
Paper #1568965962 1

Abstract—The shrew Distributed Denial of Service (DDoS)

attacks are periodic, bursty, and stealthy in nature. They are also

known as Reduction of Quality (RoQ) attacks. Such attacks could

be even more detrimental than the widely known flooding DDoS

attacks because they damage the victim servers for a long time

without being noticed, thereby denying new visitors to the victim

servers, which are mostly e-commerce sites. Thus, in order to

minimize the huge monetary losses, there is a pressing need to

effectively detect such attacks in real-time.

Unfortunately, effective detection of shrew attacks remains an

open problem. In this paper, we meet this challenge by proposing

a new signal processing approach to identifying and detecting the

attacks by examining the frequency-domain characteristics of

incoming traffic flows to a server. A major strength of our

proposed technique is that its detection time is less than a few

seconds. Furthermore, the technique entails simple software or

hardware implementations, making it easily deployable in a

real-life network environment.

Index Terms— Network security, distributed denial of service

(DDoS), reduction of quality (RoQ), digital signal processing

(DSP), Internet traffic analysis

I. INTRODUCTION

ISTRIBUTED Denial of Service (DDoS) attacks have

become one of the major threats to Internet services and

electronic transactions [5], [22], [26]. A typical DDoS attack

prevents legitimate users from accessing the victim for certain

services. The network resources could be denied by

overwhelming the target with a huge amount of traffic flows

launched through multiple Zombies. Essentially, such kind of

attacks is targeting at undermining the availability of certain

systems or services. DDoS attacks degrade the performance of

the networks even though the links are not saturated [19].

* Presented at the First IEEE LCN Workshop on Network Security (WoNS) held

in conjunction with the 30th Annual IEEE Conference on Local Computer

Networks (LCN 2005), Nov.15-17, 2005, Sydney, Australia. This work was

supported by US National Science Foundation under the ITR Grant 0325409 at

the University of Southern California.

Yu Chen and Kai Hwang are with the Internet and Grid Computing

Laboratory, Viterbi School of Engineering, University of Southern California,

Los Angeles, CA 90089, USA. They can be reached by e-mail: cheny@usc.edu

and kaihwang@usc.edu, respectively.

Yu-Kwong Kwok is with the Department of Electrical and Electronic

Engineering, University of Hong Kong (HKU), China. This work was done

while he visited the University of Southern California during his sabbatical

leave from the HKU (e-mail: ykwok@hku.hk).

As of now, there is no “silver bullet” against DDoS attacks

although a plethora of research efforts has been injected into

this area. A traditional DDoS attack can be characterized as

brute-force, sustained high-rate, or specifically designed to take

advantages of the protocol limitations or the software

vulnerabilities.

Recently, a variant category of DDoS attack has been

identified. This novel type of attack, with a low average rate,

exploits the transient phases of a system’s dynamic behavior.

Such low-rate attacks introduce significant inefficiencies that

tremendously reduce system capacity or service quality, yet

exhibiting a stealthy behavior. In the literature, this kind of

attacks is referred to as shrew attacks [17] or Reduction of

Quality (RoQ) attacks [12], [13].

Comparing to traditional DDoS attacks, which are flooding

in nature, shrew attacks are much more difficult to be detected.

Therefore, they can damage the victim for a long time without

being noticed [13]. Such a prolonged period of damage, if

occurred on an e-commerce Web site (e.g., Amazon.com), can

transparently repel new commercial transactions or frustrate

existing customers. Significant monetary losses would then

result from these attacks.

Unfortunately, it has been proven theoretically and

experimentally that countermeasures developed for traditional

DDoS attacks are ineffective in fighting against shrew attacks

[13], [17], [21]. Furthermore, being “masked” by the

background traffic, shrew attacks are very difficult to be

identified in the time domain, which is the usual avenue of

defense in combating network attacks.

Several security researchers have explored the usage of

digital signal processing (DSP) and other signal analysis

techniques for traffic analysis in network security control [1],

[2], [4], [14], [15], [16], [24]. Luo and Chang [20] studied the

characteristics of shrew attack with a wavelet approach. Sun, et

al. [27] suggested detecting shrew attacks via a dynamic time

wrapping (DTW) technique. Unfortunately, none of these

defense schemes could identify and filter out the attack streams

effectively and accurately.

Previously, we proposed an algorithm named HAWK [18]

(Halting Anomaly with Weighted choKing) that works by

judiciously identifying malicious shrew packet flows using a

small flow table and dropping such packets decisively to halt

the attack such that well-behaved TCP sessions can re-gain

their bandwidth shares. One drawback of HAWK is its

insensitivity to distributed shrew attacks.

Filtering of Shrew DDoS Attacks

in Frequency Domain*

Yu Chen, Kai Hwang, and Yu-Kwong Kwok

D

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 2

In this paper, we propose a novel approach to filtering out

shrew attack flows by analyzing the amplitude spectrum

distribution in the frequency domain. Taking samples of packet

arriving rate as the time-domain signal, followed by

transforming it into frequency domain by DFT (Discrete

Fourier Transform), we construct a filter by using the

hypothesis-test theory. Based on analysis of more than 10,000

simulation test points, our detection achieved a confidence

interval of 99.9% (with error level ±3.29).

Specifically, we make the following contributions:

1. Using a hypothesis test theory and Gaussian

distribution model, we show that our shrew-filtering

algorithm achieves pretty higher accuracy. Thus, our

scheme blocks malicious shrew flows with high

confidence level (> 99.9%), while exhibiting low

probability (< 0.1%) in losing legitimate TCP flows.

2. One of the distinct advantages of our approach is that

DFT and frequency-domain analysis are standard

DSP methods that could be implemented efficiently

in hardware, thanks to the modern VLSI technology.

Thus, our shrew-filtering algorithm would not incur

much overhead in routers since the whole processing

could be carried out in fast hardware, while the

routers perform their normal routing operations.

3. Another advantage of shrew-filtering algorithm is to

cut off the malicious shrew streams totally, which is

similar to our MAFIC algorithm [6] that block

flooding DDoS flows. In this manner, we minimize

the damages of shrew streams on legitimate flows.

The rest of this paper is organized as follows. In Section 2,

we present the rationale of this work. With introduction of

shrew attack and a discussion of frequency domain properties

of the shrew streams and TCP flows, we set up our hypothesis

test framework and determine the optimal detection threshold.

Section 3 introduces our simulation setup and performance

matrices. Simulation results and performance analysis are

given in Section 4. Finally we conclude in Section 5.

II. THE PROPOSED SHREW FILTERING ALGORITHM

We first introduce the fundamentals of shrew attack. Then,

we compare its frequency domain properties with legitimate

TCP flows. Based on their differences, a hypothesis test

framework is set up and the optimal detection threshold will be

chosen. In the last subsection, we present in detail our novel

shrew-filtering algorithm for cutting off shrew attack flows.

A. Overview of Shrew Attacks

The earliest case of low-rate TCP-targeted DDoS attack was

reported in 2001. But it had not been studied thoroughly until

Kuzmanovic and Knight [17] pioneered the work in identifying

and characterizing such type of attacks. They studied the

rationale of the shrew attack and analyzed the critical

parameters that affect the efficiency on TCP flows. They also

indicated the limitation of currently available DDoS defense

mechanism. However, they have not proposed any efficient

countermeasures against the low-rate attacks.

As shown in Fig. 1, a single source shrew attack is modeled

as a square waveform packet stream with an attack period T,

length of the burst L, and the burst rate R. The period T is

calculated by the estimated TCP RTO timer implementations at

legitimate sources. During the burst with a peak rate R, the

shrew pulses create a bursty but severe congestion on the links

to the victim. The legitimate TCP flows will decrease their

sending rate as defined by the rate-limiting mechanism that cuts

the window size and adapts to the network capacity.

For higher throughput, the TCP protocol uses a predefined

value of RTO with a fixed RTO incrementing pattern [25]. The

shrew attacks take advantage of this RTO recovery feature by

adjusting the attack period to match with the RTO period. The

feature causes the shrew attack streams to occupy the link

bandwidth periodically by sending pulses (Fig. 1). This makes

the legitimate TCP flows always “see” heavily burdened links.

Such legitimate TCP flows may undergo a congestion control

and reduce their rates significantly.

A successful shrew attack may occupy bandwidth lower than

10% of the legitimate TCP flows [17]. Such kind of periodic

pulses is very difficult to detect by traffic management

algorithms and by methods based on existing traffic volume

analysis at the time domain. This is because the average share

of bandwidth consumption is not very high.

In distributed scenarios, attacks launched by multiple

zombies could lower their individual traffic rates even further,

thereby making detection much harder. As shown in Figs. 1(b)

and 1(c), the distributed attack sources could decrease its

(a) Single shrew attack stream

(b) Two shrew attack streams with the same
period and half burst rate

(c) Two shrew attack streams with doubled
period and same burst rate

Fig. 1. An illustration of various types of shrew attack streams.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 3

average traffic rate either by lowering the peak rate or using

longer attack periods. Detecting the signs of such attacks using

traffic time series in time domain is therefore ineffective.

B. Analysis of Amplitude Spectrum Distribution

Although it is very challenging to detect and respond to the

low-rate attacks using defense measures developed against

DDoS attacks, the periodicity itself provides a clue for

developing new defense mechanism [8]. Periodic signals and

non-periodic signals present different properties in frequency

domain. These variants could be detected conveniently using

signal processing techniques.

We take the number of arrived packets as the signal and

sample it every 1 ms. At each step, we sample the number of

arrived packets x(n). Then we convert the time-domain series

into its frequency domain representation using DFT (Discrete

Fourier Transform) [3]:

DFT x n K
N

x n e
n

N
j kn N((),) () /1

0

1
2 k=0,1,2,…,N-1 (1)

Figure 2(a) shows the normalized amplitude spectrum of a

shrew attack and Fig. 2(b) is that of a legitimate TCP flow.

Nyquist sampling theorem [3] indicates that the highest

frequency of our analysis is 500 Hz.

Comparing to the single TCP flow, more energy of shrew

pulse stream appears in lower frequency bands. This property is

more profound in Fig. 2(c) that zooms into the low frequency

band of [0 Hz, 50 Hz].

Based on observing the normalized amplitude spectrum, we

find that it is feasible to design a detection algorithm by

comparing their energy density in the low frequency band from

0 Hz to 50 Hz. The difference between the summations of

amplitude in this range could be large enough to segregate

shrew pulse streams from the legitimate TCP flows.

Fig. 3(a) compares the normalized cumulative amplitude

spectrums (NCAS) of TCP and shrew flows, and Fig. 3(b)

zooms into the low frequency band of [0 Hz, 50 Hz]. It is

around the frequency point of 20 Hz that the distance of the two

curves is the maximum. As such, we call this point as the

K-point. It is also the ending point of the first peak of amplitude

spectrum curve of shrew pulse in Fig. 2(c).

Actually such a lower frequency band biased energy

distribution could be used as the signature of low-rate shrew

attacks. Since the shrew attack streams are aiming at the

dynamic deficiency in the RTO mechanism of TCP protocol

while trying to minimize the average bandwidth utilization,

they have to construct congestions periodically at the moments

when victims are recovering from RTO.

This implies that if an attacker would like to blur the

signature, he has to input more packets into the network at other

time points. This will increase the bandwidth occupation and

thus destroy the stealthy nature of low-rate shrew attacks. We

need a rule to identify the signature and make the decision on

when a cumulative amplitude spectrum value at the K-point has

(a) Single shrew stream (b) Single TCP flow

(c) Comparison in low frequency band

Fig. 2. Normalized amplitude spectrum of the shrew

pulse stream and of the TCP flow.

(a) On the whole frequency band

(b) On the low frequency band

Fig. 3. Normalized cumulative amplitude spectrum

of the shrew stream and of the TCP flow.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 4

been calculated. Since there are two choices, the binary

hypothesis test [11] appeals to this application.

C. Hypothesis Test Analysis

Since noise signals existing in communication channels and

introduced in the sampling process are random, we need to

confirm statistically that the variation of NCAS at the K-point

is limited in such a range that allows us to distinguish shrew

pulse streams from TCP flows with high confidence.

Fig. 4(a) presents the normalized histogram of NCAS’

distribution at the K-point. Both TCP and shrew streams’ data

are calculated in a sample space of more than 8,000 data points.

The statistics of TCP and shrew streams are given below:

() 0.1131
:

tan _ () 0.026

Average
TCP

S dard Deviation

Shrew
Average

S dard Deviation
:

() .

tan _ () .

0 4985

0 038

According to Central Limit Theorem that given a distribution

with a mean µ and variance 2, the sampling distribution

approaches a Gaussian (Normal) distribution [11]. Thus, we

can describe the distribution of NCAS at K-point using

Gaussian distribution model:

G x
x

(; ,) exp
()1

2 2

2

2

 (2)

Fig. 4(b) is the Normal Distribution curves of TCP flow and

shrew pulse stream. In detection theory, 3 Error Level could

give us a confidence interval of 99.7% [11], meaning that error

level of ±3 is good enough even in high precision detection

scenarios. Table I lists the confidence levels of TCP and shrew

streams and their corresponding threshold settings.

Fig. 4(b) presents that the distance between distribution

curves of TCP and shrew flows is larger than ±3.29 . As

indicated in Table I, the detection threshold at K-point could be

safely selected to be 0.3 and this choice ensures us with

confidence interval larger than 99.9%.

In other words, the probability of cutting off a TCP flow as

shrew stream or vice versa is lower than 0.1%. This shows that

our hypothesis detection approach achieves pretty high

accuracy and precision. The algorithm of our detection process

is specified below in pseudo code:

Hypothesis Detection Algorithm:

01: While shrew filtering algorithm is on

02: While sampling is not done
03: Continue sampling packets number per 1ms
04: Convert the time-domain series into frequency domain
05: Calculate the NCAS value at K-point

06: If NCAS Threshold Then
07: Mark the flows as legitimate

08: Else
09: Mark the flows as shrew flow

D. Shrew-Filtering Algorithm

Based on the hypothesis test, we proposed an algorithm to

cut off flows with NCAS value at the K-point higher than the

detection threshold. Although the source IP addresses are

generally spoofed in attack packets, it is safe to use the 4-tuple

{Source IP, Source Port, Destination IP, Destination Port} as

the traffic flow labels.

To minimize the storage overhead incurred by the extra data

structures needed, we store only the output of a hash function

with the label as the input instead of the label itself. Our

shrew-filtering algorithm drops malicious packets using the

data structures: Permanent Drop Table (PDT), Suspicious

Flow Table (SFT) and Nicely-Behaved Flow Table (NFT) as

shown in Fig. 5.

(a) Normalized histogram

(b) Gaussian distribution curves

Fig. 4. Normalized NCAS distribution of the shrew stream

 and of the TCP flow at the K-point.

TABLE I

GAUSSIAN DISTRIBUTIONS’ CONFIDENCE LEVELS

Error
Level

Prob.
That

Error Is
Smaller

Prob.
That

Error Is
Larger

TCP
Threshold

Shrew
Threshold

± 68% ~1:3 0.1311±0.026 0.4985±0.038

±1.65 90% 1:10 0.1311±0.043 0.4985±0.046

±1.96 95% 1:20 0.1311±0.051 0.4985±0.074

±3 99.7% 1:370 0.1311±0.078 0.4985±0.114

±3.29 99.9% 1:1000 0.1311±0.086 0.4985±0.125

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 5

Fig. 5. The shrew-filtering algorithm for dropping malicious packets.

(NFT: Nicely-Behaved Flow Table, SFT: Suspicious Flow Table, PDT:

Permanent Drop Table, NCAS: Normalized Cumulative Amplitude Spectrum)

If an incoming packet label is in NFT, this packet is routed

normally. If it is in PDT, this packet is dropped. If in SFT, we

continue sampling until timer out. If there is no matching in any

table, this packet belongs to a new flow and it would be added

into SFT, then sampling begins and timer starts.

Once timer is expired for certain flow, we convert the

time-domain series into its frequency domain representation

using DFT, and compare its NCAS at K-point with detection

threshold. If its NCAS value is lower than the threshold, we

move its record into NFT. All further incoming packets in this

flow will be routed normally. If the NCAS value is higher than

the threshold, we cut off these flows into PDT.

III. NS-2 SIMULATION SETUP

We have implemented the shrew-filtering algorithm in the

NS-2 simulator, which is a widely recognized packet level

discrete event simulator [23]. A subclass of connector named

ShrewFilter is added to the head of each SimplexLink. A

TrafficMonitor is coded into the simulator to compute the

traffic matrices. The ShrewFilter is used to process the sample

array and to calculate the NCAS of flows leading to the victim.

Then, the PDT or NFT entries are set accordingly. The system

configuration of the simulation scenario is shown in Fig. 6.

Fig. 6. The simulation scenario and experimental setting.

Our simulation consists of a variety of Internet traffic

patterns. Multiple scenarios are studied including single TCP

flow vs. single shrew flow, single TCP flow vs. distributed

shrew flows, multiple TCP flows vs. single shrew flow, and

multiple TCP flows vs. distributed shrew flows. The distributed

attack patterns include the cases shown in Figs. 1(b) and 1(c).

Our notation used in the simulation is listed in Table II.

TABLE II

DEFINITION OF NOTATION

Symbol Definition

T

R

L

NS

NT

Attack Period (sec)

Attack Pulse Peak Rate

Attack Pulse Burst Length (sec)

Number of Shrew Flows

Number of TCP Flows

Normalized TCP Throughput

Response Time

IV. SIMULATION RESULTS AND ANALYSIS

We compared the results of our shrew-filtering algorithm

with the well-known active queue management (AQM)

algorithm Drop Tail. We also examined the response time

performance of our algorithm since it determines the duration

of damage to a victim site.

A. Normalized Throughput

Our NS-2 simulations are carried out with the topology

shown in Fig. 6 for different combinations of legitimate TCP

flows and shrew attack streams. We compared the TCP

throughputs achieved by the shrew-filtering algorithm and the

Drop Tail algorithm using the comparison metric normalized

throughput (), which is defined as the ratio of average

throughput achieved by the TCP flow(s) with DDoS stream to

the throughput achieved without DDoS streams.

The normalized throughput indicates the severity of the

damage that the shrew streams have done to the performance of

legitimate TCP flows. The lower the normalized throughput is,

the greater the damage. In our simulations, we consider the link

capacity of the last hop to the victim as 2 Mbps.

Since all TCP variants are equally vulnerable to shrew DoS

stream of 50 ms or higher [17], we use TCP-Reno for the

purpose of experiment. The sources of the shrew attack streams

are illustrated at the top left of Fig. 6. Their delay is a random

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 6

variable uniformly distributed within (60 ms, 120 ms).

We start with single shrew-stream scenarios. Fig. 7 compares

the throughputs of TCP flows using the Drop Tail scheme and

our shrew-filtering algorithm. The x-axis is the attack period

and the y-axis is the normalized throughput TCP flows

achieved. Fig. 7(a) shows the scenario of single TCP flow

under attack of single shrew stream modeled in Fig. 1(a). Fig.

7(b) corresponds to the scenario of five TCP flows under attack

from a single shrew stream.

It is clear that under the Drop Tail algorithm, the throughput

of legitimate TCP flows is far below the actual attainable

throughput and the link utilization is very inefficient. With our

shrew-filtering algorithm, the gain in TCP throughput is

significant. It reaches what legitimate flows can reach when

there is no shrew stream. Our hypothesis test model can

identify shrew streams with a high confidence level. We filter

out shrew streams before they hurt the legitimate flows.

Distributed shrew streams are hard to be detected because of

their much lower average traffic rates. Simulations are carried

out using four shrew streams that are distributed in either space

domain (Fig. 1(b)) or time domain (Fig. 1(c)), respectively.

Again, we studied their effects on single and five legitimate

TCP flows. Fig. 8 presents the case where shrew streams are

distributed in space but synchronized as in Fig. 1(b). Four

shrew streams are from four difference sources with the same

attack periods and the same burst lengths. However, their peak

rate is only R/4. This means that their average traffic rate is

only 1/4 of that of the single source attack.

(a) Single TCP flow (b) Five TCP flows

Fig. 8. Normalized throughput of TCP flows vs.

4 spatially distributed shrew attack flows.

Fig. 9 compares the throughputs of TCP flows under the

Drop Tail algorithm and our shrew-filtering algorithm in the

case that shrew streams are distributed in time fashion but

synchronized as in Fig. 1(c). Four shrew streams are from four

difference sources with the same peak rates and the same burst

lengths. However, their attack periods are 4T. This distribution

makes the interval between pulses four times longer to bring

down the average traffic rate to 1/4 of that of the single source

attack pulse stream.

These results show that our shrew-filtering algorithm is

indeed capable of recognizing distributed shrew streams with

lower average traffic rate. This is one major advantage of

frequency spectrum technique over bandwidth utilization

analysis. Even if the shrew streams were launched from more

zombies to further lower their average bandwidth utilization,

their frequency spectrum would possess the same properties.

In other words, the shrew-filtering mechanism is effective

even if the attack is launched through larger number of streams

with lower burst peak rate. In fact, if zombies use longer

individual attack periods, higher percentages of its energy will

be located in the low frequency band we are monitoring.

B. Response Time

The response time is a critical parameter to evaluate the

performance of our shrew-filtering algorithm. In general, the

time a DDoS defense algorithm takes to detect whether

malicious flows exist or not is used a measure to monitor the

traffic conditions. The time is varied according to the traffic

load on the link.

However, the load on the link does not affect the response

time of our shrew-filtering algorithm. Results in Section 4.1

show that the performance of the shrew-filtering algorithm is

coherent under different traffic conditions, where we used the

same 5-second sampling time.

The effects of variant sampling length are determined by the

signal’s periodicity. If the sampled sequence presents similar

frequency characteristics of original signal, then the variance of

sampling time will not impact on our detection precision.

Fig. 10(a) presents the distributions of NCAS at the K-point

of TCP flows and shrew streams. They are sampled from 1

second to 5 seconds. As the sampling time decreases, the

NCAS at the K-point of TCP flows scatters wider. Therefore,

(a) Single TCP flow (b) Five TCP flows

Fig. 7. Scenarios of TCP flows under single shrew attack.

(a) Single TCP flow (b) Five TCP flows

Fig. 9. Normalized throughput of TCP flows vs.

4 timely distributed shrew attack flows.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 7

the probability of treating a legitimate TCP flow as shrew

stream increases. However, the distributions of NCAS at the

K-point of shrew streams are pretty stable. If we stick on the

threshold of 0.3, the high detection confidence level is

maintained even the sampling time decreases to 3 seconds.

Table III shows the confidence levels of different sampling

times. We observe ±1.96 (95%), ±3 (99.7%) and ±3.29

(99.9%) error levels of TCP and shrew streams. When

sampling time (the response time) is longer than 2 seconds,

there is no overlap between the ±3.29 error level ranges of

TCP flow and shrew stream. Therefore, the confidence level of

detecting and filtering shrew streams is very high (99.9%)

while 2 seconds.

With = 1 second, we observed an overlap in both ±3 and

±3.29 error ranges, but no overlap for ±1.96 error level. This

implies that information carried by sampled signal series

cannot separate TCP flows from shrew streams with such a

high confidence level (99.7%). However, the shrew-filtering

algorithm still could respond to the shrew attacks in 1 second.

We cut off it with little sacrifice in confidence level (95%).

Figure 10(b) shows the throughput of five TCP flows under the

attack of four distributed shrew streams. Clearly, all sampling

series achieved much higher throughput than the Drop Tail

algorithm.

TABLE III

CONFIDENCE LEVELS OF DIFFERENT SAMPLING TIMES

 Sampling

Time
1 Second 2 Second 3 Second

TCP Flow 0.1614±0.176 0.1445±0.094 0.1327±0.067
±1.96 /

95% Shrew

Stream
0.5036±0.050 0.4690±0.061 0.4508±0.067

TCP Flow 0.1614±0.270 0.1445±0.144 0.1327±0.102
±3 /

99.7% Shrew

Stream
0.5036±0.076 0.4690±0.093 0.4508±0.103

TCP Flow 0.1614±0.296 0.1445±0.158 0.1327±0.112
±3.29 /

99.9% Shrew

Stream
0.5036±0.083 0.4690±0.102 0.4508±0.113

 Sampling

Time
4 Second 5 Second

TCP Flow 0.1258±0.078 0.1131±0.051
±1.96 /

95% Shrew

Stream
0.4479±0.074 0.4985±0.074

TCP Flow 0.1258±0.120 0.1131±0.078
±3

/99.7% Shrew

Stream
0.4479±0.112 0.4985±0.114

TCP Flow 0.1258±0.132 0.1131±0.086
±3.29 /

99.9% Shrew

Stream
0.4479±0.123 0.4985±0.125

V. CONCLUSIONS

In this paper, we have proposed to cut off low-rate

TCP-targeted DDoS attack flows using the periodicity

properties of different flows in the frequency domain. Our

analysis and simulations show that more energy of low-rate

shrew attacks is located in the lower frequency band,

comparing with the legitimate TCP flows.

There is one limitation in our shrew-filtering scheme. It is

still difficult to identify malicious flows that exhibit “transient”

behaviors such as “mice” flows. To deal with such scenarios,

we believe that we can use our approach to detect the attacks at

packet level instead of flow level. Indeed, our extended results

[7] indicate that high detection accuracy was achieved using a

collaborative distributed detection mechanism.

In our on-going efforts, we are implementing the

shrew-filtering algorithm on the DETER test-bed to evaluate

this work in an environment closer to the reality [9], [10]. With

this practical study as the background, we can then extend the

shrew-filtering algorithm and hypothesis test framework based

detection methodology to address other types of DDoS attacks

that present variant patterns in frequency domain.

Essentially, all Internet traffic flows could be abstracted and

processed as continuous periodic signals in time domain. If a

frequency “spectrum” of Internet traffic flow mix is available,

the frequency domain processing technology could facilitate

the traffic analysis process efficiently without incurring much

extra burden to the routers.

(a) Distributions of NCAS at K-point

(b) Throughput under 3 sampling times:
1, 3 and 5 seconds

Fig. 10. Effects of sampling lengths on the TCP and shrew throughput.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Paper #1568965962 8

REFERENCES

[1] P. Abry and D. Veitch, “Wavelet Analysis of

Long-Range-Dependent Traffic,” IEEE Trans. Information

Theory, vol. 44, no. 1, 1998, pp. 2–15.

[2] P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, and D. Veitch,

“Multiscale Nature of Network Traffic,” IEEE Signal

Processing Magazine, vol. 19, no. 3, 2002, pp. 28–46.

[3] R. Allen and D. Mills, Signal Analysis: Time, Frequency, Scale,

and Structure, John Wiley & Sons, 2004.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis

of Network Traffic Anomalies,” Proc. Internet Measurement

Workshop, 2002.

[5] R. K. Chang, “Defending Against Flooding-Based Distributed

Denial-of-Service Attacks: A Tutorial,” IEEE Communications

Magazine, Oct. 2002.

[6] Y. Chen, Y.-K. Kwok, and K. Hwang, “MAFIC: Adaptive

Packet Dropping for Cutting Malicious Flows to Pushback

DDoS Attacks,” IEEE International Workshop on Security in

Distributed Computing Systems (SDCS-2005), 2005.

[7] Y. Chen, Y.-K. Kwok, and K. Hwang, “Collaborative Defense

Against Periodic Shrew DDoS Attacks in Frequency Domain,”

ACM Trans. on Information and System Security (TISSEC),

submitted May 2005.

[8] C.-M. Cheng, H. Kung, and K.-S. Tan, “Use of Spectral

Analysis in Defense against DoS Attacks,” Proc. IEEE

GLOBECOM, Taipei, China, 2002.

[9] DETER and EMIST Team Members, “Cyber Defence

Technology Networking and Evaluation,” Comm. ACM, vol. 47,

no. 3, Mar. 2004, pp. 58–61.

[10] “The DETER Testbed: Overview,”

http://www.isi.edu/deter/docs/testbed.overview.pdf.

[11] J. Devore and N. Farnum, “Applied Statistics for Engineers and

Scientists,” Duxbury Press, 1999.

[12] M. Guirguis, A. Bestavros, and I. Matta, “Bandwidth Stealing

via Link Targeted RoQ Attacks,” Proc. 2nd IASTED Int’l Conf.

on Communication and Computer Networks, Nov. 2004.

[13] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang, “Reduction

of Quality (RoQ) Attacks on Internet End Systems,” Proc.

INFOCOM 2005.

[14] X. He, C. Papadopoulos, J. Heidemann, and A. Hussain,

“Spectral Characteristics of Saturated Links,” under submission,

http://www.isi.edu/~johnh/PAPERS/He04a.html.

[15] P. Huang, A. Feldmann, and W. Willinger, “A Non-Intrusive,

Wavelet-Based Approach to Detecting Network Performance

Problems,” Proc. ACM SIGCOMM Internet Measurement

Workshop, 2001.

[16] A. Hussain, J. Heidemann, and C. Papadopoulos, “A Framework

for Classifying Denial of Service Attacks,” Proc. ACM

SIGCOMM 2003.

[17] A. Kuzmanovic and E. W. Knightly, “Low-Rate TCP-Targeted

Denial of Service Attacks—The Shrew vs. the Mice and

Elephants,” Proc. ACM SIGCOMM 2003, Aug. 2003.

[18] Y.-K. Kwok, R. Tripathi, Y. Chen, and K. Hwang, “HAWK:

Halting Anomaly with Weighted ChoKing to Rescue

Well-Behaved TCP Sessions from Shrew DoS Attacks,” Proc.

Int’l Conf. on Computer Networks and Mobile Computing

(ICCNMC 2005), Zhangjiajie, China, Aug. 2-4, 2005.

[19] K. C. Lan, A. Hussain, and D. Dutta, “The Effect of Malicious

Traffic on the Network,” Proc. PAM, La Jolla, Apr. 6-8, 2003.

[20] X. Luo and R. K. Chang, “On a New Class of Pulsing

Denial-of-Service Attacks and the Defense,” Network and

Distributed System Security Symposium (NDSS'05), San Diego,

CA, Feb. 2-5, 2005.

[21] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling

High-Bandwidth Flows at the Congested Router,” Proc. ACM

9th Int’l Conf. on Network Protocols (ICNP), Nov. 2001.

[22] D. Moore, G. M. Voelker, and S. Savage, “Inferring Internet

Denial-of-Service Activity,” Proc. USENIX Security, 2001.

[23] NS-2, http://www.isi.edu/nsnam/ns/, 2004.

[24] C. Partridge, D. Cousins, A. Jackson, R. Krishnan, T. Saxena,

and W. T. Strayer, “Using Signal Processing to Analyze

Wireless Data Traffic,” Proc. ACM Workshop on Wireless

Security, Atlanta, GA, Sept. 2002.

[25] V. Paxson and M. Allman, “Computing TCP’s Retransmission

Timer,” Internet RFC 2988, Nov. 2000.

[26] S. M. Specht and R. B. Lee, “Distributed Denial of Service:

Taxonomies of Attacks, Tools and Countermeasures,” Proc.

PDCS, Sept. 18, 2004.

[27] H. Sun, J. Lui, and D. Yau, “Defending Against Low-rate TCP

Attacks: Dynamic Detection and Protection,” Proc. IEEE

International Conference on Network Protocols (ICNP), Berlin,

Germany, Oct. 2004.

BIOGRAPHICAL SKETCHES

Yu Chen received his B.S. and M.S. from Chongqing University,

China in 1994 and 1997 respectively, and currently he is a Ph.D.

candidate in Electrical Engineering at University of Southern

California (USC). His research interest includes Internet security,

Internet traffic analysis, DDoS attack detection & defense, distributed

security infrastructure. He can be reached at cheny@usc.edu.

Kai Hwang received his Ph.D. from UC Berkeley in 1972. He is a

Professor and Director of Internet and Grid Computing Laboratory at

USC. An IEEE Fellow, he specializes in computer architecture,

parallel processing, Internet security, and distributed systems.

Presently, he leads the GridSec project supported by NSF/ITR

program. Dr. Hwang can be reached at kaihwang@usc.edu. The

GridSec web site is http://gridsec.usc.edu/

Yu-Kwong Kwok received the Ph.D. from Hong Kong University

of Science and Technology in 1997. He is an Associate Professor of

Electrical and Electronic Engineering at the University of Hong Kong

(HKU). He worked on this project during his academic visit at USC in

2004-05, while taking a sabbatical leave from HKU. His research

interests include Grid and mobile computing, wireless

communications and network protocols. He can be reached at

ykwok@hku.hk.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

