, we 
consider only the RR/RR CICQ switch. 

 
3.2 Simulation of the burst stabilization protocol 

 
Using our simulation model, we study the effect of 

THRESHOLD and BURST values on stability and delay.  
Fig. 4 shows mean switch delay (for VOQ11, VOQ12, and 
VOQ21 combined) for iSLIP and RR/RR CICQ with 
THRESHOLD set to 32 and BURST set to 0 and 64 for 

99.01 =λ .  Also shown are results from an OCF/RR 
CICQ switch (the VOQs are scheduled with OCF and the 
CP buffers with RR).  These results show that with no 
bursting (BURST = 0) instability occurs, but with bursting 
the switch is stable.  Fig. 5 shows the mean switch delay 
for each VOQ for iSLIP and RR/RR CICQ switch with 
THRESHOLD and BURST set to 32 and 64, respectively.  
This shows that iSLIP and RR/RR CICQ switches with 
THRESHOLD and BURST have roughly similar delays 
for all VOQs, except VOQ11. 
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To understand how the THRESHOLD and BURST 
method affects delay, three experiments varying BURST, 
THRESHOLD, and λ11 were conducted (all with 

99.01 =λ ).  The measured variable was mean switch 
delay.  The experiments were: 

•  Experiment #1: The effect of varying λ11 and 
BURST for a fixed THRESHOLD = 32. 

•  Experiment #2: The effect of varying BURST and 
λ11 for a fixed THRESHOLD = 32. 

•  Experiment #3: The effect of varying 
THRESHOLD and BURST for a fixed 80.011 =λ . 

Figures 6 and 7 show the RR/RR CICQ switch mean 
delay for VOQ11 for experiments #1 and #2, respectively.  
Figure 6 shows that mean delay for all BURST values are 
identical for 65.011 <λ .  Only the BURST value of 64 
acheives stability for all 11λ .  Figure 7 shows that larger 

11λ  requires larger BURST values.  These results show 
that a too small BURST value results in instability for 
large 11λ .  For all cases, the mean delay for iSLIP is 
similar to that of RR/RR CICQ and is not shown.  Figure 
8 shows the mean delay for experiment #3 with BURST 
ranging from 15 to 55.  THRESHOLD = 32 results in 
lower delay than THRESHOLD = 64, which in return has 

the lower delay than THRESHOLD = 128.  A 
THRESHOLD value of 8 and 16 both result in instability.  
These results show that lower THRESHOLD values 
achieve lower delay, but too small of a THRESHOLD 
value results in instability.  When THRESHOLD is too 
small, bursting occurs at both VOQ11 and VOQ12 and as a 
result VOQ11 is not aggressively served (and its queue 
grows without bound).  The mean delay for VOQ12 
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decreases as the delay for VOQ11 increases.  The mean 
delay for VOQ21 is not significantly affected by the 
values of THRESHOLD, thus these results are not shown 
in the graph. 

 
3.3 An Erlang space model for unstable region 

 
Consider each VOQ in Fig. 1 as separate queues with 

polling suppressed.  Let ijS  be the cell service time.  The 
respective server utilization is then bounded by 
 
                        ,1}{ ≤= ijijij SEλρ   2,1, =ji     (1) 
 
since 1≤ijλ  and 1}{1 ==−

ijSEµ cell time.  Similarly, 
the total capacity iu  (in Erlangs) of port i is bounded 

1≤iu .  This capacity conservation can be used to bound 
the region of RR/RR CICQ stability in Erlang space 

),( iiij ρρ  shown in Fig. 3.  Although the traffic at port 1 is 
asymmetric 1211 λλ ≥ , 2/111 ≥ρ  and 2/112 ≥ρ  such 
that utilization is conserved across the two servers 
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The trivial solution is 
 

                       1211 1 ρρ −=       (3) 
 
which corresponds to the linear boundary of the unstable 
region in Fig. 3.  Generalizing eq. (2) and noting that 

022 =ρ , capacity conservation across the servers in both 
ports 1 and 2 can be written as  
 

           







 −






 −

+






 −






 −=






 −

2
1

2
1                   

2
1

2
1

2
1

1221

211211

ρρ

ρρρ
      (4) 

 
Since the indices can be permuted, the following 
simplification ensues: 
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Eq. (5) is recognizable as a conic section with eccentricity 
1=e  and vertex ,2/1(},{ =kh )2/1  and corresponds to 

the parabolic locus in Fig. 3.  Both eq. (3) and eq. (6) 
confirm the alternative derivation in [28]. 

 
4. An Analytical Model of Burst Stabilization 
 

In this section we develop an analytical model to 
predict the minimum BURST value needed to stabilize the 
system.  We want to establish two things concerning the 
burst stabilization protocol: 

1. That it is sufficient to inhibit such instabilities.  
This is discussed in Section 4.1. 

2. That the magnitude of the BURST parameter can 
be predicted with sufficient accuracy for the 
important range of loads expected in a real switch. 
Section 4.5 contains those details 

The polled queues at each port are intrinsically stable if 
inputs and outputs are not oversubscribed.  That is, 
 

   ,1
1

≤∑
=

N

i
ijλ   ji <∀  

 
The instability (described in Section 3) that we are 
concerned with arises primarily from the blocking of a 
VOQ on one port by the transmission from a VOQ on 
another port via the corresponding output CP buffer on 
the crossbar.  For example, buffer CPii blocks 
transmissions from VOQii because of the presence of a 
cell in the downstream buffer CPji due to transmissions 
from VOQji where ij > . 

We show that ijB̂ , the estimate for the minimum 
BURST parameter, comprises two terms: 
 

       jiij BBB +=ˆ      (7) 
 
where Bi is due to traffic arriving at port i and Bj due to 
traffic arriving at port ij > .  The interaction between 
these two traffic sources is such that their contribution to 
the minimum BURST size is both additive and load-
dependent. In the subsequent discussion, ijB̂  signifies the 
minimum value of the BURST parameter required to 
stabilize the VOQs.  All queue lengths are defined with 
respect to the THRESHOLD value which (as mentioned 
in Section 3.3) acts as an arbitrary reference level. 

Stability analysis is intrinsically difficult because 
transient effects [7, 12, 13, 17] may not possess a closed 
analytic form and only asymptotic bounds may be 
represented [10, 25].  Moreover, the VOQs at each input 
port in Fig. 1 are subject to asymmetric traffic and even 
the steady-state behavior of such asymmetric polling 
systems can be difficult to express analytically [22].  



 

Surprisingly, however, we present an accurate steady-
state bound for RR/RR CICQ switch stabilization based 
on the fact that certain aspects of our problem resemble 
the equilibrium queue length  
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for an M/G/1 model of an exhaustive polling system [2, 3, 
14] with 2

sC  the squared coefficient of variation of the 
service time S. 
 
4.1 Vacating server approximation 
 

The principles of operation of the burst stabilization 
protocol are best understood in the context of a simplified 
model having a single burst-stabilized queue.  The 
generalization from this simple burst model to the multi-
queue configuration in the real RR/RR CICQ switch 
proceeds in a straightforward way. 

Consider a single queue with arrivals that are Poisson 
distributed with rate 2/1≥λ  and serviced in FCFS order.  
Poisson-distributed events have interarrival periods that 
are exponentially distributed and the latter distribution is 
the continuous analog of the discrete Bernoulli 
distribution used in the simulations of Section 3.  Upon 
servicing a single request, the server vacates the queueing 
center for one service period 1}{ −= µSE .  During that 
vacation period, other requests may arrive into the queue.  
From the standpoint of an arriving request, the expected 
service time appears to be 2}{ =SE  because processing 
time is split equally between servicing the next request at 
the head of the queue and the next vacation period i.e., an 
effective rate 2/1=µ . Since µλ ≥ , such a queue is non-
ergodic and therefore subject to unstable queue growth. 

Now, suppose that when the queue size exceeds 
THRESHOLD the server ceases vacating the queue and 
proceeds to service at most BURST requests at a rate 

1=µ  before taking the next vacation period.  Is it 
possible to find a BURST value large enough to bound the 
queue size over a sufficiently long time period?  We 
could attempt to address this question using an M/G/1 
generalized service time distribution model [2], however, 
it will prove more instructive for our later discussion to 
present a simpler rate matching argument. 

In a fluid approximation [7, 12] the necessary 
condition (see Proof 1 in the appendix) for stability is that 
BURST (B) requests be serviced in a time τ such that: 

 

            λ
τ
B =      (9) 

 

The time-averaged rate of service must match the mean 
arrival rate in the long run.  Applying this condition to 
our vacating server model, at most B requests must be 
serviced in a period ;1+= Bτ  where the “1” refers to the 
mean vacation period.  The rate equation, 
 

         λ
B

µB =
+1

    (10) 

 
corresponds to the fraction of time for which the effective 
service rate reaches 1=µ  in this model.  It follows that 
the BURST size must be 
 

         
λµ
λB
−

≥     (11) 

 
which is finite and bounded provided µλ < . 

It is noteworthy that a term similar to eq. (11) arises in 
the steady-state limit of the rate processing function for 
leaky bucket queue management [9].  More importantly 
for our discussion, it corresponds to the second term in 
eq. (8).  We capitalize on this observation in Section 4.3. 
 
4.2 Port 2 analysis 
 

Continuing this line of thought, it turns out to be 
easier to understand the contribution to BURST from port 

2=j  interactions before turning to those due to port 
1=i  traffic. 

 
Definition 2 Let λ2 be the offered traffic at port 2.  The 
fraction of offered traffic going to VOQ21 is 

)1( 11221 λλλ −+=  at instability and 022 =λ . 
 
Corollary 2 2112 λλ =  iff 11 =λ . 
 
The mean interarrival time of cells at port 2 is 1

22
−= λτ .  

But 221 λλ ≡  by virtue of .022 =λ   Then 
1

21212
−== λττ , and 2

1
21 1

21
B+=≡ −λτ  by analogy with 

the discussion in Section 4.1.  Applying Proof 2 (see the 
appendix), the contribution to BURST from port 2 is: 
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Finally, eq. (12) can be rewritten in terms of the fraction 
of traffic going to VOQ11  as 
 

   
1

1

1
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λ
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by application of Definition 1. 



 

This result states that the mean number of cells burst 
from VOQ11 prior to processing being blocked by 
transmissions from VOQ12 is the same as the equilibrium 
queue size for the vacating server model in Section 4.1. 
The reason is that a cell will be present at VOQ21 every 
τ21 cell times (on average) causing the scheduler to vacate 
VOQ11 and service VOQ12. 
 
4.3 Port 1 analysis 
 

We now turn to the analysis of port 1=i .  Because 
bursts can be interrupted with a mean time τ21, there is 
also the possibility that VOQ12 can burst.  As seen from 
the standpoint of VOQ11 the vacation period is extended 
beyond that accounted for by eq. (13).   Since cells will 
continue to arrive into VOQ11 the burst size will need to 
be larger than B2. 

The average number of arriving cells 1L that 
accumulate during this extended vacation period is 
directly proportional to the arrival rate at port 1 according 
to Little’s Law, 
 
                                 111 WL λ=    (14) 
 
where W1 is the expected waiting-time.  Eq. (14) 
corresponds to the first term in eq. (8) viz,        
 

               
2
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with 1=µ .  In polling systems near saturation, waiting-
times approach a gamma distribution and higher moment 
effects vanish under heavy traffic [24]. 

The instability of interest to us, however, arises from 
heavy asymmetric traffic into VOQ11.  This has the effect 
of making the residual service time in eq. (15) a load-
dependent function via the squared coefficient of 
variation 
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such that B1 in eq. (7) becomes: 
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with 2/1≥f  the asymmetric fraction of the offered load 
arriving at VOQ11.  Note that f is the only variable in eq. 
(17). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As expected the length of the waiting line, and hence 

its contribution to the minimum BURST size, is directly 
proportional to the imbalance in VOQ11 traffic.  When 

2/1=f  (symmetric case) this term vanishes and does 
not contribute ijB̂ . 
 
4.4 Bounds on BURST 
 
The complete expression for estimating the minimum 
BURST as defined in eq. (7) is: 
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More formally BURST corresponds to the infimum 
(greatest lower bound) of )(ˆ fBij .  As a practical matter, 
this can be evaluated most simply as the ceiling function 
 ⋅  applied to eq. (18).  For 1≤iλ and 2/1=f  we have 
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As expected from the simulation experiments (Fig. 9), 

eq. (18) is an increasing function of f but not necessarily 
monotonic.  It does not scale with the number of ports (N) 
since blocking between any pair of ports (as remarked in 
Section 3) is sufficient to cause unstable queue growth.  
Eq. (18) is rather remarkable in that it is based on a 
steady-state representation yet the fluctuations about 
these mean values can be very significant.  It is also 
surprising that it can be expressed entirely in terms of the 
fractional load at VOQii.  It should be noted that eq. (18) 
is not valid for 1=f  since there is a cell in every slot 
and the behavior becomes D/D/1 (i.e., non-Poisson 
arrivals). 
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4.5 Numerical results 
 

For the simulation results, the experiment of Section 
3.2 was repeated (again using THRESHOLD = 32) with a 
BURST size that was incrementally increased across each 
run until the sampled drift in VOQ11 queue growth was 
observed to be adiabatically zero.  Tables 1 and 2 present 
the results for a range of λ1 values and a comparison with 
the corresponding predictions of eq. (18).  Under- and 
over-estimations are indicated respectively by (–) and (+) 
signs.  Fig. 9 also shows the measured (Bsim) and the 
predicted (Banalytical) minimum BURST values.  Banalytical is 
defined to be equivalent to 12B̂ .  These results 
demonstrate that increasing the value of BURST achieves 
stability by increasing the bandwidth for VOQ11 at the 
expense of VOQ12.  For 98.01 =λ  and 99.01 =λ  we 
determine the value of BURST for which stability is 
achieved.  In this way we establish that eq. (18) predicts 
the exact BURST size with less than or equal to 10% 
relative error for 98.01 =λ  and less than 20% relative 

error for .99.01 =λ   In all cases, except one, the relative 
errors are conservative since they are overestimates.   
 
5. Summary and Future Work 

 
We have proposed and investigated a burst 

stabilization protocol to make iSLIP IQ and RR/RR 
CICQ switches stable for the unstable region identified in 
[14].  This unstable region occurs when asymmetric 
arrivals occur at any two input ports in a switch.  The new 
protocol uses a queue length threshold in the switch VOQ 
buffers.  When a THRESHOLD value is exceeded, the 
VOQ is allowed to send up to a BURST number of cells 
sequentially.  The THRESHOLD value is configured into 
the switch and, as shown in our simulation results, a 
THRESHOLD of greater than about 32 cells is sufficient 
for stability. 

We have shown how the burst stabilization protocol 
stabilizes the VOQs under heavy traffic.  The dynamics 
of this protocol is complex but is most easily understood 
as a subtle extension of an M/G/1 polling system with 

Table 1. Calculated and simulated minimum BURST values for λλλλ1 = 0.98 
 

Loads Model Comparison 
f λ11 λ12 B2 B1 B12 12B̂  Bsim Error 

0.50 0.49 0.49   0.96 0.00   0.96   1   1    0.00 
0.55 0.54 0.44   1.17 0.96   2.13   3   3    0.00 
0.60 0.59 0.39   1.43 1.92   3.35   4   4    0.00 
0.65 0.64 0.34   1.75 2.88   4.64   5   5    0.00 
0.70 0.69 0.29   2.18 3.84   6.03   7   7    0.00 
0.75 0.74 0.25   2.77 4.80   7.58   8   8    0.00 
0.80 0.78 0.20   3.63 5.76   9.39 10 10    0.00 
0.85 0.83 0.15   4.99 6.72 11.71 12 12    0.00 
0.90 0.88 0.10   7.47 7.68 15.16 16 16    0.00 
0.95 0.93 0.05 13.49 8.64 22.14 23 21 + 0.10 

 
Table 2. Calculated and simulated minimum BURST values for λλλλ1 = 0.99 

 
Loads Model Comparison 

f λ11 λ12 B2 B1 B12 12Β̂  Bsim Error 

0.50 0.54 0.45   0.98   0.00   0.98 1 1    0.00 
0.55 0.54 0.45   1.20   1.96   3.16 4 4    0.00 
0.60 0.59 0.40   1.46   3.92   5.38 6 7 – 0.14 
0.65 0.64 0.35   1.81   5.88   7.69 8 8    0.00 
0.70 0.69 0.30   2.26   7.84 10.10 11 10 + 0.10 
0.75 0.74 0.25   2.88   9.80 12.68 13 11 + 0.18 
0.80 0.79 0.20   3.81 11.76 15.57 16 14 + 0.14 
0.85 0.84 0.15   5.31 13.72 19.03 20 17 + 0.18 
0.90 0.89 0.10   8.17 15.68 23.86 24 22 + 0.09 
0.95 0.94 0.05 15.81 17.64 33.45 34 33 + 0.03 

 



 

vacations.  The subtleties arise from the superposition of 
two dominant effects: i) the vacation periods are caused 
by pairwise interference between VOQs on different ports 
and ii) the waiting time at the busiest of the two ports is 
the result of a residual service time that is dependent on 
the magnitude of the asymmetric load.  This extended 
M/G/1 model is sufficient to predict the minimum BURST 
size required for VOQ stability in the presence of 
unbalanced traffic.   

Given the continuing increase in VLSI density, we 
believe that RR/RR CICQ switches hold great promise 
for the future [28] and that the results in this paper are 
thus very significant in showing the feasibility of 
achieving stability in this architecture without requiring 
internal speed-up.  As part of our future work we would 
like to investigate further if it is possible to derive this 
equilibrium model from the transient dynamics seen in 
the simulations.  We would also like to extend the 
analytical model for iSLIP.   

 
Appendix – Proofs for Stabilization Model 
 
Proof 1 In the notation of [7] and [12], the discrete time 
representation of the sample path representing the queue 
length is 
 
                         )()()0()( nDnAZnZ −+=   (19) 
 
where Z(n) corresponds to the number of cells in the 
queue at the commencement of discrete time-slot n.  A(n) 
corresponds to the cell count that have arrived into the 
queue by time n, D(n) corresponds to the cell count that 
have been serviced by time n, and port subscripts (i, j) 
are redundant for the single queue vacating server model 
of Section 4.1. 
 
Let l be the arrival rate in the queue and assume that 
 

    λ=
∞→ n

nA
n

)(lim   (20) 

 
Similarly, the queue will be rate stable with probability 
one if, 
 

    λ=
∞→ n

nD
n

)(lim   (21) 

 
See [7] for the complete proof. 

The equivalent fluid approximation is a continuous-
time t representation where eq. (19) is replaced by 
 
      0)}({)}0({)}({ ≥−+= tDEtZEtZE λ  (22) 

with E{·} the time-averaged mean value.  In the notation 
of Section 4.1, )}({)}({ tQEtZE ≡ . 

Assuming the time derivative exists, the condition for 
stability is that the mean drift function 
 

                   )()( tDλtQ DD −=   (23) 
 
vanish in the long run i.e., 
 

                     λ
t
tD

t
=

∞→

)(lim    (24) 

 
which corresponds to eq. (9).  
 
Proof 2 The mean time ( 21λ ) between CP12 blocking CP11 
via arrivals at port 2 is related to the mean interarrival 
rate (λ21) at VOQ21 by: 

 
   1221

1
21 +=≡− Bτλ     

 
Applying Definition 2 and rearranging terms as follows: 
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Corollary 1 affords the simplification: 
 

11

11
2 1 λ
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and eq. (13) follows by virtue of Definition 1. 
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