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Summary 

This work describes the design and implementation of a generic architecture to provide a 

collective solution for power-aware routing to a wide range of problems in wireless 

sensor network environments. Power aware-routing is integral to the proposed solutions 

for different problems. These solutions try to achieve power-efficient routing specific to 

the problem domain. This can lead to challenging technical problems and deployment 

barriers when attempting to integrate the solutions. This work extracts various factors to 

be considered for a range of problems in wireless sensor networks and provides a generic 

framework for efficient power-aware routing. The architecture aims to relieve researchers 

from considering power management in their design. We have identified coupling 

between sources and sinks as the main factor for different design choices for a range of 

problems. We developed a core-based hierarchical routing framework for efficient 

power-aware routing that is used to decouple the sources from sinks. The architecture 

uses only local interaction for scalability and stability in a dynamic network. The 

architecture provides core-based query forwarding and data dissemination. It uses data 

aggregation and query aggregation at core nodes to reduce the amount of data to be 

transmitted. The architecture can be easily extended to incorporate protocols to provide 

QoS and security to the applications. We use network simulations to evaluate the 

performance of cluster formation and energy efficiency of the algorithm. Our results 

show that energy efficiency of the algorithm is better when the transmission range is kept 

to a minimum for network connectivity as compared to adjustable transmission range.  
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Chapter 1 

Introduction 

1.1 Wireless Sensor Networks 

With recent advances in sensor technology, thousands of devices of low computation 

capalability, communication capability, and low power can be deployed to sense the 

environment. These sensors are not as reliable and robust as their expensive counterparts, 

but their size and cost economy enable the deployment of thousands of these sensors in 

the proximity of the sensed environment, providing a fault-tolerant and high-quality 

sensing network. Network redundancy provides fault tolerance, while proximity to the 

target provides high quality since signals decay exponentia lly with distance [1]. Reliable 

monitoring is important for many applications, for example, for battlefield, seismic, 

acoustic, and intrusion detection applications. The data being sensed must be transmitted 

to the base station, or sink in sensor network terminology, where it can be processed. The 

source of power to transmit data is typically the battery powering the sensor node, and 

that has only a limited amount of power. So, the micro-sensor nodes should collaborate to 

reduce the power consumption to maximize network lifetime. Figure 1.1 shows two 

sensor nodes developed by Crossbow Technology [21].  
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Figure 1.1 MICA Motes from Crossbow Technology 

 

 

Sensor networks typically contain a lot of data to be processed by the sink. 

Therefore, data aggregation is very important in this environment. It not only avoids 

overload in the network, but it also reduces redundant information flow, thus reducing 

overall power consumption. Traditionally, the client/server computing model has been 

used for multi-sensor data fusion. Mobile agents are seen as an alternative to data fusion 

of today’s sensor networks [2].  In this model, the data stays at a local site and an agent is 

moved throughout the network to perform data fusion autonomously.   

1.2 Problem Statement and Motivation 

Several solutions have been proposed for a wide range of challenges faced in wireless 

sensor networks. Each solution is geared toward solving a particular problem. We have 

identified the following major problem domains for sensor networks: 

• Data Dissemination 

• Data Aggregation 

• Reliability Transport 

• Sink Mobility 
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• Continuous Query Processing 

Solutions for an entire range of problems have been proposed, but each is catered to 

the individual problem. Due to resource constraints of the sensors, the protocols for 

handling the problems should be very lightweight. Integrating the proposed solution can 

become a major technical issue if we try to generate a lightweight protocol. So, we aim to 

provide a generic architecture that can be used to solve the above-mentioned problem 

domains.  

1.3 Network Topology used in Simulations 

The network topology used in simulations is shown in Figure 1.2.  It consists of 

sensor nodes distributed in a 2000m X 2000m area. A total of 400 sensor nodes are 

distributed uniformly over this area. The nodes are separated by 105m from one another 

in all directions as shown in figure 1.2. 

 

 

 

Figure 1.2: Sensor Network Topology. 
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In figure 1.2, nodes labeled C are elected core nodes. Core nodes are responsible for 

routing. We call other nodes as common nodes. Common nodes do not perform any 

routing. They just forward data received from a target or a core node to the next hop 

nodes on the path. Topology has a sink node S and number of mobile target nodes T.  

1.4 Organization 

The thesis is structured as follows. Chapter 2 describes related research in the 

field of power-aware routing in sensor networks. The chapter also describes our approach 

to solve the problem. Chapter 3 describes the design and implementation of our approach. 

Performance results and conclusions can be found in Chapter 4. Chapter 5 outlines 

possible directions of future research. Chapter 6 concludes the work. 
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Chapter 2 

Related Work 

2.1 Existing Approaches for Power Awareness in Sensor Networks 

Directed diffusion [3] has been proposed for the data dissemination domain. It is 

motivated by the requirements for robustness, scaling, and energy efficiency in a sensor 

network. For robustness, the solution proposes the notion of multi-path delivery. The sink 

keeps on broadcasting the query to its neighbors to check if there is any stimulus. To 

ensure reliability, the query is periodically broadcasted toward the source. In a special 

case when the neighbor nodes do not have information available about the source, they 

again broadcast the query to the neighbors. Directed Diffusion utilizes reinforcing of the 

data path to pull data on a particular path. The sink reinforces the path to receive data on 

a path providing the highest data rate. 

SPIN [4] is a proposed solution for efficient data dissemination in an energy- 

constrained environment. The protocol tries to avoid the flow of redundant data in the 

network to achieve energy efficiency. SPIN [4] eliminates the following problems 

involved with classical data dissemination networks: 

• Implosion: Flooding transmits data to all the neighbors even if they have already 

received the data. This can lead to the broadcast storm problem [5]. Broadcast has 

been shown to be very unreliable in ad hoc wireless network environments [5]. 

• Redundancy: Nodes have overlapping areas. This leads to a large amount of 

redundant data forwarded on the network.  
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• Resource Blindness: Traditional approaches do not care about the resource 

constraints of the system. With sensor networks, energy and  computational 

constraints make an important factor in any design. 

Upon occurrence of a stimulus, the nodes send notification to all the neighbors. This 

is again forwarded to the next neighbor.  The protocol performs data aggregation along 

with data forwarding.  

TTDD [6] is another novel approach dealing with data dissemination. The source 

forms a hierarchical virtual infrastructure to disseminate the data to the sinks. The 

protocol is designed to solve the problems arising as a result of sink mobility. It has been 

shown that the protocol is very efficient and robust in dealing with this problem. The 

protocol is also energy-efficient in this situation.  

PSFQ [7] is a proposed solution for a reliable transport protocol. There is an 

emerging need for reliable transport protocols in wireless sensor networks. Because of 

the application-specific needs of the sensor networks, it is difficult to design a single 

generic transport protocol. PSFQ [7] tries to provide a transport protocol that is 

customized to the needs of different applications. Examples of applications that need 

reliable data delivery is reprogramming and re-tasking the sensors. This may be required 

to change the mission of the sensor network. However this requires reliable data delivery 

support from the underlying transport layer. Such devices that can be programmed over 

the network already exist, for example, Berkeley Motes [8]. They can receive code 

segments from the network and assemble them to program a sensor for a new task. 

Normally, data sent from source to sink is loss-tolerant because of redundancy. But 

control and management information sent from the sink to the source are loss-sensitive. A 
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slight loss of data can render the entire code image useless. The main challenge is in 

programming a group of sensors, loading binaries, and switching to a new application. 

PSFQ [7] tries to ensure reliable data delivery to all the receivers with minimum support 

from the underlying infrastructure. It tries to minimize the number of data transmissions 

per lost packet and handling recovery operations with minimum signaling. PSFQ [7] 

operates very efficiently even in an environment where link quality is very bad. The 

approach tries to solve the problem of reliable data transport in order to get maximum 

energy efficiency.  

Continuous query processing [9, 10] tries to solve the problem of a long- lived 

query in the network. It tries to apply a traditional database query-processing approach to 

sensor query processing. This research also tries to keep energy consumption as low as 

possible. 

All proposed solutions try to achieve high energy efficiency and data throughput 

or low latency for a particular problem domain. 

2.2 Proposed Architecture 
 

After careful analysis of the different problem domains, we identified two main 

causes of the existing problems in the sensor network’s environment: 

1. Lack of routing infrastructure 

2. Coupling of source and sink 

First, we give a brief overview of our proposed architecture and then discuss the 

deficiencies in other proposed solutions and show how our scheme is used to overcome 

these deficiencies.  
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After a thorough analysis of the problem domains, we propose a core-based 

architecture for sensor network environments that provides an efficient solution for a 

wide range of problems in this domain. Using this infrastructure, we decouple the source 

and sink and provide a virtual routing infrastructure. The key features of the protocol are: 

• formation of a core infrastructure of a minimum dominating set of nodes, 

• rotation of the core nodes, 

• local data fusion at the core nodes, and 

• specific components for each problem domain utilizing the core for efficient 

operation. 

We use the following network model to evaluate our approach: 

• The network comprises a large number of redundant identical sensor nodes that 

communicate over radio.  

• Range of radio can be adopted for topology control of the core. 

• Once a stimulus occurs in the network, sensors surrounding it will collectively 

generate data and report it to the respective core nodes. 

• We assume a first-order radio model, as proposed in LEACH [11]. It is a simple 

model that assumes that radio dissipates Eelec energy per bit in the transmitter or 

receiver circuitry and Eamp energy per bit per unit surface in the transmission 

amplifier in order to achieve an acceptable signal-to-noise ratio. 

• All nodes in the cluster communicate with each other on the same, shared wireless 

channel. Assuming Direct Sequence Spread Spectrum (DSSS), all nodes have the 

same pseudo-random sequence. 

• We are using 802.11b as the MAC layer protocol [12].  
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The driving force behind providing a backbone infrastructure for sensor networks is 

the fact that communication is more expensive than computation from a power 

consumption standpoint. Therefore, we want the data transmission activities to be 

performed by a minimal set of nodes. The other goal is to avoid the broadcast storm 

problem. At the same time, we want the number of nodes in the core to be optimal (i.e., 

kept to a minimum) in order to maximize network lifetime, similar to the analysis 

performed by LEACH [11].  

 

We chose the modified version of the minimum dominating set (MDS), concept from 

graph theory, to form the core of the network. The reason behind using MDS is that we 

want to ensure that the core provides infrastructure services to all nodes in the network. 

The dominating set for a given graph is defined as a set of the graph whose union with its 

neighbors constitutes all elements in the graph.  Thus, a network with a dominating set of 

nodes as its core can provide service to all the nodes in one hop. We chose an alternative 

definition for the minimum dominating set that suits our architecture. We call it the 

modified minimum dominating set (MMDS), and defined as follows.  

Definition: 

Modified Dominating Set (MDS): Given a graph G = (V, E), where V are the vertices 

and E the edges comprising the graph, we define MDS V ⊂  G such that every node in G 

is either in V or is a k-hop neighbor of a node in V. MDS with minimum cardinality is the 

modified minimum dominating set (MMDS). Given MMDS V of a graph G, we define 

the core of the graph C = (V, E), where E = {[u, v] | u ∈V, v ∈ V, and u ∈S. S(u) = Set 

of nodes whose distance from u is not greater than k, excluding the node u. 
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Once core node is elected, maintenance of the corresponding cluster is restricted to 

local communications only. Rotation of core nodes within the cluster is used to elect new 

core nodes. This will ensure that network-wide interaction for cluster formation is needed 

only at the time of network deployment. After that, local nodes collaborate to maintain 

the cluster. The core node in a cluster adapts its radio range as per the topology 

requirement of the core. An energy resource manager will decide whether a node can 

become a core node. The decision is made through local interactions within the cluster. 

Once the energy level of a node goes below a predefined threshold level, the energy 

resource manager will remove the node from participating in the core node election. This 

implies that if the energy resource manager decides that a certain node cannot perform 

the tasks of a core node, the node will not be allowed to become a core node. 

Core node rotation plays a very important role in the architecture. The core node 

communicates at a high power level with other core nodes, which may drain out its power 

quickly. Apart from this, our approach adds more intelligence and responsibility to the 

core nodes. This will also consume more power from a node. Core nodes are then rotated 

periodically so that energy is dissipated evenly from all nodes within a cluster, hence 

maximizing network lifetime. 

A simple model is being used for data fusion that focuses on redundant data 

elimination. When a core node receives data from different sensors in the network, it 

compares the data to check for any redundant information. To uniquely identify the data, 

we use the sequence number and the network id contained in each packet header. The 

source nodes include their respective network id and a sequence number in the packet 
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header. We discuss next the deficiencies of other proposed solutions that we used to 

evaluate our architecture. 

In directed diffusion, if sensor nodes do not have any idea about the location of 

the source node, they rebroadcast the query again. This can lead to the broadcast storm 

problem. Our architecture never attempts broadcast by virtue of setting up a core 

network. The core nodes have all the information about the coverage area and the core 

topology. Thus, any query can be delivered to the source node through unicast.  

In directed diffusion the sink keeps on broadcasting the query to the source nodes 

to check for any stimulus. Our architecture does not depend on passive query from the 

sink. For data dissemination, as soon as a node senses any stimulus, instead of waiting 

passively for a query from the sink, it will proceed to update the respective core node 

about the stimulus. The information will then be forwarded to the entire core. Thus, we 

save on the formation and maintenance of the dissemination infrastructure as the core is 

formed once at the deployment of the network. We also achieve considerable energy 

savings by avoiding continuous query broadcasts from the sink node as broadcast has 

already been proven to be very unreliable in ad hoc wireless network environments [5].  

Passive query also forces all nodes in the neighborhood of the sink to be involved in 

query forwarding. But in our case, only core nodes are involved in query processing. 

Since all the stimulus information is already located at the core, the sink just needs to 

query the respective core node. The other deficiency in direct diffusion is the enforcing 

concept. The sink enforces a high data rate path to retrieve data. This is not suitable for 

sensor network type-environments. The nodes on the enforced path will be drained at a 

very fast rate, which may result in network partitioning. This is also a direct effect of 
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coupling between the source and sink. Once we decouple the source and sink by a core 

network, it automatically takes care of this inefficiency. Since rotation of core nodes 

dissipates power from all the nodes uniformly, our approach can lead to increased 

network lifetime.   A similar approach is taken by TTDD [6], but its data-forwarding 

infrastructure is very simple. There is still room to improve on the backbone 

infrastructure topology. The core tries to improve on this fact. This can be very important 

for sensor networks processing real-time data.  

A node in SPIN [4] transmits data to all its neighbors for data dissemination. This 

can be a very resource-consuming and inefficient strategy for data dissemination since in 

a typical sensor network only the sink is interested in receiving the data. Other nodes just 

provide support to transport the data. So, a minimum number of nodes should be used to 

disseminate data to ensure energy efficiency. Our approach leverages the already 

constructed infrastructure of the core. Therefore, data will be transferred from the local 

cluster node to the core, and the core will forward the data to the sink’s core node. 

Therefore we try to involve a minimum number of nodes in energy-consuming activities. 

The core node at the source end acts as a very effective data-aggregating agent. We do 

not want to use mobile agent-based data aggregation because of security problems 

involved with it. Since all data from a cluster passes through a core node, the  core node 

can drop the redundant data packets, thereby increasing energy efficiency. We want to 

point out that this aggregation is apart from what is performed at the local cluster nodes. 

Thus, this comes in addition to what SPIN [4] can achieve. This can be achieved only 

with a backbone infrastructure overlayed over the sensor network.  
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PSFQ [7] approach argues that overhead involved in transmitting data through the 

entire network is justified since the intended receiver is the entire network. But in most 

real-world problems, only a group of sensors is to be reprogrammed. The scenario where 

the entire network is involved for transmission can be very resource consuming. Since 

our architecture uses a core-based scheme, we can localize reliable data delivery to the 

nodes in a given cluster only. Thus, data will be transferred reliably to the respective core 

node through the core infrastructure and the core node can then forward the data within 

the cluster for reliable delivery. 

 In LEACH [11], a similar hierarchical routing protocol has been analyzed, but 

the approach only aims to maximize the lifetime of the network. Cluster-heads were 

responsible only for transmitting the data to the base station. Our approach makes the 

core nodes more intelligent in the sense that the nodes collaborate with each other to 

accomplish a wide range of tasks. The backbone infrastructure created by the core nodes 

can be used by the already proposed solutions, as they will be applied by the core nodes 

in the local domain only. We want to emphasize that though our architecture is self-

sufficient to handle a range of problems, the already proposed solutions can definitely 

gain from services provided by our architecture. Also, LEACH hierarchical cluster 

maintenance involves network-wide interaction of the nodes. Our approach has an 

advantage over it being a totally localized one.  
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Chapter 3 

Design and Implementation 

3.1 Core Formation 

Since computing a dominating set of a graph is an NP-hard problem, we have 

used the approximation of the algorithm from CEDAR [14] to compute the minimum 

dominating set of a given sensor network. The algorithm is based strictly on local 

interactions. We have identified the number of hop “k” in a local cluster as a design 

metric. We have implemented the algorithm in ns2 [15]. Once a core node has been 

elected through local interaction, it has knowledge about all neighbors in its cluster. This 

information is used by a core node to transmit data to neighboring core nodes and local 

cluster nodes.  

The following messages are exchanged between local nodes to elect core nodes. 

After message exchanges are over, core infrastructure is established and each common 

sensor nodes associates itself to a core node.   

Initial Hello Messages for Neighbor Discovery : When simulation begins all nodes start 

broadcasting HELLO messages at random intervals between 0 and 

OUR_ALGO_MAX_HELLO_INTERVAL (0.1 second).  These hello messages are 

broadcasted for hello_period_(5 seconds). This gives every node an opportunity to 

broadcast the hello message 50 times. This ensures that if the message gets destroyed due 

to collision, it will be reliably transmitted to all the neighbors through multiple 
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broadcasts. Here we assume that the sensor nodes are stationary, so the HELLO message 

exchange is only done initially during the network self-configuration. 

 

GEN_POW_CORE_NODE message exchange for core discovery: After neighbor 

discovery, each node starts broadcasting GEN_POW_CORE_NODE messages at random 

intervals between 0 and OUR_ALGO_MAX_HELLO_INTERVAL (0.1 second). 

Following are the messages broadcasted for the next hello_period_(5 seconds) : 

 

1) The message contains (u, N (u), N*(u), dom(u) ) tuple for each node where u is 

the node’s address, N(u) is the number of its neighbors, N*(u) is the number of 

other nodes for which it is acting as a core, dom(u) is its dominator.  

2) If a node receives a GEN_POW_CORE_NODE and it has N*(u) greater than 

zero, the node selects the sender as the core node. This ensures that if a core node 

exists in a neighborhood, nodes in that neighborhood will select it as their core 

node. 

3) Once a node has received GEN_POW_CORE_NODE messages from all its 

neighbors and it still did not choose a core node, it selects the node with the 

maximum number of neighbors as the core node. This ensures that the node 

having the maximum degree of coverage is selected as the core node. 

4) Once a node selects another node as its core node, it sends it a 

GEN_POW_NEIGHBOR_CORE_NODE message to confirm the selection.  
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GEN_POW_NEIGHBOR_CORE_NODE message transmission to discover the 

neighborhood topology by a core node: GEN_POW_NEIGHBOR_CORE_NODE has 

(w, dom(w)) as its contents, where w is the neighbor of the node transmitting the message 

and dom(w) is the dominator of w. Each node sends this information for all its neighbors 

to the selected core node. Once a core node receives this message, it selects itself as its 

own core node. This message exchange provides the core node with the topological 

information about neighboring core nodes.  

Here we want to stress the point that we have deviated from the CEDAR [14] 

algorithm for core formation since it exhibits some deficiency in our scenario. Our main 

contribution is that we do not allow a node to elect itself as a core node once it finds itself 

as a node having the maximum degree of neighbors among its neighboring nodes. 

Intuitively it seems that this step may lead to more time for the core formation algorithm 

to converge since core node election has been delayed. But we argue that this 

modification will remove any chances of nodes that do not have any sensor nodes 

attached to them from being elected as core nodes. Since by the time a node elects itself 

as a core node, it is possible that all the neighbors have already been selected as core 

nodes. This can be attributed to the distributed nature of the algorithm. Even if a node 

announces itself as a core node, none of the neighboring nodes will associate themselves 

with it. We have therefore taken the approach of association by the sensor node. Thus 

only a common sensor node can decide to elect a node as a core node. With this 

approach, we guarantee that every core node represents at least one common sensor node. 
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As shown in Figure 3.1, the central node elects itself as core node and announces 

it to the neighboring nodes. But the neighboring nodes are already elected as core nodes, 

thus the central node is a core node with none of the common nodes associated with it. 

 

 

 

 

Figure 3.1: Node electing itself as a core node. 

 

 

3.2 Core Update 

We worked on a sensor network model suitable for proactive sensing needed by 

many applications such as real time monitoring of the environment. This model will be 



 18 

inefficient for applications where continuous environment monitoring is not essential, 

like event-based detection of a target. 

Once a core node receives a query for an object sensed in its coverage area or in 

that of its neighboring nodes, it forwards the query to the nodes that sensed the object, 

and proactively forwards the information to the core node (if other than itself). The 

sensor node sensing a target proactively keeps on reporting to its core node about the 

target at a low frequency. This message is forwarded to all the core nodes for maintaining 

a soft state [19] for the existence of information about the target. 

During the core formation phase, each core node stores and updates the 

information about its neighboring core nodes. This information is stored in a cache. 

When a sensor node detects a target, it forwards the information about the target to its 

core node proactively. All the sensing nodes report this information at a relatively small 

rate initially. The basic idea is to propagate this information to all core nodes once the 

target is detected. This ensures that the core infrastructure has complete information 

about existing targets in the sensor field. The nodes can update the core infrastructure at 

the same rate as they sense the target, but it will be a lot of overhead in the case where 

none of the sinks are interested in the target being sensed. And we want to send data only 

on the path from which a sink is requesting the data. Data being sent on the other paths 

will just add to the overhead. The target is characterized by a unique “id.” The algorithms 

to generate this unique “id” are out of the scope of this work. But we propose to use a 

target’s fingerprint being generated by some suitable signal processing technique as the 

“id” for the target. In our work, targets broadcast their network address to the 

environment. We use this as the “id” of each node in the simulation, as each node has a 
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unique network address. Though not a reasonable assumption in an unfriendly 

environment, the architecture can be extended with an appropriate algorithm that can 

generate fingerprint for the target.  

 

The update message forwarded to the neighboring core nodes: The update message 

header contains a unique “id” for the target. The update message also contains a unique 

sequence number used to characterize the update message for a particular target. The 

update message header contains a 32-bit entry for this sequence number. The sequence 

number wraps back to 0 after it reaches 232 -1. It is important that each target maintains 

its own sequence number. Thus the tuple of <target_id, sequence_number> can 

characterize a unique update message generated from the same target. The update 

message also contains source route information to the target it represents. It is important 

that the length of the sequence number field be large enough to avoid wrap up of the 

sequence number before the message reaches remote core nodes in the core 

infrastructure. If the sequence number wraps up very fast, there will be incoherent 

information in the core infrastructure since remote core nodes may store a stale sequence 

number similar to that stored at nearby core nodes. We therefore chose a 32-bit sequence 

number for this purpose. The nodes forwarding the message add their address and their 

remaining energy level to the source route entry of the packet. Core nodes update the 

entry for the target id and the sequence number into their cache before forwarding the 

packet to neighboring core nodes. They update the path for this entry as described below. 

Upon receiving the update message for a new target node, the core nodes add the entry 

into their respective caches. This packet is then forwarded to the neighboring core nodes 
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except the one that forwarded the update message. The sequence number is used to 

differentiate old update messages from new ones. This is in turn used by core nodes to 

maintain soft states for the targets. If a new update message arrives at a core node, it 

checks if it already has an entry for the corresponding target node. Depending on the 

existence of this entry it takes one of the following actions: 

1) If no entry is found, it adds the entry into its cache and updates the sequence 

number for the target. It then adds the weighted mean of the source path length 

contained in the message and the inverse of the minimum of remaining energy of 

nodes on source path [18]. Basically, we are using the shortest path route to 

disseminate both data and query. However, in our case the shortest path is a 

function of the number of hops, which is the length of the source route path, and 

the minimum energy of nodes on a path. The total path length is directly 

proportional to the number of hops, thus shorter hops will be preferred over 

longer ones. At the same time, the inverse relation of path length to the minimum 

remaining energy on a path will discourage storing a path with bottleneck nodes 

even if such a path is shortest in terms of the number of hops. After adding this 

path to the cache, the core node will forward the update message to all the 

neighboring core nodes except the one that originally forwarded the message. 

2) If the node already has an entry for the given target node, it checks the sequence 

number for the new packet and takes action as follows:  

a. If the new sequence number is greater than the sequence number stored in 

the cache, the cache is updated with the new packet information. The 

sequence number is updated, and the existing path is replaced by the new 
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path. The message is forwarded to all neighbors of the core node except 

the one that originally forwarded the message. 

b. If the new packet sequence number is smaller than the one stored in the 

cache, the update message is simply dropped without any processing. 

c. If the packet sequence number is equal to the one stored in the cache, the 

core node compares the path length of the route path in the new message 

to the one stored in the cache. If the new path is greater than the cached 

one, the message is dropped without any processing, otherwise, the cache 

is updated with the new path and the message is forwarded to all the core 

nodes except the one that originally forwarded the message. 

Thus our core updating algorithm supports discovering efficient paths to the target 

but it suppresses the progress of a less efficient path over the existing one. As a result, 

inefficient paths are suppressed, saving energy from being wasted and, at the same time, 

better paths are supported over the core infrastructure.  

 



 22 

 
Figure 3.2: Local core update message. 

 

Figure 3.3: Global Core Update. 
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Figure 3.2 shows the local handling of the core update message. P and W are the 

target elements to be sensed. Handling of local core update messages has been chosen to 

be time-driven. Therefore, nodes sensing the targets just keep on updating the most recent 

sequence number for each target id. This information is not forwarded to the core nodes 

until a timer associated to the nodes for local updates expires. Thus, even though core 

nodes A and B keep on receiving the update message, they wait for the timer expiration 

before forwarding the packet. The local update timer at core nodes are set to higher 

values as compared to common nodes. Common sensing nodes send the global core 

update message with short random delay to their respective core nodes. Transmitting at 

short random delay ensures that transmission is not synchronized leading to collisions. 

The core nodes higher timer values ensure that the core nodes have all the updates from 

neighboring common sensor nodes before transmitting a global update message to the 

core infrastructure. Therefore, in Figure 3.3, common core nodes transmit the most recent 

target ids to the respective core nodes A and B with short randomized delay after the 

expiration of the timer. Core nodes A and B have already received local update messages 

from common nodes by the time their respective timers expire. The core nodes transmit a 

global update message only if there is a change in the status of stored target ids. 

Accordingly, core nodes C and D do not forward any global update message to the core 

infrastructure on their own if they do not have status change after the expiration of the 

timer. Thus the time-driven model used at core nodes ensures that information is not 

transmitted on the core infrastructure at an excessively high frequency leading to draining 

of the battery power on the infrastructure. It also helps us to ensure that core 

infrastructure is updated only if there is change in the network environment. Therefore, in 



 24 

Figure 3.3, nodes A and B transmit the information to neighboring core nodes. Node A 

transmits the message to B and D while B transmits the message to node A and C.  Solid 

arrows represent the transmission of core update messages to the respective core nodes 

while dashed arrows show core update messages sent to neighboring core nodes. Core 

node A transmits a message containing target ids for P and W to core nodes B and D. 

Core node B transmits a message containing the target id for P to the core nodes A and C.  

By the time a message from A reaches node B, it has already a recent sequence number 

for P and it has shorter path to P cached as compared to the one contained in the message 

received from A. So node C updates the cache for the path to W, and forwards a core 

update message that contains the path to W to core node C. All the intermediate nodes 

keep on adding their energy level to the forwarded packet. Core node A receives an 

update message from B containing path information to P. But node A has already a path 

cached for W (A-Common Node- W) which is shorter in length to the path forwarded by 

B (A- common node- common node – B – W). Here we have eliminated the cycles in the 

source path before comparing the paths. We want to stress the point that since we take the 

weighted mean of energy level and hop count for determining a path length, even if the 

path cached by A has a smaller hop count, it will still be replaced by the path from B if 

the energy level for some node in the path cached by A is very low.   Core node B 

forwards the message containing path to W and P. Core node C updates its cache. Before 

node C forwards this message to D, it receives the update message forwarded from D. 

Node C compares the path length of W in the message to that cached. It finds the cached 

path smaller for the same sequence number so it just drops this packet without any 

processing. Thus only the best routes are cached on core nodes. Upon receiving the core 
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update message, Core node D forwards the message only to C but not to A, since it has 

received the message from A.  

  All intermediate core nodes attach a timer that deletes the soft state associated 

with the target node upon its expiration. This indicates the unavailability of the target 

node. Referring to Figure 3.3, node C can no longer sense W if it does not receive an 

update message for target W before the timer expiration. Otherwise a new sequence 

number must have been forwarded for W on the core infrastructure. So C deletes the 

cache entry for the target W. We therefore do not need to transmit any cache clear 

message to clear cache entries in the core nodes. This saves energy by avoiding message 

flooding over the core infrastructure.  

 

Choosing an update period is a design issue for our architecture. Choosing a large 

period will make the system store stale information about the target since by the time a 

new update message is generated, the target might have already moved away from the 

sensing node reach. On the other hand choosing a small period will add a lot of overhead 

to the update mechanism, as core nodes will be updated a number of times for the same 

target even though the target stays in the same core domain over the entire period. So we 

have chosen a simple model to select the time period for updating the core, as described 

next. 

 

Upper Bound on Update Timers:  

Assuming distance between neighboring core nodes = r meters 

Maximum distance a target has to travel to enter another core nodes domain = 2r meters. 



 26 

Minimum distance a target has to travel to enter another core node domain = 0 meters. 

Average speed of target = v m/s. 

Average time taken for the target to move into the domain of another core node = 2r/ v. 

 

3.3 Query Forwarding 

The goal of query forwarding through a virtual backbone infrastructure is to 

maximize network lifetime. This will help maximize energy efficiency. When a sink 

requires data, it sends a data query to its respective core node. The core node forwards the 

query to the upstream core node that provides the shortest path (taking energy usage into 

account) to the target using cached source route. The query is forwarded until it reaches 

the core node that announced the existence of data the sink is interested in. To stop the 

query from being forwarded indefinitely, we can take two approaches:  

1) The first approach is to include a field similar to TTL in IP header [20]. The sink or a 

core node can specify the TTL field in a query packet. Each core node receiving the 

packet will decrement the TTL field value by one before forwarding it to the next 

upstream core node. When the field value reaches zero, the query packet will be 

discarded by the virtual backbone formed by the core nodes.  

2) Since we are using source routing approach to forward the query, in the second 

approach we do not need any counter field since the source path will limit path length for 

the query to be forwarded.  
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We are using the second approach for limiting the path length to which the query 

will be forwarded. During the core update phase, all core nodes calculate the minimum 

length to the target (taking energy usage into account) and store this path in a cache for 

source routes, this path will be used to forward the query to the target core node. The 

query is forwarded using source routing until it reaches the core node that announced the 

existence of data the sink is interested in. 

 

The strong point of core-based query forwarding is that the query need not be 

flooded even in a single core domain. A query will be handled directly by the neighbors 

sensing the target. This approach is much more efficient than the case where the query 

has to be broadcast to the entire sensor field. This approach will be even more efficient 

than the case where a query will result in flooding of at least a single cell area. This 

approach will also be very effective for query aggregation. When a core node receives the 

same query from different sinks, the core node drops duplicate query messages and 

forwards only one of the duplicate queries to upstream nodes. This approach is similar to 

the one used in TTDD, but we remove the formation of any cycles in data forwarding. 

To use this query aggregation, we need a way to keep track of upstream nodes to 

which we need to forward the data. To achieve this, we just keep an index of the nodes 

from which query for a particular target is received. When an entry already exists for a 

target at a core node, we just drop the query at that point and keep an index of the 

upstream node from which the query came. Thus when data arrives, we just forward the 

data to all upstream nodes that sent a query. In other approaches like TTDD, cycles are 

formed in data forwarding since the same query could have reached a node from multiple 
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directions. However in our approach since a query is forwarded using source routing, it 

can only reach core nodes from one upstream node, thus eradicating any chances for the 

formation of cycles. Query aggregation is illustrated in Figure 3.4. 

 

 

 

Figure 3.4: Query Aggregation at core nodes. 

 

 

Here we see that when a core node receives queries for the same target from both 

S1 and S2 sinks, it drops the duplicate query and maintains an index for the node that 

forwarded the query. It just forwards one query message to downstream core nodes. 

Since each node maintains an index of upstream core nodes,  a node does not need to 

maintain the source route for the data to be forwarded. In the case depicted in Figure 3.4, 

when data arrives for the target, the core node sends a copy of the data to both upstream 

nodes.  
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When a query message traverses the  path to the target, timers are initialized at the 

core nodes in the path. A timer expires at a value that is preset by the administrator. This 

expiration time has to be higher than the rate at which the target produces data. The sink 

keeps on sending update messages to its respective core node for the query it initiated. 

The time period of sending update messages is smaller than the expiration time of the 

timers attached to the core nodes for the corresponding query. TTDD uses update 

messages to keep the respective query alive on the path on which the query is forwarded. 

If core nodes do not receive explicit update messages before the expiration of the timer, 

they stop forwarding the data to the sink. This approach eradicates any need for an 

explicit kill signal by the sink to the sensor node when the sink looses interest in the 

target’s data. This approach is very scalable and efficient in the case where multiple paths 

exist from the target to the sink. But in our case there is a unique well-defined path 

between the sink and the target on which a query gets forwarded. Therefore, sending an 

explicit kill signal along that path will be much more energy-efficient as compared to the 

periodic update message. Therefore we have modified this approach in order to keep the 

query alive along the query-forwarding path. We removed the timer associated with the 

update messages. Now the update messages generated by the sink are handled by the 

sink’s core node. Whenever the sink’s core node receives an update message it resets a 

timer as described earlier. If the timer expires, it means either the sink is not interested in 

the target anymore or the sink has moved out of range from the core node. In this case, 

the core node sends an explicit kill message to the core nodes on the query-forwarding 

path. The kill message contains a unique id to identify the query message associated with 

it. Upon receiving the kill message, the core nodes in the path set up a timer with the 
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expiration period as discussed above. In case the sink moves to another core node’s 

domain, the sink is asked to register itself with the new core node upon receiving any 

update message from the sink. Once the sink is registered with the new core node, a new 

query is generated by the core node on the shortest path to the target. If any core node on 

the previous path receives this message, it sends an update signal to all upstream nodes to 

remove the timer associated with the query. This update message is forwarded until it 

reaches the target’s core node. The core node handling the query, updates the state 

associated with the downstream core node. If the timer expires, the nodes remove the 

downlink core node states for the query.  

3.4 Data Dissemination 

Once the core is formed, core nodes communicate through a modified dynamic 

source routing (DSR) protocol [16]. We have modified the DSR to suit our architecture.  

Once a core node receives a query for an object sensed in its coverage area or that 

of its neighboring nodes, it forwards the query to the nodes that sensed the object and 

proactively forwards the information to the core node. The nodes sensing the target 

increase the frequency of data forwarding to the core node. The core node starts 

forwarding the data on the reverse path from which it received the query. The data is 

forwarded on the reverse path until the data reaches the core node to which the sink is 

registered. In case multiple sink nodes query for the same target, the core node will 

forward the data to all neighboring core nodes from which it received aggregated query 

messages.  
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The paths taken by packets to reach the sink can be suboptimal as compared to the 

case where direct broadcast is employed for query dissemination, as in the case of 

Directed Diffusion. In the case of a direct broadcast, a query is broadcasted to the entire 

sensor network area and the shortest path to the sink is selected for data forwarding. 

However with our approach the path taken can be sqrt(2) times the optimal path as is the 

case for TTDD. For example, Figure 3.5 shows the path taken by a query message from 

sink S to target T. Solid arrow shows the path for query flooding and dashed one for core 

based query forwarding. In case of query flooding, query follows a straight path from S 

to T. When core based architecture is employed, query is forwarded through neighboring 

core nodes thus query will be forwarded along the sides of right angle triangle with direct 

path as the hypotenuse.  

 

 

 

Figure 3.5 Path Lengths for Query Forwarding 
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3.5 Core Maintenance 

To increase the robustness of the core infrastructure, we employ another node as the 

replica of each core node. We call this node cluster backup node. The core node 

periodically replicates its state to the backup node. When a new core node is elected in 

the network, the recent core node remains connected to the core until the newly elected 

node has resumed the routing responsibility. The energy resource manager schedules re-

election of core nodes. The current core node and the backup nodes will have minimum 

probability of being re-elected as core nodes. This ensures that energy is drained 

uniformly throughout the cluster. The rotation performed ensures that the nodes are 

elected as core nodes in a weighted round-robin fashion. We therefore introduce five  new 

packets in source routing, as described next: 

1. BACKUP_BEACON: This is periodically sent by the core node to backup a node 

for state update. This is also used by a core node to update newly elected core 

nodes about its neighboring core nodes. 

2. BACKUP_ACK: Sent in reply to the BACKUP_BEACON to ensure that the state 

has been updated and the backup node is alive.  

3. JOIN_NODE: This is used by the newly elected core node to notify the 

neighboring nodes that a new core node will join the network. When neighboring 

nodes get the message, they create an alias of all the paths containing the core 

node that sent the message. All instances of the current node in source routes are 

replaced by the newly elected core node.   
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4. WELCOME: The neighboring nodes that receive a JOIN_NODE message 

transmit a WELCOME message to the newly elected core node.  

5. KILL_NODE: The newly elected core node waits for the WELCOME message 

from all the neighboring nodes, and then it sends a KILL_NODE message to all 

the neighboring nodes. The neighbors delete all the entries in the routing table 

containing the obsolete core node. Then, this message is forwarded in the 

network. All core nodes update their routing tables to substitute entries of the 

obsolete core node with the newly elected one.  The neighboring nodes keep the 

mapping between the newly elected core node and the obsolete core node, until 

timer expiration, directing traffic through the newly elected core node if the route 

contains the obsolete core node. 

When the obsolete core node receives the KILL_NODE message, it relieves itself 

from its routing responsibilities and joins the group of sensor nodes in the cluster. 

The modifications in the source routing hide the dynamics of the network from 

the routing protocol. Source Routing is very efficient in an ad hoc environment if the 

topology of the network is stable. With inc reasing dynamics of the network, energy 

efficiency degrades. This is due to the fact that with increased link failures, there will 

be a need for a lot of route discovery in the network. In our scenario, sensor nodes are 

static, but dynamics in the network are generated because of the rotation of core 

nodes. By ensuring that a newly elected core node takes the place of the obsolete core 

node before the node relieves itself, we hide the network dynamics from the protocol. 

Since all nodes in the core network are updated about the creation of a new core node, 
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no link failures will be faced. Before all nodes are updated, the distant core nodes 

may use the obsolete path containing the obsolete core node. However, this initial 

transition is masked by the neighbors of the newly created core node. The mapping 

stored at these nodes is used for this purpose. 

One major challenge of our design is to handle failure of a core node. In this case 

the backup node will contain the obsolete state. But we assume that the network 

topology will remain stable if the period for BACKUP_BEACON is optimal. In this 

case, the backup node will just initiate a JOIN_NODE to the neighbors. Thus, a 

backup node enters the core network upon failure of its corresponding core node.  

We provide support for reliability by using hop-by-hop recovery of the data as 

proposed in PSFQ. Thus, instead of flooding the entire network with data, only the 

target cluster will be flooded with data. On the core network, we provide hop-by-hop 

recovery. Since data will be transmitted only to neighboring nodes, an end-to-end 

approach for reliable transport is efficient to apply here. Since the backup node has 

the same state as the core node, upon failure of the core node, it can recover very 

efficiently by asking for the holes in the data received.  

For the local cluster, we are using 802.11b DCF for data transmission. Our 

emphasis is on core-level reliability to the applications since PSFQ [7] argues that 

with a large number of hops, the success rate of the end–to-end system decreases 

exponentially. But with the core network, we have reduced the number of hops. 

Instead of going for complex protocols, we can achieve the same degree of reliability 

with traditional protocols as well.  
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Chapter 4 

Simulation Results and Conclusions 

4.1 Initial Performance Results 

We are using a manually configured sensor network environment for all 

simulations. This configuration is suitable when we have full control of the environment 

we are planning to sense. However our algorithms are not tied to the sensors 

configurations. The algorithms can work without any need of extensions in any 

environment. So even if random distribution of sensors is inevitable, our algorithm will 

work perfectly fine without any modifications. In order to do so, we have ensured that the 

sensor nodes do not use any information being used to manually configure the nodes in 

the sensing environment for correct operation.  

Initial simulation results are gathered with only one target node and one sink 

node. The target node and sink nodes are configured to be moving at a maximum speed 

of 5m/s, with a pause time of 0.10 seconds. The sink and target nodes move over the 

entire area covered by the network topology shown in figure 1.2.  

 

 

 

 

 

 

 



 36 

 
 

 
 
   Figure 4.1: Basic Data Forwarding to the Sink. 

 

 

Over that time we collect the sum and standard deviation of the remaining energy 

out of the initial 10 Joules assigned to all the.  Then we collect the same set of data for 

the network topology but using a very simple clustering algorithm as described below. 

We fix the core sensor nodes at the start of the simulation. For example, Figure 4.1 shows 

a basic approach of data forwarding where all the nodes directly forward data to the sink. 

In Figure 4.2, node number 21 is elected as the core node for nodes 0, 1, 2, 20, 22, 40, 41 

and 43.  Now instead of engaging into route discovery and forwarding data directly to the 

sink, all nodes send their data packets to their respective core nodes. The core nodes then 

perform route discovery to the sink and forward the data packets to the sink as shown in 

Figure 4.2. 

sink 
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Figure 4.2: Data Forwarding through Core Nodes. 

 

 

The results obtained are shown in Figure 4.3 and Figure 4.4. Figure 4.3 shows the 

total energy remaining for all nodes in the network topology and Figure 4.4 shows the 

standard deviation for the total energy of all nodes in the network topology. 
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Figure 4.3: Mean of Remaining energy per node. 

 

 

Figure 4.4, Standard Deviation of Remaining Energy per node 
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The results obtained were the motivation behind our proposed line of research. As 

can be seen in Figure 4.3, the average energy remaining per node is higher for our 

approach than the basic approach. We start with each node having 5 joules of energy. As 

time progresses, the basic approach spends more energy than the basic clustering 

approach. As time progresses the difference between the two plots keeps increasing. This 

confirms our intuition that, over a long period of time, a clustering algorithm can prove to 

be much more energy-efficient than basic shortest path routing algorithms. All 

optimizations proposed for shortest path routing algorithms can then be applied to the 

cluster-based approach for added energy efficiency.  We can also see that the remaining 

energy per node decrease at higher rate for the basic shortest path approach as compared 

to the clustering approach. This shows that a clustering-based approach can be used to 

increase the lifetime of individual sensor nodes. 

Figure 4.4 plots the standard deviation for the remaining energy per sensor node. 

The graph shows that standard deviation remains lower for a cluster-based approach as 

compared to the basic approach. We also see that the standard deviation increases over 

time, but it increases at a lower rate for the cluster-based approach as compared to the 

basic approach. Also the standard deviation for the cluster-based approach flattens out as 

time progresses. This confirms our initial assumption that with a cluster-based approach 

all sensor nodes spend energy more uniformly. A cluster-based approach can therefore be 

efficient in extending the network lifetime. Moreover, since we are ensuring that all 

nodes spend their energy more uniformly, the point in time when network partitioning 

would occur, due to nodes exhausting their batteries, can be extended. The results 

obtained are due to the fact that 8 out of every 9 nodes are forwarding their packets to 
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their respective core nodes. Therefore, out of every 9 nodes, 8 nodes are following a 

similar transmission behavior, spending energy at same rate as a result. Thus (8/9)*100 = 

88.89% of the nodes will have a similar transmission pattern resulting into mostly the 

same energy spending pattern. This explains the better standard deviation obtained by the 

clustering algorithm as compared to the basic approach. 

 

4.2 Performance Evaluation of Architecture 

Out of 400 nodes, 81 nodes are elected as core nodes in the simulation. This can be made 

more efficient at the expense of a more complicated design, as will be discussed later. 

 

  

           

Figure 4.5: Elected Core Nodes. 
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Figure 4.5 shows the result of core formation. 

Here we see that some of the nodes elected as core nodes have chosen other nodes 

as their core nodes. This is an outcome of the approximate solution we are using to solve 

the NP-hard minimum dominating set problem. We can improve this with some extra 

message exchanges but it will lead to extra overhead for core formation. The overall 

architecture will function perfectly fine with some extra core nodes included. 

We want to stress the advantage of using the degree of neighboring nodes in 

selection of core nodes. We see that the algorithm does not favor electing nodes on the 

boundary of the sensor field as core nodes. This is a direct result of the fact that nodes 

having a greater number of neighboring nodes are favored to serve as core nodes. If a 

node on the boundary is elected as a core node, it will serve a smaller number of 

neighbors than ones that are located more towards the center of the sensing field. 

 

Figure 4.6a and 4.6b shows the results of core node election with one- and two-

hop transmission of core formation packets. We see a considerable decrease in the 

number of core nodes being elected as we expected. But this also is an indication of an 

increase in the network load on each of the core nodes. The other factor we want to stress 

is the effect of the network load on the distributed algorithm. The results show that nodes 

that are one-hop (or two-hop, depending upon the number of hops used for packets 

transmission) away from the boundary are preferred over other nodes for being elected as 

core nodes. The simulation results show that this is due to the lower network contention 

towards the boundaries as compared to the central sensing zone. We saw a greater 

number of packets dropped by the nodes towards the center as compared to those on the 
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boundary.  After neighbor discovery, the nodes towards the boundary update the 

neighboring nodes about their own degree and degree of dominance as discussed in 

section 3.1. This information is transmitted by the nodes near the boundary in a low 

contention environment thus the variation in the time of information retrieval about the 

neighbor’s dominance and degree is low. Therefore, core nodes are selected uniformly at 

one-hop boundary. While towards the center, due to high contention, there is high 

variance in the time for nodes to receive broadcast information. Moreover, due to using 

802.11b as the MAC layer protocol, once a node gets a chance to transmit a packet, it 

captures the channel until transmission is completed. As a result, due to this variation in 

information retrieval, once a core node announces its status, all neighboring nodes 

waiting for complete information select it as their respective core node. This seeming 

unfairness introduced in the algorithm is due to network contention. 

                       

   Figure 4.6a: Elected Core Nodes with                  Figure 4.6b: Elected Core Nodes with                                    
       One-Hop Packet Transmission.                           Two-Hop Packet Transmission. 
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Figure 4.7 shows the result of core formation in terms of the remaining average 

energy per node versus transmission power of the nodes. Figure 4.7 confirms the 

common thesis arrived at by existing work on topology control of multi-hop wireless 

networks using transmission power control. These works prove that for optimal energy 

usage, the transmission range used by nodes should be kept to a minimum to keep the 

network connected [17]. This can be attributed to the fact that transmission energy is a 

function of transmission power per hop and the number of hops data is transferred. When 

we increase the transmission range, the number of hops decreases linearly while the 

power per hop increases exponentially with an exponent of 2 to 4 [18].  As a result, the 

energy consumed in a network is minimized with minimum transmission range. This can 

be seen from Figure 4.7. It shows a plot of the remaining energy for different values of 

the transmission range. It clearly supports the minimum transmission power thesis. We 

see that the average remaining energy decreases as we increase the transmission power.  

This supports using the minimum transmission range combined with multi-hop 

forwarding for core formation instead of using extended transmission range. It is one of 

the design parameters, since intuitively it seems that extending the transmission range 

will result in the transmission of a much smaller number of packets – a larger number of 

nodes can receive broadcast packets. At the same time, using a decreased transmission 

range will increase network load since every packet has to be forwarded through a large 

number of hops. This may adversely affect overall network throughput. But this can be 

offset by the fact that spatial reuse of the network increases quadratically with decreasing 

transmission range [18]. This is so because the inhibition range of a transmission is 

proportional to the square of the transmission range. Thus any linear increase in the 
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network load due to multi-hop data transmission can be easily offset by the spatial re-use 

factor. 
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Figure 4.7: Remaining Energy (joules) vs Transmission power. 

  

 

  The other major factor to be considered for choosing between extended 

transmission range and a minimum transmission range with multi-hop forwarding is the 

simplicity of the protocol. We definitely do want to keep the network protocol as simple 

as possible for a resource constrained system. So we studied the performance of the 

extended transmission range approach for core formation. We were expecting a gradual 

decrease in the number of core nodes elected with the increase in transmission range. 

Intuitively, the increase in transmission power should lead to a higher degree of 
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clustering resulting in a lower number of core nodes to provide coverage for the entire 

network. Figure 4.8 shows the results we obtained. The result obtained was contradictory 

to what we expected. We saw anomalies in the result. At the transmission power of 0.1 

Watt, the numbers of core nodes were higher than at 0.05 Watt. On analysis of the packet 

exchanges, we found that at the 0.01 Watt power level, only the side nodes were able to 

hear the broadcast messages. While on increasing the level to 0.05 Watt, diagonally 

opposite nodes also came into transmission range of each other. This led to a decrease of 

the number of core nodes. The increase in the number of core nodes at 0.1 Watt can be 

attributed to the fact that increasing the transmission power twofold did not bring next 

hop nodes in communication range. Increasing power level only resulted in a higher 

number of collisions in the network without doing anything fruitful. This led to 

decreasing the effective transmission range of increased transmission power. This gave us 

a clear insight that using an extended transmission range approach will require an 

accurate model of the radio interface for efficient operation of the core. This is an extra 

overhead on the core layer formation. With multi-hop transmission we are sure that 

increasing the number of hops will certainly bring the next hop node in the transmission 

range of a node. As a result, we use the minimum transmission range with multi-hop 

forwarding in our implementation.  
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Figure 4.8: Number of Core Nodes vs Transmission Power. 

 

 

Routing Layer: The link layer in ns2 calls ARP only once for each packet it receives. If 

a second packet arrives to the same next hop neighbor before the ARP response is 

received, the first packet is dropped because there can be at most one packet for the same 

neighbor in the ARP table. This may cause some performance penalties. For example, an 

agent can have many data packets from multiple sources for the same sink, if the sink is 

interested in data from multiple targets. In the case of heavy traffic, all packets can get 

dropped. To address this issue, a queue is maintained in the routing agent. Each packet 

from higher layers is queued first. After a packet is sent to the link layer, a timer is set to 

expire after an ARP_WAIT_TIME that is randomly distributed between 0.01s and 0.02s. 

When the timer expires, it checks the link layer's ARP table to see if the previous packet 

has been sent out. If so, it removes form the queue all packets with the same next hop 

neighbor and sends them out. Otherwise, it sends the packet to the link layer again. A 
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packet is dropped and the next packet is sent out after MAX_RESEND_COUNT number 

of retries.  
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Chapter 5 

 Future Directions 

At present we are just using the general weights to calculate the shortest path for data 

transmission and query forwarding. A more accurate mathematical model can be used 

instead for route computation. Simulation plots of energy consumed for different values 

of weights can be used to obtain suitable weights for evaluating the minimum path 

length. 

The query update algorithm can be further improved. Using our proposed update 

mechanism, even if there is a temporary improvement or degradation over some path, this 

information will be transmitted every time over the network. However, for temporary 

changes, the network state changes back to the original one and, once more, another 

message has to be propagated in order to change the soft-states. An approach similar to 

CEDAR can be used to handle this problem; i.e. An approach of update slowly, kill 

quickly can be very efficient for this purpose [14]. The update message will be forwarded 

with a time delay. Thus if the network again reverts back to its original state, a kill signal 

traveling faster than the update message will be sent to stop updating the core soft state 

and revert the core’s state to the previous one.  

 

Computation of query forwarding timers gives an upper bound on the update message 

timer. However, due to network latency, the timer for message updating should be chosen 

in such a manner that there is sufficient time to transmit the message to the core network. 
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If we do not ensure this, then remote core nodes will be storing some obsolete states due 

to the network latency introduced by the update messages traversing the network. 

Assuming network latency is ‘L’, then the update period has a lower bound of ‘L’. 

However, we should keep the update period larger than this since, otherwise, there will 

always be incoherency in soft states except at times that are multiples of ‘L’. Therefore, 

in order to keep the network stable we should keep the update period larger than ‘L’. To 

compute ‘L’, TCP’s retransmission timeout calculation can be modified for our 

architecture.  

 

An additional area for future work is sink mobility. Sink mobility must be handled to 

provide seamless connectivity to the sink. An algorithm must therefore be developed to 

provide a soft handover to the sink. Once the data reaches the sink’s core node, local data 

forwarding algorithm should be employed by the core node to forward data to the sink. 

 

With growing interest in applications that demand certain end to end performance 

guarantees, the introduction of imaging and video sensors has posed research challenges 

for providing QoS services in sensor networks. This is necessary to ensure efficient usage 

of sensor resources and effective access to the gathered measurements [21]. These 

applications require the routing protocol to provide least-cost, delay-constrained path in 

terms of link cost that captures the nodes remaining energy, error rate and other 

communication parameters. The routing protocol should also maximize throughput for 

non real-time data using best effort service. QoS in wireless network is an active research 

area and is still emerging. Our core-based architecture is capable of supporting basic QoS 
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since it stores the shortest data paths during core updating. Energy usage has been 

identified as the main component of QoS in sensor networks and our architecture 

includes it in computing shortest routes. But we need to make improvement to our 

architecture for providing QoS in the case where different applications or users have 

conflicting requirements for QoS parameters. Our architecture uses single combination of 

QoS parameters over the entire sensor network. 

 

We did not develop our architecture with security as a goal. But with insecure wireless 

communications, limited node capabilities and possible insider threats, security, intrusion 

tolerance and high availability have become critical issues in sensor network deployment. 

Alhough core maintenance provides certain degree of high availability in our 

architecture, security and intrusion detection has to be included for most applications. 

However common authentication schemes are not applicable in sensor networks since a 

central authentication authority is hard to be deployed in the sensing environment. As a 

result, a distributed authentication facility must be used in the network. A cluster-based 

security scheme can be used in our architecture for providing distributed authentication 

[22]. The approach requires formation of clusters with one special head node in each 

cluster. These head nodes execute administrative functions and hold shares of the 

network keys used in authentication. Nodes can join the network only as guests. They can 

become full members only after a head node has authenticated them. In our architecture, 

core nodes are fully capable of performing administrative functions and thus integration 

of the algorithm should not introduce substantial overhead.  
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Chapter 6 

 Conclusion 

Wireless sensor networks have been an active area of research in recent years. Sensor 

nodes are resource constrained in a number of ways, but the main factor is energy since it 

decides the lifetime of the nodes. In this work we described the design and 

implementation of a core-based architecture for energy-efficient data dissemination, data 

aggregation, query forwarding and reliable transport. The core update phase proactively 

floods target information over the network so that each sink's query broadcast is limited 

to a local cluster. Core infrastructure also provides efficient data and query aggregation 

without extra message exchange overhead. Data is forwarded on the reverse path on 

which a query is forwarded to the target core node. Our simulation results have 

confirmed the efficiency of the proposed design. Energy efficiency achieved by our 

design demonstrates the effectiveness of a virtual routing infrastructure that is based on 

clustering in stationary wireless sensor networks. We have also discussed here the 

architecture could support basic QoS and security services for applications. 
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Appendix 

A. Shortest Path Calculation 

QoS measures can be classified into additive (e.g., delay, number of hops) and non-

additive (e.g., energy, available bandwidth, policy flags). In the case of an additive 

measure, the QoS value of a path is equal to the sum of weights of the corresponding 

links along the path. For a non-additive measure, QoS of a path is the minimum (or 

maximum) of the link weight along that path. In general, non-additive measures can 

easily be dealt with by pruning all the links that do not satisfy required QoS constraints. 

Additive measures require more complex computation. Therefore, for finding the shortest 

path we mainly have to consider additive measures.  

In our architecture, the remaining energy is a non-additive measure and the number of 

hops is an additive measure.  We define the shortest path length as  

Path Length    = 

pathaonhopsofnumberpathaonenergyremaining _____)____min(
βα

+  

The scaling factors a and ß give us full control to tune the path length with the remaining 

energy and number of hops as parameters. 
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B. Pre-Defined Energy Threshold for Core Election 

To keep the architecture simple and scalable, the node election process is periodic. 

Therefore, nodes periodically collaborate to elect a new core for the local cluster. Core 

node and backup cluster nodes do not get a chance to participate in the next round of core 

election. However, to minimize the probability of failure of a core node, nodes that are 

already below the pre-specified threshold of remaining energy are also barred from being 

elected as core nodes. We used a random chosen value as the threshold. More accurate 

values can help maximize network partitioning time. For evaluation of accurate values, 

we need to gather statistical data related to energy consumption of a core node. Based on 

the mean and standard deviation of energy consumption, a node can derive from its 

remaining energy level whether it can perform as a core node before the next election 

phase. If it cannot, the node will abstain from participating in core election. 
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