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Abstract—The shrew Distributed Denial of Service (DDoS)

attacks are periodic, bursty, and stealthy in nature. They are also 

known as Reduction of Quality (RoQ) attacks. Such attacks could 

be even more detrimental than the widely known flooding DDoS 

attacks because they damage the victim servers for a long time 

without being noticed, thereby denying new visitors to the victim 

servers, which are mostly e-commerce sites. Thus, in order to 

minimize the huge monetary losses, there is a pressing need to 

effectively detect such attacks in real-time.  

Unfortunately, effective detection of shrew attacks remains an 

open problem. In this paper, we meet this challenge by proposing 

a new signal processing approach to identifying and detecting the 

attacks by examining the frequency-domain characteristics of 

incoming traffic flows to a server. A major strength of our 

proposed technique is that its detection time is less than a few 

seconds. Furthermore, the technique entails simple software or 

hardware implementations, making it easily deployable in a 

real-life network environment. 

Index Terms— Network security, distributed denial of service 

(DDoS), reduction of quality (RoQ), digital signal processing 

(DSP), Internet traffic analysis  

I. INTRODUCTION

ISTRIBUTED Denial of Service (DDoS) attacks have 

become one of the major threats to Internet services and 

electronic transactions [5], [22], [26]. A typical DDoS attack 

prevents legitimate users from accessing the victim for certain 

services. The network resources could be denied by 

overwhelming the target with a huge amount of traffic flows 

launched through multiple Zombies. Essentially, such kind of 

attacks is targeting at undermining the availability of certain 

systems or services. DDoS attacks degrade the performance of 

the networks even though the links are not saturated [19].  
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As of now, there is no “silver bullet” against DDoS attacks 

although a plethora of research efforts has been injected into 

this area. A traditional DDoS attack can be characterized as 

brute-force, sustained high-rate, or specifically designed to take 

advantages of the protocol limitations or the software 

vulnerabilities.  

Recently, a variant category of DDoS attack has been 

identified. This novel type of attack, with a low average rate,

exploits the transient phases of a system’s dynamic behavior. 

Such low-rate attacks introduce significant inefficiencies that 

tremendously reduce system capacity or service quality, yet 

exhibiting a stealthy behavior. In the literature, this kind of 

attacks is referred to as shrew attacks [17] or Reduction of 

Quality (RoQ) attacks [12], [13].  

Comparing to traditional DDoS attacks, which are flooding 

in nature, shrew attacks are much more difficult to be detected. 

Therefore, they can damage the victim for a long time without 

being noticed [13]. Such a prolonged period of damage, if 

occurred on an e-commerce Web site (e.g., Amazon.com), can 

transparently repel new commercial transactions or frustrate 

existing customers. Significant monetary losses would then 

result from these attacks.  

Unfortunately, it has been proven theoretically and 

experimentally that countermeasures developed for traditional 

DDoS attacks are ineffective in fighting against shrew attacks 

[13], [17], [21]. Furthermore, being “masked” by the 

background traffic, shrew attacks are very difficult to be 

identified in the time domain, which is the usual avenue of 

defense in combating network attacks. 

Several security researchers have explored the usage of 

digital signal processing (DSP) and other signal analysis 

techniques for traffic analysis in network security control [1], 

[2], [4], [14], [15], [16], [24].  Luo and Chang [20] studied the 

characteristics of shrew attack with a wavelet approach. Sun, et 

al. [27] suggested detecting shrew attacks via a dynamic time 

wrapping (DTW) technique. Unfortunately, none of these 

defense schemes could identify and filter out the attack streams 

effectively and accurately.

Previously, we proposed an algorithm named HAWK [18] 

(Halting Anomaly with Weighted choKing) that works by 

judiciously identifying malicious shrew packet flows using a 

small flow table and dropping such packets decisively to halt 

the attack such that well-behaved TCP sessions can re-gain 

their bandwidth shares. One drawback of HAWK is its 

insensitivity to distributed shrew attacks.  

Filtering of Shrew DDoS Attacks  

in Frequency Domain* 

Yu Chen, Kai Hwang, and Yu-Kwong Kwok 

D

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



Paper #1568965962 2

In this paper, we propose a novel approach to filtering out 

shrew attack flows by analyzing the amplitude spectrum 

distribution in the frequency domain. Taking samples of packet 

arriving rate as the time-domain signal, followed by 

transforming it into frequency domain by DFT (Discrete

Fourier Transform), we construct a filter by using the 

hypothesis-test theory. Based on analysis of more than 10,000 

simulation test points, our detection achieved a confidence 

interval of 99.9% (with error level ±3.29 ).

Specifically, we make the following contributions: 

1. Using a hypothesis test theory and Gaussian 

distribution model, we show that our shrew-filtering 

algorithm achieves pretty higher accuracy. Thus, our 

scheme blocks malicious shrew flows with high 

confidence level (> 99.9%), while exhibiting low 

probability (< 0.1%) in losing legitimate TCP flows.  

2. One of the distinct advantages of our approach is that 

DFT and frequency-domain analysis are standard 

DSP methods that could be implemented efficiently 

in hardware, thanks to the modern VLSI technology. 

Thus, our shrew-filtering algorithm would not incur 

much overhead in routers since the whole processing 

could be carried out in fast hardware, while the 

routers perform their normal routing operations.  

3. Another advantage of shrew-filtering algorithm is to 

cut off the malicious shrew streams totally, which is 

similar to our MAFIC algorithm [6] that block 

flooding DDoS flows. In this manner, we minimize 

the damages of shrew streams on legitimate flows. 

The rest of this paper is organized as follows. In Section 2, 

we present the rationale of this work. With introduction of 

shrew attack and a discussion of frequency domain properties 

of the shrew streams and TCP flows, we set up our hypothesis 

test framework and determine the optimal detection threshold. 

Section 3 introduces our simulation setup and performance 

matrices. Simulation results and performance analysis are 

given in Section 4. Finally we conclude in Section 5. 

II. THE PROPOSED SHREW FILTERING ALGORITHM

We first introduce the fundamentals of shrew attack. Then, 

we compare its frequency domain properties with legitimate 

TCP flows. Based on their differences, a hypothesis test 

framework is set up and the optimal detection threshold will be 

chosen. In the last subsection, we present in detail our novel 

shrew-filtering algorithm for cutting off shrew attack flows. 

A. Overview of Shrew Attacks 

The earliest case of low-rate TCP-targeted DDoS attack was 

reported in 2001. But it had not been studied thoroughly until 

Kuzmanovic and Knight [17] pioneered the work in identifying 

and characterizing such type of attacks. They studied the 

rationale of the shrew attack and analyzed the critical 

parameters that affect the efficiency on TCP flows. They also 

indicated the limitation of currently available DDoS defense 

mechanism. However, they have not proposed any efficient 

countermeasures against the low-rate attacks.  

As shown in Fig. 1, a single source shrew attack is modeled 

as a square waveform packet stream with an attack period T,

length of the burst L, and the burst rate R. The period T is 

calculated by the estimated TCP RTO timer implementations at 

legitimate sources. During the burst with a peak rate R, the 

shrew pulses create a bursty but severe congestion on the links 

to the victim. The legitimate TCP flows will decrease their 

sending rate as defined by the rate-limiting mechanism that cuts 

the window size and adapts to the network capacity.  

For higher throughput, the TCP protocol uses a predefined 

value of RTO with a fixed RTO incrementing pattern [25]. The 

shrew attacks take advantage of this RTO recovery feature by 

adjusting the attack period to match with the RTO period. The 

feature causes the shrew attack streams to occupy the link 

bandwidth periodically by sending pulses (Fig. 1). This makes 

the legitimate TCP flows always “see” heavily burdened links. 

Such legitimate TCP flows may undergo a congestion control 

and reduce their rates significantly.

A successful shrew attack may occupy bandwidth lower than 

10% of the legitimate TCP flows [17]. Such kind of periodic 

pulses is very difficult to detect by traffic management 

algorithms and by methods based on existing traffic volume 

analysis at the time domain. This is because the average share 

of bandwidth consumption is not very high.  

In distributed scenarios, attacks launched by multiple 

zombies could lower their individual traffic rates even further, 

thereby making detection much harder. As shown in Figs. 1(b) 

and 1(c), the distributed attack sources could decrease its 

(a) Single shrew attack stream 

(b) Two shrew attack streams with the same  
period and half burst rate 

(c) Two shrew attack streams with doubled  
period and same burst rate

Fig. 1.  An illustration of various types of shrew attack streams. 
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average traffic rate either by lowering the peak rate or using 

longer attack periods. Detecting the signs of such attacks using 

traffic time series in time domain is therefore ineffective. 

B. Analysis of Amplitude Spectrum Distribution 

Although it is very challenging to detect and respond to the 

low-rate attacks using defense measures developed against 

DDoS attacks, the periodicity itself provides a clue for 

developing new defense mechanism [8]. Periodic signals and 

non-periodic signals present different properties in frequency 

domain. These variants could be detected conveniently using 

signal processing techniques.  

We take the number of arrived packets as the signal and 

sample it every 1 ms. At each step, we sample the number of 

arrived packets x(n). Then we convert the time-domain series 

into its frequency domain representation using DFT (Discrete

Fourier Transform) [3]: 

DFT x n K
N

x n e
n

N
j kn N( ( ), ) ( ) /1

0

1
2    k=0,1,2,…,N-1    (1) 

Figure 2(a) shows the normalized amplitude spectrum of a 

shrew attack and Fig. 2(b) is that of a legitimate TCP flow.

Nyquist sampling theorem [3] indicates that the highest 

frequency of our analysis is 500 Hz.  

Comparing to the single TCP flow, more energy of shrew 

pulse stream appears in lower frequency bands. This property is 

more profound in Fig. 2(c) that zooms into the low frequency 

band of [0 Hz, 50 Hz].  

Based on observing the normalized amplitude spectrum, we 

find that it is feasible to design a detection algorithm by 

comparing their energy density in the low frequency band from 

0 Hz to 50 Hz. The difference between the summations of 

amplitude in this range could be large enough to segregate 

shrew pulse streams from the legitimate TCP flows.  

Fig. 3(a) compares the normalized cumulative amplitude 

spectrums (NCAS) of TCP and shrew flows, and Fig. 3(b) 

zooms into the low frequency band of [0 Hz, 50 Hz]. It is 

around the frequency point of 20 Hz that the distance of the two 

curves is the maximum. As such, we call this point as the 

K-point. It is also the ending point of the first peak of amplitude 

spectrum curve of shrew pulse in Fig. 2(c).  

Actually such a lower frequency band biased energy 

distribution could be used as the signature of low-rate shrew 

attacks. Since the shrew attack streams are aiming at the 

dynamic deficiency in the RTO mechanism of TCP protocol 

while trying to minimize the average bandwidth utilization, 

they have to construct congestions periodically at the moments 

when victims are recovering from RTO.  

This implies that if an attacker would like to blur the 

signature, he has to input more packets into the network at other 

time points. This will increase the bandwidth occupation and 

thus destroy the stealthy nature of low-rate shrew attacks. We 

need a rule to identify the signature and make the decision on 

when a cumulative amplitude spectrum value at the K-point has 

(a) Single shrew stream                           (b) Single TCP flow 

(c) Comparison in low frequency band

Fig. 2.  Normalized amplitude spectrum of the shrew

pulse stream and of the TCP flow. 

(a) On the whole frequency band 

(b) On the low frequency band 

Fig. 3. Normalized cumulative amplitude spectrum  

of the shrew stream and of the TCP flow. 
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been calculated. Since there are two choices, the binary 

hypothesis test [11] appeals to this application. 

C. Hypothesis Test Analysis 

Since noise signals existing in communication channels and 

introduced in the sampling process are random, we need to 

confirm statistically that the variation of NCAS at the K-point 

is limited in such a range that allows us to distinguish shrew 

pulse streams from TCP flows with high confidence.  

Fig. 4(a) presents the normalized histogram of NCAS’ 

distribution at the K-point. Both TCP and shrew streams’ data 

are calculated in a sample space of more than 8,000 data points. 

The statistics of TCP and shrew streams are given below: 

( ) 0.1131
:

tan _ ( ) 0.026

Average
TCP

S dard Deviation

Shrew
Average

S dard Deviation
:

( ) .

tan _ ( ) .

0 4985

0 038

According to Central Limit Theorem that given a distribution 

with a mean µ and variance 2, the sampling distribution 

approaches a Gaussian (Normal) distribution [11]. Thus, we 

can describe the distribution of NCAS at K-point using 

Gaussian distribution model:  

G x
x

( ; , ) exp
( )1

2 2

2

2

                         (2) 

Fig. 4(b) is the Normal Distribution curves of TCP flow and 

shrew pulse stream. In detection theory, 3  Error Level could 

give us a confidence interval of 99.7% [11], meaning that error 

level of ±3  is good enough even in high precision detection 

scenarios. Table I lists the confidence levels of TCP and shrew 

streams and their corresponding threshold settings.

Fig. 4(b) presents that the distance between distribution 

curves of TCP and shrew flows is larger than ±3.29 . As 

indicated in Table I, the detection threshold at K-point could be 

safely selected to be 0.3 and this choice ensures us with 

confidence interval larger than 99.9%.

In other words, the probability of cutting off a TCP flow as 

shrew stream or vice versa is lower than 0.1%. This shows that 

our hypothesis detection approach achieves pretty high 

accuracy and precision. The algorithm of our detection process 

is specified below in pseudo code: 

Hypothesis Detection Algorithm:

01: While shrew filtering algorithm is on 

02: While sampling is not done 
03:          Continue sampling packets number per 1ms 
04:       Convert the time-domain series into frequency domain 
05:       Calculate the NCAS value at K-point 

06: If NCAS  Threshold Then
07:           Mark the flows as legitimate 

08: Else
09:           Mark the flows as shrew flow

D. Shrew-Filtering Algorithm 

Based on the hypothesis test, we proposed an algorithm to 

cut off flows with NCAS value at the K-point higher than the 

detection threshold. Although the source IP addresses are 

generally spoofed in attack packets, it is safe to use the 4-tuple 

{Source IP, Source Port, Destination IP, Destination Port} as

the traffic flow labels.  

To minimize the storage overhead incurred by the extra data 

structures needed, we store only the output of a hash function 

with the label as the input instead of the label itself. Our 

shrew-filtering algorithm drops malicious packets using the 

data structures:  Permanent Drop Table (PDT), Suspicious 

Flow Table (SFT) and Nicely-Behaved Flow Table (NFT) as 

shown in Fig. 5.  

(a) Normalized histogram 

(b) Gaussian distribution curves 

Fig. 4. Normalized NCAS distribution of the shrew stream 

 and of the TCP flow at the K-point. 

TABLE I 

GAUSSIAN DISTRIBUTIONS’ CONFIDENCE LEVELS

Error
Level

Prob.
That

Error Is 
Smaller 

Prob.
That

Error Is 
Larger

TCP
Threshold

Shrew 
Threshold

±  68% ~1:3 0.1311±0.026 0.4985±0.038 

±1.65  90% 1:10 0.1311±0.043 0.4985±0.046 

±1.96  95% 1:20 0.1311±0.051 0.4985±0.074 

±3  99.7% 1:370 0.1311±0.078 0.4985±0.114 

±3.29  99.9% 1:1000 0.1311±0.086 0.4985±0.125 
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Fig. 5. The shrew-filtering algorithm for dropping malicious packets.

(NFT: Nicely-Behaved Flow Table, SFT: Suspicious Flow Table, PDT: 

Permanent Drop Table, NCAS: Normalized Cumulative Amplitude Spectrum) 

If an incoming packet label is in NFT, this packet is routed 

normally. If it is in PDT, this packet is dropped. If in SFT, we 

continue sampling until timer out. If there is no matching in any 

table, this packet belongs to a new flow and it would be added 

into SFT, then sampling begins and timer starts.  

Once timer is expired for certain flow, we convert the 

time-domain series into its frequency domain representation 

using DFT, and compare its NCAS at K-point with detection 

threshold. If its NCAS value is lower than the threshold, we 

move its record into NFT. All further incoming packets in this 

flow will be routed normally. If the NCAS value is higher than 

the threshold, we cut off these flows into PDT. 

III. NS-2 SIMULATION SETUP

We have implemented the shrew-filtering algorithm in the 

NS-2 simulator, which is a widely recognized packet level 

discrete event simulator [23]. A subclass of connector named 

ShrewFilter is added to the head of each SimplexLink. A 

TrafficMonitor is coded into the simulator to compute the 

traffic matrices. The ShrewFilter is used to process the sample 

array and to calculate the NCAS of flows leading to the victim. 

Then, the PDT or NFT entries are set accordingly. The system 

configuration of the simulation scenario is shown in Fig. 6. 

Fig. 6.  The simulation scenario and experimental setting. 

Our simulation consists of a variety of Internet traffic 

patterns. Multiple scenarios are studied including single TCP 

flow vs. single shrew flow, single TCP flow vs. distributed 

shrew flows, multiple TCP flows vs. single shrew flow, and 

multiple TCP flows vs. distributed shrew flows. The distributed 

attack patterns include the cases shown in Figs. 1(b) and 1(c). 

Our notation used in the simulation is listed in Table II. 

TABLE II 

DEFINITION OF NOTATION

Symbol Definition 

T

R

L

NS

NT

Attack Period (sec) 

Attack Pulse Peak Rate 

Attack Pulse Burst Length (sec) 

Number of Shrew Flows 

Number of TCP Flows 

Normalized TCP Throughput 

Response Time 

IV. SIMULATION RESULTS AND ANALYSIS

We compared the results of our shrew-filtering algorithm 

with the well-known active queue management (AQM) 

algorithm Drop Tail. We also examined the response time 

performance of our algorithm since it determines the duration 

of damage to a victim site.  

A. Normalized Throughput 

Our NS-2 simulations are carried out with the topology 

shown in Fig. 6 for different combinations of legitimate TCP 

flows and shrew attack streams. We compared the TCP 

throughputs achieved by the shrew-filtering algorithm and the 

Drop Tail algorithm using the comparison metric normalized 

throughput ( ), which is defined as the ratio of average 

throughput achieved by the TCP flow(s) with DDoS stream to 

the throughput achieved without DDoS streams.  

The normalized throughput indicates the severity of the 

damage that the shrew streams have done to the performance of 

legitimate TCP flows. The lower the normalized throughput is, 

the greater the damage. In our simulations, we consider the link 

capacity of the last hop to the victim as 2 Mbps. 

Since all TCP variants are equally vulnerable to shrew DoS 

stream of 50 ms or higher [17], we use TCP-Reno for the 

purpose of experiment. The sources of the shrew attack streams 

are illustrated at the top left of Fig. 6. Their delay is a random 
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variable uniformly distributed within (60 ms, 120 ms).  

We start with single shrew-stream scenarios. Fig. 7 compares 

the throughputs of TCP flows using the Drop Tail scheme and 

our shrew-filtering algorithm. The x-axis is the attack period 

and the y-axis is the normalized throughput TCP flows 

achieved. Fig. 7(a) shows the scenario of single TCP flow 

under attack of single shrew stream modeled in Fig. 1(a). Fig. 

7(b) corresponds to the scenario of five TCP flows under attack 

from a single shrew stream.  

It is clear that under the Drop Tail algorithm, the throughput 

of legitimate TCP flows is far below the actual attainable 

throughput and the link utilization is very inefficient. With our 

shrew-filtering algorithm, the gain in TCP throughput is 

significant. It reaches what legitimate flows can reach when 

there is no shrew stream. Our hypothesis test model can 

identify shrew streams with a high confidence level. We filter 

out shrew streams before they hurt the legitimate flows.  

Distributed shrew streams are hard to be detected because of 

their much lower average traffic rates. Simulations are carried 

out using four shrew streams that are distributed in either space 

domain (Fig. 1(b)) or time domain (Fig. 1(c)), respectively. 

Again, we studied their effects on single and five legitimate 

TCP flows. Fig. 8 presents the case where shrew streams are 

distributed in space but synchronized as in Fig. 1(b). Four 

shrew streams are from four difference sources with the same 

attack periods and the same burst lengths. However, their peak 

rate is only R/4. This means that their average traffic rate is 

only 1/4 of that of the single source attack.  

(a) Single TCP flow                             (b) Five TCP flows

Fig. 8. Normalized throughput of TCP flows vs.  

4 spatially distributed shrew attack flows.

Fig. 9 compares the throughputs of TCP flows under the 

Drop Tail algorithm and our shrew-filtering algorithm in the 

case that shrew streams are distributed in time fashion but 

synchronized as in Fig. 1(c). Four shrew streams are from four 

difference sources with the same peak rates and the same burst 

lengths. However, their attack periods are 4T. This distribution 

makes the interval between pulses four times longer to bring 

down the average traffic rate to 1/4 of that of the single source 

attack pulse stream.  

These results show that our shrew-filtering algorithm is 

indeed capable of recognizing distributed shrew streams with 

lower average traffic rate. This is one major advantage of 

frequency spectrum technique over bandwidth utilization 

analysis. Even if the shrew streams were launched from more 

zombies to further lower their average bandwidth utilization, 

their frequency spectrum would possess the same properties.  

In other words, the shrew-filtering mechanism is effective 

even if the attack is launched through larger number of streams 

with lower burst peak rate. In fact, if zombies use longer 

individual attack periods, higher percentages of its energy will 

be located in the low frequency band we are monitoring. 

B. Response Time 

The response time is a critical parameter to evaluate the 

performance of our shrew-filtering algorithm. In general, the 

time a DDoS defense algorithm takes to detect whether 

malicious flows exist or not is used a measure to monitor the 

traffic conditions. The time is varied according to the traffic 

load on the link.  

However, the load on the link does not affect the response 

time of our shrew-filtering algorithm. Results in Section 4.1 

show that the performance of the shrew-filtering algorithm is 

coherent under different traffic conditions, where we used the 

same 5-second sampling time. 

The effects of variant sampling length are determined by the 

signal’s periodicity. If the sampled sequence presents similar 

frequency characteristics of original signal, then the variance of 

sampling time will not impact on our detection precision.  

Fig. 10(a) presents the distributions of NCAS at the K-point 

of TCP flows and shrew streams. They are sampled from 1 

second to 5 seconds. As the sampling time decreases, the 

NCAS at the K-point of TCP flows scatters wider. Therefore, 

(a) Single TCP flow                             (b) Five TCP flows 

Fig. 7. Scenarios of TCP flows under single shrew attack. 

(a) Single TCP flow                             (b) Five TCP flows 

Fig. 9. Normalized throughput of TCP flows vs. 

4 timely distributed shrew attack flows.
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the probability of treating a legitimate TCP flow as shrew 

stream increases. However, the distributions of NCAS at the 

K-point of shrew streams are pretty stable. If we stick on the 

threshold of 0.3, the high detection confidence level is 

maintained even the sampling time decreases to 3 seconds.   

Table III shows the confidence levels of different sampling 

times. We observe ±1.96  (95%), ±3  (99.7%) and ±3.29

(99.9%) error levels of TCP and shrew streams. When 

sampling time (the response time ) is longer than 2 seconds, 

there is no overlap between the ±3.29  error level ranges of 

TCP flow and shrew stream. Therefore, the confidence level of 

detecting and filtering shrew streams is very high (99.9%) 

while  2 seconds.

With  = 1 second, we observed an overlap in both ±3  and 

±3.29  error ranges, but no overlap for ±1.96  error level. This 

implies that information carried by sampled signal series 

cannot separate TCP flows from shrew streams with such a 

high confidence level (99.7%). However, the shrew-filtering 

algorithm still could respond to the shrew attacks in 1 second. 

We cut off it with little sacrifice in confidence level (95%). 

Figure 10(b) shows the throughput of five TCP flows under the 

attack of four distributed shrew streams. Clearly, all sampling 

series achieved much higher throughput than the Drop Tail 

algorithm. 

TABLE III 

CONFIDENCE LEVELS OF DIFFERENT SAMPLING TIMES

 Sampling 

Time 
1 Second 2 Second 3 Second 

TCP Flow 0.1614±0.176 0.1445±0.094 0.1327±0.067 
±1.96 /

95% Shrew

Stream 
0.5036±0.050 0.4690±0.061 0.4508±0.067 

TCP Flow 0.1614±0.270 0.1445±0.144 0.1327±0.102 
±3 /

99.7% Shrew

Stream 
0.5036±0.076 0.4690±0.093 0.4508±0.103 

TCP Flow 0.1614±0.296 0.1445±0.158 0.1327±0.112 
±3.29 /

99.9% Shrew

Stream 
0.5036±0.083 0.4690±0.102 0.4508±0.113 

 Sampling 

Time 
4 Second 5 Second  

TCP Flow 0.1258±0.078 0.1131±0.051  
±1.96 /

95% Shrew

Stream 
0.4479±0.074 0.4985±0.074  

TCP Flow 0.1258±0.120 0.1131±0.078  
±3

/99.7% Shrew

Stream 
0.4479±0.112 0.4985±0.114  

TCP Flow 0.1258±0.132 0.1131±0.086  
±3.29 /

99.9% Shrew

Stream 
0.4479±0.123 0.4985±0.125  

V. CONCLUSIONS

In this paper, we have proposed to cut off low-rate 

TCP-targeted DDoS attack flows using the periodicity 

properties of different flows in the frequency domain. Our 

analysis and simulations show that more energy of low-rate 

shrew attacks is located in the lower frequency band, 

comparing with the legitimate TCP flows.  

There is one limitation in our shrew-filtering scheme. It is 

still difficult to identify malicious flows that exhibit “transient” 

behaviors such as “mice” flows. To deal with such scenarios, 

we believe that we can use our approach to detect the attacks at 

packet level instead of flow level. Indeed, our extended results 

[7] indicate that high detection accuracy was achieved using a 

collaborative distributed detection mechanism. 

In our on-going efforts, we are implementing the 

shrew-filtering algorithm on the DETER test-bed to evaluate 

this work in an environment closer to the reality [9], [10]. With 

this practical study as the background, we can then extend the 

shrew-filtering algorithm and hypothesis test framework based 

detection methodology to address other types of DDoS attacks 

that present variant patterns in frequency domain. 

Essentially, all Internet traffic flows could be abstracted and 

processed as continuous periodic signals in time domain. If a 

frequency “spectrum” of Internet traffic flow mix is available, 

the frequency domain processing technology could facilitate 

the traffic analysis process efficiently without incurring much 

extra burden to the routers. 

(a) Distributions of NCAS at K-point 

(b) Throughput under 3 sampling times: 
1, 3 and 5 seconds 

Fig. 10. Effects of sampling lengths on the TCP and shrew throughput. 
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