
Trends in Access Networks and their Implementation in DSLAMs

Christian Sauer, Matthias Gries, Sören Sonntag
Infineon Technologies, Corporate Research, Munich

{christian.sauer|matthias.gries|soeren.sonntag}@infineon.com

Dietmar Tölle, Bo Wu, Rudi Knorr
Fraunhofer ESK, Munich, Germany
{toelle|wu|knorr}@esk.fraunhofer.de

Abstract. We identify deployment trends and primary
tasks a future DSL Access Multiplexer (DSLAM) has to of-
fer. We reveal two corner cases: IP-based (high-end) versus
Ethernet-based (cost-optimized) access networks. We de-
rive the need for flexible hardware platforms to support fast
customization and adaptation to new protocol standards.
To accomplish efficiency and ease-of-use we employ pro-
grammable multiprocessor platforms and use our tool flow
CRACC that takes a modular application description and
generates code for various embedded processors.

Keywords: Quality of Service, Benchmarking, Traffic Sce-
narios, Embedded Systems, Network Processing.

1. Introduction
DSLAMs connect individual customers with the broadband
service provider network. They are built modularly out of
different line and trunk cards. Line cards aggregate xDSL
lines, trunk cards aggregate multiple line cards and provide
access to the service provider network. A backplane or ded-
icated links connect line and trunk cards. Most of the tra-
ditional access network equipment will become obsolete in
future. Narrowband and ATM switches will be replaced and
broadband remote access server (BRAS) functions will be
transferred towards the customer ports. We recognize two
deployment trends in access networks, particularly for the
last mile: Layer 3 is based on IPv4 (IPv6 in the future),
layer 2 on Ethernet. The future DSLAM represents the cen-
tral access point for all narrow- and broadband services and
maps all services on IP and Ethernet, respectively. These
services include QoS distinction and multicast.

A cost-sensitive solution will use commodity parts that
are solely based on Ethernet. Traffic management and QoS
are supported but limited to information available in the
Ethernet frame, e.g. the addresses and VLAN tag. High-
end solutions can afford to parse higher protocol layers and
use mechanisms like DiffServ and IPSec. Thus, it is possi-
ble to support a wider range of QoS features and use traffic
management more adaptively.

Ideally, both cases can be implemented employing dif-
ferent versions of the same scalable platform, thus also
reusing the same software development system. In addi-
tion, to support fast deployment, protocol adaptation, and
design space exploration a modular domain-specific soft-

ware development framework is required to allow imple-
menting network applications efficiently while abstracting
from details of the underlying hardware for portability and
ease-of-use. Such a framework should not only allow ex-
ploring design trade-offs on a line or trunk card architec-
ture, but also support the quantitative evaluation of func-
tional partitionings between these cards.

In the following, we describe primary tasks of future
DSLAMs and sketch the underlying ideas of our software
development framework for the successful implementation
and deployment of the DSLAM.

2. Primary Tasks of Future DSLAMs
The functionality of a future DSLAM can be described by
a set of 13 primary tasks. For the high-end solution, these
tasks are described in [3]. We focus on the distinctive pri-
mary tasks for the cost-efficient solution in this section. We
show at the end, which tasks must be supported by the low-
and high-end DSLAM variants.

• Ethernet tagging/untagging: Assigns ingress Ethernet
packets with appropriate VLAN tag: Single tag for un-
tagged traffic; provider tag for VLAN stacking.

• Frame header check and update: Ethernet frame headers
are checked and filtering tables are updated.

• Traffic classification/Forwarding lookup: Based on pre-
set Ethernet source/destination addresses, VLAN tags,
and physical ports a classification is performed to deter-
mine traffic class and forwarding information.

Table 1 shows an example, how the described primary
tasks can be used to implement a distributed DSLAM (high-
end [IP] and cost-efficient [ETH] variants). The deployed
tasks for line (LC) and trunk cards (TC) are compared. In
a distributed implementation most of the processing is done
near the ingress point of the traffic. Alternatives are a cen-
tralized implementation (most processing on trunk card)
and a de-centralized implementation (most processing on
line cards). In the high-end solution, customers are not
trusted and an expensive classification and policing step
is done on the line cards. Contrary to that, the Ethernet-
based cost-optimized solution relies on proper traffic mark-
ing by the customer premises equipment. The final decision
for one implementation depends on many factors, such as

network infrastructure, provider services, and design con-
straints on costs, performance, and reliability.

Table 1. Deployed functions for distributed
DSLAM: Line (LC) and trunk card (TC), high-
end (IP) and cost-efficient (ETH).

DSLAM Function
IP ETH

LC TC LC TC

Ethernet deframing + + N/A N/A

IP header check + + – –
IP source address/DSL port verification + – – –
Ethernet tagging/untagging – – + (+)
Ethernet header/DSL port verification – – + –
Traffic classification/Forwarding lookup +/– +/+ +/+ –/–
Traffic policing and QoS + – – –
Multicast duplication + + + –
Queuing by traffic classes + + + +
Priority scheduling + + + +
Set DiffServ codepoint – + – –
Decrement TTL/HLIM, update CRC + + – CRC

Ethernet framing + + N/A N/A

3. Design of a DSLAM
3.1. Functional Implementation

We model the functionality of the future DSLAM in
Click [1], a domain-specific framework for describing net-
work applications. Click models are modular, executable,
implementation independent, and capture inherent paral-
lelism in packet flows and dependencies among elements. A
functionally correct model of the application can be derived
quickly. The subsequent performance optimization can fo-
cus on individual elements and the partitioning of elements
onto processing cores. We have extended the Click library
with access network- and Ethernet-specific elements as well
as with layered traffic sources.

Figure 1 shows the Click description of an Ethernet
based line card as an example. The setup of filter tables,
classifiers, and traffic rates together with packet sources and
sinks defines a particular environment for the DSLAM.

Token Bucket

Token Bucket

Token Bucket

Queue

Line Card Upstream

Bandwidth
Shaper

Queue Bandwidth
Shaper

Queue Bandwidth
Shaper

Token Bucket

Token Bucket

Token Bucket

Queue Bandwidth
Shaper

Queue Bandwidth
Shaper

Queue Bandwidth
Shaper

Figure 1. Ethernet DSLAM line card in Click.
The pure Click description of an exemplary distributed

DSLAM requires only 266 lines-of-code (w/o comments),
representing 932 connected Click elements for four line

cards, one trunk card, four ports per line card, three QoS
classes per customer, and layered traffic sources and sinks.
A full description of an IP-DSLAM can be found in [3].

3.2. DSLAM Architecture Evaluation
We have modeled several functional partitions between
line and trunk cards in Click [1] and use our design flow
CRACC [2] to generate code for a set of ten embedded
processors, including MIPS, ARM, and PowerPC. We use
C-compilers and cycle-accurate simulators for the perfor-
mance evaluation of different partitions.

Since most embedded processors can only be pro-
grammed in C, we have developed CRACC, a framework
that allows us to generate C from Click’s C++ descriptions.
The application programmer models the functionality on
any host where Click can be simulated. CRACC’s Click
front-end is used to generate a netlist and the correspond-
ing configurations for CRACC library elements. The source
code can be cross-compiled and profiled on the respective
embedded platform. Details on CRACC can be found in [2]
where we show that a full high-end DSLAM can be im-
plemented with less than 20KB of code memory. As shown
in [3], CRACC allows us to explore different functional par-
titionings and design alternatives in short development time.

4. Concluding Remarks
We have captured trends in access networks, such as QoS
per customer, multicast, and the prevalent use of Ethernet/IP
end-to-end. We modeled the function of future Ethernet and
IP based DSLAMs in an extensible way. Comparing the
two implementation variants we find some common fea-
tures in the data plane. The high-end IP version requires
more computational efforts due to richer more adaptive QoS
features. The cost-efficient Ethernet implementation relies
on pre-computed and configured management information
and thus can be implemented with fewer resources. We are
currently working on incorporating BRAS functions.

We notice a large productivity gain from using a modu-
lar tool flow for applications. A DSLAM scenario can be
input within a day, and testing and configuration of filters
and lookup tables take another few days. This enables rapid
prototyping, whereas in plain assembly a single implemen-
tation may take months. Using a library-based and mod-
ular ANSI-C tool flow is therefore a reasonable trade-off
between implementation efficiency and portability.

References
[1] E. Kohler, R. Morris, B. Chen, et al. The Click modular router.

ACM Trans. on Computer Systems, 18(3), Aug. 2000.
[2] C. Sauer, M. Gries, and S. Sonntag. Modular domain-

specific implementation and exploration framework for em-
bedded software platforms. In DAC, June 2005.

[3] C. Sauer, M. Gries, and S. Sonntag. Modular reference im-
plementation of an IP-DSLAM. In ISCC, June 2005.

