
Functional Principles of Registry-based Service Discovery

V.Sundramoorthy1, C.Tan2, P.H.Hartel1, J.I.den Hartog1, and J.Scholten1

1University of Twente, Enschede, The Netherlands
vasughi.sundramoorthy@utwente.nl

2Massachusetts Institute of Technology (MIT), Cambridge, USA
c.tan@mit.edu

Abstract

As Service Discovery Protocols (SDP) are becom-
ing increasingly important for ubiquitous computing,
they must behave according to predefined principles. We
present the functional Principles of Service Discovery
for robust, registry-based service discovery. A method-
ology to guarantee adherence to these principles is pro-
vided and illustrated by formal verification of the prin-
ciples against FRODO, an SDP built for the home envi-
ronment. We show that, to make behavioral guarantees,
an SDP has to be robust against network disturbances,
and cannot rely only on the network layer.

1. Introduction

In the pursuit of a ubiquitous world, network admin-
istration, as we know it will change. Self-configuring
systems will replace user configuration, where devices
discover their environment, detect and adapt to topol-
ogy changes, establish communication with each other
and share services. Several state of the art systems have
been developed towards achieving this objective, includ-
ing Jini [1] by Sun Microsystems, Universal Plug and
Play (UPnP) [9] by Microsoft and Service Location Pro-
tocol [2, 7] by the IETF.

In general, service discovery protocols adhere to cer-
tain fundamental attributes. To start with, there are two
types of entities in the system: User and Manager. A
Manager is a service provider, which has a set of ser-
vices. Each service is represented as a Service Descrip-
tion (SD), which describes the service in terms of: (1)

device type (e.g. printer), (2) service type (e.g. color
printing) and (3) attribute list (e.g. location, paper size).
A User is an entity that has a set of requirements for the
services it needs.

There are two types of service discovery architec-
tures: registry-based (e.g. Jini) and peer-to-peer (e.g.
UPnP). A registry-based architecture has a third entity,
called the Registry. A Manager registers its services
at a Registry, and Users discover the services through
unicast queries to the Registry. In the peer-to-peer ar-
chitecture there are no Registries, and Users discover
Managers through broadcast or multicast queries. The
registry-based architecture reduces network traffic and
makes a network more manageable by allowing Reg-
istries to keep track of arriving and departing services.
The peer-to-peer architecture avoids single point of fail-
ure problems, as may exist in the registry-based archi-
tecture, but increases network traffic. A combination of
these two architectures can be implemented to allow the
protocol to be more resilient against failure on the reg-
istry, and reduce network traffic (e.g. SLP, FRODO).
However, unlike existing protocols, FRODO [10] imple-
ments resource-awareness. The service discovery tasks
are partitioned according to resource constraints, where
a resource-lean node depends on more powerful neigh-
bors to complement its discovery tasks. From this point
onwards, we focus on Registry-based protocols because
the peer-to-peer architecture is a simplification of the
registry-based architecture, and can be derived by re-
moving Registry-related factors from this work.

Service discovery protocols perform garbage col-
lection of defunct services. A popular mechanism for
garbage collection is leasing. The Manager refreshes a
“lease” periodically to notify the Registries of its con-

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

tinued existence. The services of Managers that have left
the network can be purged automatically if the lease is
not renewed.

To ensure subscribed Users remain consistent with a
Manager whenever its service changes, most service dis-
covery protocols implement update functionalities. The
change can be reflected directly in the SD, or in an
evented variable that gives the status of the service.

Contribution: The contributions of this paper to the
field of service discovery are (1) stating for the first time,
the functional principles for achieving robust registry-
based service discovery, (2) classification of the func-
tions in service discovery, (3) presenting a methodology
for verifying service discovery protocols and (4) illus-
trating the above using our resource-aware and robust
FRODO protocol.

Section 2 classifies service discovery mechanisms
into four major functions, and the principles that corre-
spond to each of the functions. Section 3 provides a brief
description of FRODO. Section 4 describes the model-
ing and verification methodology of FRODO using DT-
Spin, and Section 5 analyzes the results of verification.
The last section concludes.

2. The Principles of Service Discovery

Service discovery systems that aim to be self-
configuring should provide reliability in the face of
network disturbances. This basically means that the ser-
vice discovery functions are able to recover from errors.
A system is flawed if a User is never able to dis-
cover a Manager in the system whose services match
the User’s requirements. Thus, we feel it is impera-
tive for the field of service discovery to have a set of
principles that makes the notion of correct behavior pre-
cise. We call these Service Discovery Principles. Be-
sides ensuring reliability, these fundamental principles
define the nature and constraints of service discov-
ery. Systems that adhere to the principles will provide
guarantees on their behaviors.

2.1. Related Work

The only other work done in this area is the Service
Guarantees from NIST in [4], which proposes general
guarantees that service discovery protocols should strive
to satisfy. Our Service Discovery Principles refine these
guarantees and moreover, we provide a methodology to
proof using model-checking techniques, that a protocol
satisfies these principles.

2.2. Service Discovery Functional Areas

Logically, service discovery is divided into 4 func-
tional areas:

1) Configuration Discovery - Allows registry-based
systems to (a) auto-configure a Registry and (b) dis-
cover the Registry. Auto-configuration of Registries re-
quires nodes to appoint Registries, according to some
criteria, on the fly, without user interventions. For Reg-
istry discovery, nodes can actively initiate the discov-
ery or listen lazily to Registry announcements.
2) Service Registration - Allows Managers to regis-
ter their services at a Registry. Registration mecha-
nisms include (a) unsolicited registration, where nodes
request the Registry to register their services and (b) so-
licited registration, where Registries detect and request
new nodes to register.
3) Service Discovery - Allows Users to discover Man-
agers that satisfy their set of requirements. This could
be achieved through a (a) unicast query to a Registry,
(b) broadcast query, (c) notification of new services
by the Registry to the Users or through broadcast an-
nouncements by Managers.
4) Configuration Update - After a User discovers a
service, it can subscribe to the Manager to receive up-
dates when the service changes, or becomes unavail-
able. The Managers provide two types of update in-
formation, service description update and evented vari-
able update. The updates can be propagated using (a) 2-
party scheme, where the communication is directly be-
tween the Manager and the User, or (b) 3-party scheme,
where a registry propagates the update to the User on
behalf of the Manager. Garbage collection of defunct
services is also part of the update functionality.

Different service discovery systems implement dif-
ferent mechanisms to achieve the objectives of the func-
tional areas, as depicted in Table 1.

2.3. The Service Discovery Environment

During the operations of service discovery tasks, the
system could experience various network disturbances,
such as link failure, interface failure, message loss or
node failure. Network disturbances cause uncertainties
in service discovery systems. However, it is important to
ensure that a service discovery system guarantees recov-
ery from a disturbance.

Below we provide a formal description of a system.
System: A system consists of a set of entities with at-
tributes (e ∈)E, a set of services (s ∈)S and time in

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

Functional Area, re-
lated Principles and
supportive attributes

Mechanisms SLP Jini FRODO

Configuration Dis-
covery (Registry
Setup and Registry
Discovery Princi-
ples)

Auto-configured Reg-
istry

No No Yes - through leader elec-
tion among 300D nodes

Registry Discovery Active and lazy discov-
ery

Active and lazy discov-
ery

Active and lazy discovery

Registration (Regis-
tration Principle)

Registration mecha-
nism

Unsolicited registration Unsolicited registration Solicited and unsolicited
registration

Service Discov-
ery (Service Discov-
ery Principle)

Search mechanism Unicast (multicast possi-
ble)

Unicast Unicast (multicast possi-
ble)

Notification of new
services to Users

No Yes - unicast notification
by Registry

Yes - unicast notification
by Registry

Configuration up-
date (2-party and
3-party Configura-
tion Update Princi-
ples)

Garbage collection Managers renew lease Managers renew lease 300D Managers re-
new lease, Registry polls
3D/3C Managers

Update information Service update Service update Service update, event noti-
fication

Update mechanism None - register again 3-party subscription 2-party subscription,
3-party subscription

Supportive at-
tributes

Acknowledgements
and retransmissions

TCP-dependent TCP dependent Implemented with timers

Resource awareness No No Yes, device classification
Service usage Application layer Mobile proxy code Application layer
Security Limited, with applica-

tion driven authetication
None, depends on JDK
1.2 security model

None, future work

Table 1. Taxonomy of registry-based service discovery systems. FRODO classifies devices into
3C, 3D and 300D, in order of increasing resources.

progress (t ∈)Time. The attributes of the entities, de-
scribed below, evolve over time. Based on the attributes,
the entities are divided into three (not necessarily pairs-
wise disjoint) sets (u ∈)U for Users, (m ∈)M for Man-
agers, and (c ∈)C for Registries.
Entity attributes: Each entity, e has the following at-
tributes, which are subject to change over time:
• C(e) ⊆ E is the set of Registries discovered by e.

An entity is called a Registry, i.e. e ∈ C, if it has
discovered itself in the role of Registry, e ∈ C(e).

• OfferedSD(e) ⊆ S is the set of services, offered by
e. An entity is called a Manager, i.e. e ∈ M, if it
offers at least one service, OfferedSD(e) �= ∅.

• Requirement(e) ⊆ S is the set of services required
by entity e. An entity is called a User, i.e. e ∈ U,
if it is interested in/requires at least one service,
Requirement(e) �= ∅.

• DiscoveredSD(e, e′) ⊆ S is the set of services dis-
covered by e at entity e′. This attribute is (typically)
only used for e, a User and e′, a Manager. We put

DiscoveredSD(u) :=
⋃

DiscoveredSD(u, m)
for the set of all services discovered by a User, u at
any Manager, m.

• RegisteredSD(e) ⊆ S is the set of registered ser-
vices in e. This attribute is only used for a Registry.

There are several protocol-dependent parame-
ters used in the Service Discovery Principles:
Connectivity condition: Conn(e, e′) : The service dis-
covery protocol is responsible for providing the defin-
ition of Connectivity. An example is “if a message is
transmitted from either e to e′, or vice versa , the mes-
sage is received.” The Connectivity condition is not re-
stricted to valid communication paths. It can also be de-
fined by an application, for example, a security applica-
tion that detects a malicious entity, and indicates to the
service discovery protocol that the node is not available
for any further operations.
Disconnect condition: DisConn(e, e′) : ¬Conn(e, e′)
for “sufficiently long”, where “sufficiently long” is a

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

u at time t
4

OfferedSD(m)

m at time t
1

c at time t
2

Requirement(u)

u at time t
2

ServiceSearch(u,c)

Registration(m,c)

c at time t
3

Require-

ment(u)
Matching

SD(c,u)

ServiceFound(c,u)

Require-

ment(u)
Discovered

SD(u)

Time: t
1
< t

2
< t

3
<t

4

Registered

SD(c)

Registered

SD(c)

Registered

SD(c,m)

Registered

SD(c,m)

Figure 1. System flow and relations be-
tween sets during Registration and Ser-
vice Discovery. Registration, ServiceSearch
and ServiceFound are shown as messages
sent between entities. A service is regis-
tered by the Manager at time t1, then dis-
covered by the Registry at t2, and User
searches for the service at or before t2.
The Registry processes the request at t3,
where it finds matching services for the
User. The User discovers the service at t4.

protocol-dependent parameter. The definition of “suf-
ficiently long” includes the Connectivity definition
and the period communication did not occur. Exam-
ples are the limit of retransmissions or the time period
for waiting for acknowledgements.
Global Connectivity, GC: The condition is satisfied if
all entities are connected.
GC : ∀e1, e2 ∈ E : Conn(e1, e2)
Number of Registries, N: the desired number of Reg-
istries in the system.
Required Registries, G(e)(⊆ E): the Registries re-
quired by e. An entity may not be interested in know-
ing all Registries but only those of a certain type, i.e.
those which satisfy its “Registry requirements”.
Registry election, Rank: a function for electing the Reg-
istries in the system, where the set C has highestRank if
¬(∃e′ /∈ C : Rank(e′) > min{Rank(e) | e ∈ C})

2.4. Service Discovery Principles

We use Linear Temporal Logic (LTL) [8] to define
the Service Discovery Principles. This is essentially po-
sitional logic with temporal operators such as � (al-
ways) or ♦ (eventually). Basically the recovery of a ser-
vice discovery system is defined as the response pat-

OfferedSD(m)

m at time t
5c at time t

5

PurgeService(m,c)
c at time t

6

Registered

SD(c,m)

Registered

SD(c)

Time: t
5
< t

6
<t

7

Discovered

SD(u)
Discovered

SD(u,m)

u at time t
7

PurgeService(m,u)’

Registered

SD(c,m)
Registered

SD(c)

Figure 2. System flow and relations be-
tween sets during Configuration Purge. A
service is purged by the Manager at t5,
then the Registry is notified at t6, which
then purges the registration. The Registry
notifies the User at t7, and the User purges
the service from its DiscoveredSD cache.

tern, �(p′ → ♦p), where p′ is the state of Connectiv-
ity, Global Connectivity or Disconnect, and p is the re-
sponse of the service discovery system towards satisfy-
ing a Service Discovery Principle.

We need some auxiliary definitions before giving the
Service Discovery Principles.

a) The symbols “♦⊆”, “♦⊇” and “♦⊃⊂”
a ♦⊆ b holds at time t0 when a at time t0 is a subset
of b at some time t1 where t1 ≥ t0. Similiarly, for the
symbols “♦⊇” and “♦⊃⊂” where a ⊃⊂ b denotes that
the two sets are disjoint (a ∩ b = ∅).
b) ServiceSearch(u, c) states that a User, u is looking
for a specific service from a Registry, c

c) MatchingSD(c, u) :=
RegisteredSD(c) ∩ Requirement(u)

is the set of services registered at the Registry, c which
match the requirements of User, u.
d) ServiceFound(c, u) :=

MatchingSD(c, u) ♦⊆ DiscoveredSD(u)
states that the matching services at a Registry c are dis-
covered by the User u.
e) Registration(m, c) :=

OfferedSD(m) ♦⊆ RegisteredSD(c)
states that all services of Manager, m are registered at
Registry, c.
f) PurgeService(m, u) :=

OfferedSD(m) ♦⊃⊂ DiscoveredSD(u)

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

states that the services of Manager, m are eventually
purged from the discovered services of User, u.
PurgeService(m, c) :=

OfferedSD(m) ♦⊃⊂ RegisteredSD(c)
similarly states that the services of Manager m are
eventually purged from the registered services of Reg-
istry, c. If an entity is both a Registry and a User then
both properties must hold.
g) Uptodate(u, m) := OfferedSD(m) ∩

Requirement(u) ♦⊆ DiscoveredSD(u, m) ∧
OfferedSD(m) ♦⊇ DiscoveredSD(u, m)

states that User u will find new services at Manager m
and remove services that are no longer available at m.

Figures 1 and 2 provide scenarios of a registry-based
system, where the relationship between entities, and
the sets are explained, as time progresses. In Figure 1,
ServiceSearch is the message providing the require-
ments of the User to the Registry, while in Figure 2,
PurgeService and PurgeService′ are the messages that
notify the Registry and User respectively of a defunct
service.

With the system and basic properties in place we are
ready to give the 7 Service Discovery Principles.

(P1) Registry Setup Principle
When there is global connectivity, N Registries of
the highest rank are selected in the system.

�(GC → ♦((|C| = N) ∧ highestRank))
Assume all entities have the same rank if no rank-
ing function is used.

(P2) Registry Discovery Principle
An entity discovers all available Registries in the
system that it is interested in.

∀e : �(C(e) ⊆ G(e) ∧
∀c ∈ C ∩ G(e) : Conn(c, e) → ♦c ∈ C(e))

(P3) Registration Principle
A Manager registers its service description at each
Registry it discovers.

∀m,∀c ∈ C(m) :
�(Conn(m, c) → Registration(m, c))

(P4) Registry-based Service Discovery Principle
A User discovers the services that match the User’s
requirements and which are registered at a Registry.

∀u,∀c ∈ C(u) :
�(Conn(u, c) → ServiceFound(c, u))

(P5) Configuration Purge Principle
A User or Registry purges the services of a Man-
ager that has become disconnected.

∀m,∀uc ∈ U ∪ C :
�(DisConn(m, uc) → PurgeService(m, uc))

(P6) 2-Party Configuration Update Principle:
A User remains consistent with a Manager when its
services change.

∀m, u : �(Conn(u, m) → Uptodate(u, m))

(P7) 3-Party Configuration Update Principle
A User remains consistent with a Manager when its
services change, through the Registry.

∀c ∈ C(m) : �((Conn(c, m)∧♦Conn(u, c)) →
Uptodate(u, m))

The 7 Service Discovery Principles state the funda-
mental objectives of service discovery; the User discov-
ers an available Manager, which matches its service re-
quirement, and achieve consistency with the Manager
when the service changes.

3. FRODO

FRODO implements resource-awareness and robust-
ness. For resource-awareness, FRODO classifies nodes
as (1) 3C device class - simple devices with restricted
resources (e.g. smart dust), (2) 3D device class- medium
complex devices (e.g. temperature controller) and (3)
300D device class - powerful devices, controlled by
a complex embedded computer, with more than 1MB
memory requirement (e.g. set-top boxes). Only a 300D
node can become a Registry, through a leader election
process. The Registry is called the Central. The func-
tions of service discovery explained in Section 2.4 are
implemented according to the device classes. The names
of the functions remain the same for FRODO, except we
classify Configuration Update as part of the wider Con-
figuration Management, to accommodate its robust fea-
tures. Table 1 provides a summary of the mechanisms
that each function implements. The protocol is less de-
pendent than the state-of-the-art on the recovery ability
of the lower layers. This allows the protocol to be de-
ployed together with leaner lower layer protocol stacks,
with restricted error recovery mechanisms. More details
on FRODO can be found in [10].

4. Modeling and Verification

We use model checking [6] to verify that FRODO ad-
heres to the Service Discovery Principles. If there are
cases where the protocol fails the verification, we iden-
tify whether the error lies in the modeling process, or
in the design phase. The former requires the model to
be corrected (and often our understanding!). However, it
is the latter which is most beneficial, since detecting a
design flaw leads towards discovering mechanisms that

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

improve and strengthen the protocol, until the Service
Discovery Principles are satisfied.

We verify the desired behavioral properties of the
protocol through exhaustive enumeration (explicit or im-
plicit) of all the states reachable by the system and the
behaviors that navigate through them. We use the model-
checker DT-Spin [3], for this purpose. DT-Spin is an ex-
tension of the well-known SPIN tool [6]. DT-Spin is
used instead of the original SPIN model checker be-
cause we need multiple timeouts that occur at any time,
even if other processes are being executed in the model.
Timeouts are essential requirements for the recovery
processes of the protocol against failures. The timeout
variable in standard SPIN cannot be used as it is only
true when the system is idle. However, DT-Spin also in-
creases state space because time is modeled as ticks, and
each tick occupies a state. A reasonable number of ticks
is set for each timer, to make verification feasible.

4.1. Methodology

Step 1:

Protocol

abstraction

Step 4:

Testing: Random

simulations, with

increasing

message loss)

Success?
Identify

problem

Yes

No

Success?

No

Stop Yes

Step 2: FRODO Modelling

ConfDiscMgt |= P1, P2 , and P5

RegDisc |= P3 and P4

ConfUpdate |= P6 and P7

Step 3: Message loss

Step 5: FRODO Verification

ConfDiscMgt |= P1, P2 and P5

RegDisc |= P3 and P4

ConfUpdate |= P6 and P7

Message loss

 (no failures |RegisteredSD(c)|=|E|
 m(=c) fails |RegisteredSD(c)| = |E|-1
 c fails |RegisteredSD(c’)|=|E|-1)

p= (DiscoveredSD(u) = OfferedSD(m))

Protocol

specification

p= ((|C|=1) highestRank)

p= (DiscoveredSD(u) = OfferedSD(m))

Node failure

Node failure

Figure 3. Methodology steps. The FRODO
Modeling box shows the abstraction link
between the 3 modules, where the outer
boxes abstract some functions from the
inner boxes. Connectivity and Global Con-
nectivity are modeled with/without mes-
sage loss respectively, and Disconnect is
modeled as node failure.

It is impractical to work with monolithic models of
complex protocols such as FRODO. In the first place er-
ror traces would be too cluttered with irrelevant detail to

be able to spot the real problems, and secondly the state
space would grow beyond the bounds of what the cur-
rent tools can cope with. Therefore we split the FRODO
protocol in a number of modules, each of which cor-
responds roughly to one of the four functional areas or
sub-functions thereof. Each model is then provided in
several versions, including a concrete model with the
most detail, some versions that represent worst case be-
havior, and a number of abstract versions with as lit-
tle detail as possible. By combining a concrete version
of one module with appropriate abstract versions of all
others, the system as a whole can be verified, focusing
on the behavior of the concrete module. The main chal-
lenge of this method is to keep the different versions of
each module consistent. Figure 3 shows the methodol-
ogy that we use to model, simulate, and verify FRODO
against the Service Discovery Principles.

Step 1: Protocol abstraction. Each assembly of mod-
ules builds on a common layer of protocol abstraction.
We deliberately abstract irrelevant detail such as mes-
sage format.

Step 2: Modular decomposition. a) ConfDiscMgt
models Configuration Discovery and Configura-
tion Management. This part is actually broken into
four sub-functions as follows: ConfDiscMgt-1 mod-
els the leader election protocol which elects one Cen-
tral. ConfDiscMgt-2 models two worst-case scenarios
of the protocol with (a) all nodes claiming to be Cen-
tral after a network partitioning, and (b) all registration
information in the Central being lost because of pro-
longed communication failure. ConfDiscMgt-3 models
a Backup taking over as the Central when the exist-
ing Central leaves the system. This model uses node
failure, instead of message loss to model network dis-
turbance. ConfDiscMgt-4 models the Central handing
over to a superior node that enters late into the sys-
tem. This model is an abstraction of ConfDiscMgt-1,
where message loss is already checked, and there-
fore not included in ConfDiscMgt-4. b) SrvRegDisc
models both Registration and Service Discovery func-
tions. Configuration Discovery is abstracted away in this
model. The model consists of one 300D node which is
the Central. Service discovery is done through the Cen-
tral using the directed search mechanism, thus the
service cannot be discovered unless registration oc-
curs. The discovery of each type of Manager (3C, 3D
and 300D) is modeled separately. c) ConfUpdate mod-
els Configuration Update propagating the updates to
the Users through the 2-party and 3-party subscrip-
tion mechanisms.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

Step 3: Message loss. Network disturbance is mod-
eled as message loss. All models except ConfDiscMgt-3
and ConfDiscMgt-4 are simulated and verified with and
without message loss. A receiver will continue executing
its tasks, unaware of any message loss, which may lead
towards a violation of the Service Discovery Principles.
We use a counter for every message type, which incre-
ments whenever a particular type of message is lost. The
message may be lost, until a constant MAX LOSS for its
type is reached. The following is an example of how a
SrvRegReq message is sent or lost. The variables rcvrID,
OfferedSD, and srcID are the receiver node’s identifier,
the service identifier that represents a service and the
sender node’s identifier respectively.
if
:: loss_counter[type]<= MAX_LOSS ->

lossCounter[type]++
:: else -> /* transmit message */

send!SrvRegReq,OfferedSD,srcID,rcvrID;
fi

Message loss increases the number of states because
of the additional counter and timing variables and non-
deterministic choice. The impact of message loss on the
verification is shown in Table 2.

Step 4: Testing. We use the simulator tool in DT-Spin
to test and debug the models. We test different, random
simulation scenarios and increase the MAX LOSS for
every simulation (up to 10 message losses to capture ex-
treme scenarios)

Step 5: Verification. DT-Spin checks correctness claims
that are generated from logic formulas expressed in LTL.
When a claim is invalid for a model, the tool produces
a counter example that explicitly shows how the prop-
erty was violated. The counter example is a feedback
for the simulator tool of DT-Spin to trace the execution
trail that causes the violation.

4.2. Property Modeling

The following are the interpretation of the protocol-
dependent parameters:

1. Connectivity condition: Conn(e, e′) : if a message
is transmitted from either e to e′, or vice versa, and
the expected acknowledgement arrives, the entities
are reachable.

2. Disconnect condition: ¬Conn(e, e′) : for twice the
timeout period.

3. Rank, a leader election function that returns the
highest ranked 300D node as the Central.

4. G(e) = E the nodes are interested in any Central as
there is only one type of Central in FRODO.

Model State vec-
tor (bytes)

Depth States stored

ConfDiscMgt-1,
exhaustive mode,
no message loss

304 37328 38345

ConfDiscMgt-1,
supertrace mode,
MAX LOSS=1

308 61993 497,662 billion

Table 2. An example of the impact of mes-
sage loss on state space.

5. N = 1, a single Central is elected.

We model the response pattern �(p′ → ♦p) defined
in Section 2.4 by building the property p′ directly into
the models, so that p is verified as a recurrence prop-
erty [6]. The recurrence property �♦p states that if the
state formula, p happens to be false at any given point
in a run, it is always guaranteed to become true again if
the run is continued. For p′ = Global Connectivity, we
verify p in a model without any message loss. For p′ =
Connectivity, we verify p in a model with a limit on mes-
sage loss. For p′ = Disconnect, we verify p in a model
with node failure.

The descriptions of each property, p are given below.
For the purpose of readability, we left out some techni-
cal details.

ConfDiscMgt |= P1 ∧ P2 ∧ P5
For P1, all entities have to agree on a the highest rank-
ing node, say c, becoming the single Central. For P2,
all nodes must discover this Central (and no others).
In the verification we check |RegisteredSD(c)| = |E|
which implies that each node m has registered at c As
each node will offer exactly one service, it will only dis-
cover one Central and will only register at this Central.
For P5, the Central purges service registration of dis-
connected nodes. Thus, |RegisteredSD(c)| = |E| − 1. If
the failing node is the Central itself then the Backup c′,
which is the second highest ranking node, must de-
tect this and take over as the new Central, resulting in
|RegisteredSD(c′)| = |E| − 1. Thus we check property
p := �♦(no failures → |RegisteredSD(c)| = |E| ∧

m(�= c) fails → |RegisteredSD(c)| = |E| − 1 ∧
c fails → |RegisteredSD(c′)| = |E| − 1)

Together with some basic properties of the behavior of
each of the nodes (e.g. discovering only one Central)
only registering at a node it believes to be the Cen-
tral, ...) this is sufficient to obtain that P1, P2 and P5
all hold.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

SrvRegDisc |= P3 ∧ P4
We consider the situation where a User u is interested in
the service that is offered by some Manager m in the sys-
tem, Requirement(u) = OfferedSD(m). We verify the
property
p := �♦(DiscoveredSD(u) = OfferedSD(m))
Which gives that services can be found (P4) and also
that services are registered (P3) as the User can only dis-
cover registered services.

ConfUpdate |= P6 ∧ P7
We consider the situation where the service at m dis-
covered by a User u changes but still satisfies the re-
quirements of the User. To satisfy P6 and P7, the User
has to update its discovered services to remain consis-
tent with the Manager, Uptodate(u, m). This is implied
by DiscoveredSD(u) = OfferedSD(m). We again check
the property
p := �♦(DiscoveredSD(u) = OfferedSD(m))
where OfferedSD(m) changes during the verification.

5. Results & Discussion

5.1. Verification results

The results that we obtained are summarized in Ta-
ble 3. For every module, we provide the setting for
the verification. There are multiple MAX LOSS values.
This is because for every module, there are several mod-
els, which we verified for the same properties. In to-
tal, we developed and verified 21 models, out of which,
17 models achieved Exhaustive coverage (100% cover-
age of all reachable states for a model), while 4 models
had to be run under the Supertrace mode (uses bit state
hashing [5], with coverage around 98%) because of state
space explosion.

The successful results shown in Table 3 are under the
assumptions that (1) the nodes provide correct informa-
tion, (2) message losses are low, and (3) the system does
not require a fixed time constraint on satisfying the Ser-
vice Discovery Principles. Based on these assumptions,
the results show that FRODO guarantees that the func-
tions of service discovery meet their objectives under the
condition that nodes are able to communicate eventu-
ally. The results of the verification increases confidence
in FRODO’s capabilities.

5.2. Analyzing Service Discovery Behavior

In service discovery, the system can oscillate from an
ideal state, to a non-ideal state, for every service discov-
ery function, where a network disturbance is the trigger

for the transition. For example, a node can successfully
discover the Registry, but fail to register when the regis-
tration message is lost. Thus the Registry Setup and Reg-
istry Discovery Principles are satisfied, but the Registra-
tion Principle is violated. The protocol must ensure that
the Registration function can return to the ideal state,
and satisfy the principle.

Several mechanisms are vital to satisfy the Service
Discovery Principles. These are: (1) periodic lazy dis-
covery - periodic announcements from the Registries en-
sure detection of other Registries, to recover from net-
work partitioning. A service discovery system can use
this scheme to either converge into N Registries, or Reg-
istries can synchronize their configuration information.
(2) Re-registration - a previous successful registration
does not necessarily mean it remains valid. The Registry
can face node failure, or can purge the knowledge of the
Manager because of network failures. There are several
mechanisms that can resolve this issue: (a) periodic leas-
ing with the Registry, a popular concept for most service
discovery systems. The use of this method alone vio-
lates the Registration and Registry-based Service Dis-
covery Principles if the Registry fails, and the Manager
does not attempt to register with any other available Reg-
istries, (b) unsolicited registration, where nodes moni-
tor Registry announcements to detect an unknown Reg-
istry, and initiate registration, and (c) solicited registra-
tion, where the Registry requests unknown nodes to reg-
ister through monitoring of periodic active announce-
ments. (3) Ensuring update propagation - acknowledge-
ments can help in ensuring an update is propagated suc-
cessfully. However, if the Manager undergoes another
change before the first update is propagated, it is likely
that the Registry and the User will never be aware of the
first change. Polling the Manager when an expected up-
date is missed (e.g. through message sequence) ensures
that the updates are always propagated successfully.

In practical implementations, a protocol that violates
some of the Service Discovery Principles can address
its incompleteness through network and application lay-
ers. For example in SLP, service update is done through
the application layer, where interested Users can peri-
odically poll the Manager to receive service changes. In
Jini, acknowledgements and retransmissions are handled
by the TCP layer. This creates a dependency on a reli-
able communication channel and restricts Jini to certain
types of networks. However, delegating tasks away from
the service discovery layer leaves the system vulnerable
to ambiguous interpretation on failure response.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

Module Settings Principle Results
ConfDiscMgt, without solicited
registration and lazy discovery

MAX LOSS=1 to 4, N = 1, E = 4
for ConfDiscMgt-1 and ConfDiscMgt-
2 E = 3 for ConfDiscMgt-3 and E = 5
for ConfDiscMgt-4

Registry Setup, Reg-
istry Discovery, Configu-
ration Purge

Fail

ConfDiscMgt, with solicited regis-
tration and lazy discovery

MAX LOSS=1 to 4, N = 1, E = 4
for ConfDiscMgt-1 and ConfDiscMgt-
2, E = 3 for ConfDiscMgt-3 and E = 5
for ConfDiscMgt-4,

Registry Setup, Reg-
istry Discovery, Configu-
ration Purge

Success

SrvRegDisc Nodes=3 (Central, Manager, User),
MAX LOSS=1, |OfferedSD(m)| = 1

Registration, Service Dis-
covery

Success

ConfUpdate Nodes=4 (Central, Manager, User),
MAX LOSS=1, |OfferedSD(m) = 1|,
then 2,

Configuration Update Success

Verify models during uncon-
nected state

Nodes=4 300Ds, message loss not lim-
ited

Disconnect check on all
principles.

Success. Principles
still hold

Table 3. Verification results. Failures are corrected by implementing additional mechanisms

6. Conclusions

We classify the behavior of registry-based service
discovery into 4 functional areas, and analyze the mech-
anisms used in each of these areas. We show that ex-
isting registry based service discovery protocols fit into
this classification.

The functional requirements of service discovery,
needed for correct behavior of applications in the ubiqui-
tous environment, are expressed in 7 Service Discovery
Principles. Existing protocols do not satisfy these princi-
ples because they rely on the underlying network to pro-
vide robustness. In contrast, our own service discovery
protocol FRODO does satisfy the principles. We show
this by formal modeling and verification.

FRODO is the first service discovery protocol that
provides formally verified functional guarantees. The
simulation and verification process is beneficial in dis-
covering flaws in the design and identifying essential
mechanisms needed to satisfy the Service Discovery
Principles.

Future work includes investigating the non-functional
aspects of service discovery such as time constraints, by
simulation.

7. Acknowledgement

This research is sponsored by the Netherlands Or-
ganization for Scientific Research (NWO) under grant
number 612.060.111, and by the IBM Equinox program.
We thank K.Mills and C.Dabrowski from the National
Institute of Standards and Technology (NIST), Gaithers-
burg, MD for their contributions to this work.

References

[1] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, and
A. Wollrath. The Jini Specification, V1.1, 1999.

[2] C. Bettstetter and C. Renner. A comparison of service
discovery protocols and implementation of the service
location protocol. In Proceedings of 6th EUNICE Open
European Summer School: Innovative Internet Applica-
tions, September 2000.

[3] D. Bosnacki. Implementing discrete time in promela and
spin. In Proceedings of the VIII Conference on Logic and
Computer Science, LIRA ’97,, pages 25–32, 1997.

[4] C. Dabrowski, K. Mills, and S. Quirolgico. A Model-
based Analysis of First-Generation Service Discovery
Systems. Special Publication 500-260, National Institute
of Standards and Technology, 2005.

[5] G.J.Holzmann. An analysis of bitstate hashing. In Pro-
tocol Specification, Testing and Verification. 15th Inter-
national Conference. Kluwer Academic Publishers, No-
vember 1998.

[6] G.J.Holzmann. The model checker spin, primer and ref-
erence manual. Addison-Wesley, September 2003.

[7] E. Guttman, C. Perkins, J. C. Veizades, and M. Day. Ser-
vice Location Protocol, V.2, December 2003.

[8] M. Huth and M. Ryan. Logic in computer science: Mod-
elling and reasoning about systems. Cambridge Univer-
sity Press, First Edition, January 2000.

[9] Microsoft. Universal Plug and Play Architecture, V1.0,
Jun 2000.

[10] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H.
Hartel. Service discovery at home. In 4th Int. Conf.
on Information, Communications & Signal Process-
ing and 4th IEEE Pacific-Rim Conf. On Multimedia
(ICICS/PCM). IEEE Computer Society Press, December
2003.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on October 31, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

