
Accuracy-Speedup Tradeoffs for a Time-Parallel Simulation of
Wireless Ad hoc Networks

Guoqiang Wang, Damla Turgut, Ladislau Bölöni, and Dan C. Marinescu
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL, USA
{gwang, turgut, lboloni, dcm}@eecs.ucf.edu

Abstract

We introduce a scalable algorithm for time-parallel sim-
ulations of wireless ad hoc networks and report on our re-
sults. Our approach decomposes the simulation into over-
lapping temporal components; the individual components
are computed using an unmodified sequential network sim-
ulator such as NS-2. Our algorithm is iterative and the ac-
curacy of the results increases with the number of iterations.
We find that the approach allows the simulation of ad hoc
networks with a number of nodes larger than those feasible
with sequential network simulators on single CPUs. The
algorithm is scalable, we can simulate larger time intervals
by increasing the number of virtual processors carrying out
the simulation. We identify the parameters that can be in-
vestigated with the algorithm and report on the accuracy of
our results and on the achieved simulation speedup.

1 Introduction

Simulation of wireless networks is important for proto-
col design and wireless system research. As the research
progresses from relatively simple systems composed of sev-
eral nodes connected to a wireless access point to large
systems which might be composed of thousands of nodes
(such as wireless sensor networks), the size of the simula-
tion problem becomes so large that it clearly exceeds the
capabilities of a single machine. Therefore, it is important
to look into parallel simulation approaches. Parallel discrete
event simulation (PDES) is proposed in recent years to re-
duce the overall execution time by parallel execution of the
simulation on multiple processors. The parallel simulation
approaches merge to two main categories: space-parallel
simulation (distributed simulation), and time-parallel simu-
lation. In the space-parallel simulation approach [6, 13], the
simulation model is decomposed into a number of compo-
nents on a spatial basis. Each component is modeled by a

logical processor. Logical processors establish a communi-
cation mechanism among each other to avoid or fix possible
causality errors. The Parallel/Distributed NS (PDNS) [21]
project uses a space-parallel simulation approach based on
the NS-2 network simulator [18]. However, the applica-
bility of PDNS is limited to wired networks, and the traffic
simulated at different spatial partitions cannot affect each
other.

In the time-parallel simulation approach [1, 7, 8, 12, 19,
20], the long period of simulation time is partitioned into
smaller adjacent simulation intervals, and each simulation
interval is assigned to a processor with a guessed initial
state. The simulation terminates when the final state of
each interval matches the initial state of its successive in-
terval. Thus, state matching is one of the key problems
of time-parallel simulation. In [12], the authors propose
a time-parallel simulation algorithm based on state match-
ing. A simulation is defined as partial regenerative if there
exists a subset of the system state variables such that the
subsystem represented by the subset can repeat its state in-
finitely. The system is then partitioned at the regeneration
points which starts a regenerative substate. [14, 15] indicate
that in some cases the regeneration points of a regenerative
simulation can be found without performing a detailed sim-
ulation; the state matching problem can be solved by per-
forming a precomputation. [20] proposes a pre-simulation
to identify regenerative points by using Markovian model-
ing. Although it is hard to obtain accurate simulation re-
sults efficiently with the time-parallel simulation approach,
approximate simulation results [8, 10, 11, 19] can be pro-
duced efficiently.

A parallel simulator, SWiMNet [2, 3, 4], is used for per-
sonal communication services (PCS) networks. It is based
on a combination of optimistic and conservative paradigms
and makes use of the event precomputation by the model
independence within the PCS model. Independencies be-
tween processes allow to achieve parallelism. SWiMNet is
used in simulation of PCS networks with fixed channel as-
signment by specifying fine grained mobility, variable call

7301-4244-0419-3/06/$20.00 ©2006 IEEE

process, and arbitrary coverage area.
The major difficulty in the parallel simulation ap-

proaches is to solve the dependencies among the partitions.
A careful study of the temporal dependencies for wireless
networks with various traffic patterns shows that there are
few strong dependencies which span a large temporal in-
terval. By ignoring the weak dependencies we can achieve
fast simulation results which are a good approximation of
the exact results. Furthermore, we can assemble a sys-
tem where coarse approximations are obtained very quickly,
while the continuation of the simulation process yields re-
sults with increasingly higher precision. In the knowl-
edge of the approximate results, the researcher might de-
cide whether the expensive continuation of the simulations
is justified or not.

In this paper, we propose a time-parallel simulation ap-
proach for wireless ad hoc networks. Our approach is based
on the NS-2 network simulator and is independent of the
networking protocol (although it shows variations on the
achievable speedup depending on the protocol). We iden-
tify the set of parameters that can be obtained with our ap-
proach. We also include an evaluation and validation of ap-
proximate simulation results. The paper is organized as fol-
lows. A time-parallel simulation approach is introduced in
Section 2. A series of simulation studies investigating the
speedup and precision of the proposed method for typical
wireless network simulation scenarios are presented in Sec-
tion 3. We conclude in Section 4.

2 Time-parallel simulation algorithm

A simulation S of an ad hoc network calculates the sim-
ulation trace T of event set E which occurs in geographic
area A, within time interval τ , when the initial state is I,
and the final state is F . Formally, we denote a simulation
as a six-tuple set S = (A, τ,E, I,F , T). We partition
the temporal dimension of the simulation S into m time
intervals {τi|τi = [(i − 1)D(τ)

m , iD(τ)
m], i ∈ {1, . . . ,m}},

where D(τ) calculates the duration of time interval τ . Then,
we obtain a time-parallel simulation set I(0) = {Si|Si =
(A, τi, E(Si), φ,F(Si), T (Si)), i ∈ {1, . . . , m}}. Thus
the time-parallel simulation set will operate on the full spa-
tial component A, but a subset of the temporal span τi. In
case of an exact simulation, the final state of Si needs to
match the initial state of Si+1, i ∈ {1, . . . , m − 1}. How-
ever, since there is no prior knowledge for the initial states
of S2, . . . , Sm when they are parallelized, the combined
simulation trace T (I(0)) = T (S1)∪ T (S2)∪ . . .∪ T (Sm)
is far from being approximate.

After the execution of I(0), the simulation trace of
S1 becomes an accurate trace. A natural solution to re-
fine the other simulation traces is to apply the final state
of a simulation interval to the initial state of its succes-

sive simulation interval, I(S(1)
i) ← F(Si−1) and re-

execute the new simulation set I(1) = {S(1)
i |S

(1)
i =

(A, τi, E(S(1)
i),F(Si−1),F(S(1)

i),
T (S(1)

i)), i ∈ { 2, . . . ,m}}. The causality dependen-
cies of events of two consecutive time intervals are now re-
moved, meanwhile the dependencies for events in a time
interval to affect later time intervals are weakened, since
the strongest causality dependencies (dependencies of two
consecutive time intervals) are already removed. The com-
bined simulation trace after the first iteration, T (I(1)) =
T (S1) ∪ T (S(1)

2) ∪ T (S(1)
3) ∪ . . . ∪ T (S(1)

m), should be-
come more accurate, compared to T (I(0)).

As we repeat this process, all strong dependencies
are further removed and the simulation trace becomes
more accurate. The parallel simulation continues until
the error of simulation results in all relevant metrics is
lower than a predefined treshold. The k-th iteration con-
tains m − k simulation segments I(k) = {S(k)

i |S
(k)
i =

(A, τi, E(S(k)
i),F(S(k−1)

i−1),F(S(k)
i), T (S(k)

i)), i ∈ {k +
1,
. . . ,m}}. After k-th iteration, the traces of simulation in-
tervals S1, S

(1)
2 , . . . , S

(k)
k+1 become accurate. The combined

simulation trace of (I(k)) can be obtained by
T (I(k)) = T (S1) ∪ T (S(1)

2) ∪ T (S(2)
3) ∪ . . . ∪

T (S(k−1)
k) ∪ T (S(k)

k+1) ∪ T (S(k)
k+2) ∪ . . . ∪ T (S(k)

m).
We illustrate the approximate simulation in the fol-

lowing example, see Figure 1. Assume a simulation
S = (500× 500, [0, 200], E, φ,F , T) is segmented into 10
equal-duration time intervals, with τi = [20(i−1), 20i], i ∈
{1, . . . , 10}. The simulation sets of iteration 0, 1, 2 are as
follows
I(0) = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 ∪ S9 ∪ S10;
I(1) = S

(1)
2 ∪ S

(1)
3 ∪ S

(1)
4 ∪ S

(1)
5 ∪ S

(1)
6 ∪ S

(1)
7 ∪ S

(1)
8 ∪

S
(1)
9 ∪ S

(1)
10 ;

I(2) = S
(2)
3 ∪S

(2)
4 ∪S

(2)
5 ∪S

(2)
6 ∪S

(2)
7 ∪S

(2)
8 ∪S

(2)
9 ∪S

(2)
10 .

The simulation traces after iterations 0, 1, 2 are as fol-
lows
T (I(0)) = T (S1) ∪ T (S2) ∪ T (S3) ∪ . . . ∪ T (S10);
T (I(1)) = T (S1) ∪ T (S(1)

2) ∪ T (S(1)
3) ∪ . . . ∪ T (S(1)

10);
T (I(2)) = T (S1) ∪ T (S(2)

2) ∪ T (S(2)
3) ∪ . . . ∪ T (S(2)

10).
The approach outlined above requires the ability to ac-

curately capture the complete state of a simulation, and to
be able to restart the simulator with an arbitrary initial state.
For instance, to accurately capture the state of the simula-
tion at the MAC layer, we need to save information such
as the packets in the priority queue, the status of timers for
NAV, RTS, CTS, and all the other MAC related information.
In addition, we need the ability to start a simulation with an
arbitrary value of these parameters. This is not possible with
the stock NS-2 distribution. Furthermore, as different pro-
tocols require different state data, we would need to develop

731

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S2
(1) S3

(1) S4
(1) S5

(1) S6
(1) S7

(1) S8
(1) S9

(1) S10
(1)

S3
(2) S4

(2) S5
(2) S6

(2) S7
(2) S8

(2) S9
(2) S10

(2)

I(0)

I(1)

I(2)

Figure 1. Illustration of the time-parallel simulation approach. The duration of the simulation S is
200. It is segmented into 10 equal-duration simulation intervals. The shaded simulation segments
are used to compose the final simulation trace after 3 iterations.

new patches for every new protocol considered.
In the following, we present a method to rearrange the

calculations in such a way that the state saving and restora-
tion is not necessary, and we can use the stock, unpatched
simulator for arbitrary protocols. Let us consider the ap-
proximate simulation trace obtained after γ + 1 iterations,
at the end of iteration γ. We partition the simulation interval
into m overlapping time intervals:

ηi =

{
[(i− 1)D(τ)

m , (i− 1 + γ)D(τ)
m], i ∈ {1 . . . m− γ};

[(i− 1)D(τ)
m ,D(τ)], i ∈ {m− γ + 1 . . . m}.

The time interval ηi starts at the same time with τi, but
it lasts for γ + 1 times the duration of τi for the first m− γ
time intervals; ηi ends at D(τ) for later time intervals.
We obtain a time-parallel simulation set L = {Pi|Pi =
(A, ηi, E(Pi), φ,F(Pi), T (Pi)), i ∈ {1, . . . , m}}. ηi can
be divided into a set of sub time intervals, each with a dura-
tion of D(τ)

m .
Call Pi,j the j-th sub-interval of Pi (enumeration starts

at 0):

Pi =
{

Pi,0 + . . . + Pi,γ , i ∈ {1 . . . m− γ};
Pi,0 + . . . + Pi,m+1−i, i ∈ {m− γ + 1 . . . m}.

Pi,j simulates the same simulation interval as Si+j . For
instance, in Figures 1 and 2, P3,2, P4,1 and S5 all simulate
the simulation interval [80, 100].

We assume the same simulation S in Figure 1 as our
example, m = 10, γ = 2. The new simulation set L =
{P1, P2, . . . , P10} is shown in Figure 2. We observe that
Pi,0 and Si are essentially equivalent since they simulate
the same time interval without prior knowledge of initial
states (see Figures 1 and 2). Thus, I(0) can be rewritten as
I(0) = {Si|i ∈ {1, . . . , m}} = {Pi,0|i ∈ {1, . . . , m}}.

The final state of simulation Pi,0 is naturally transferred

as the initial state of simulation Pi,1, thus Pi,1 and S
(1)
i+1 are

essentially equivalent since they simulate the same interval
with the same initial states. Thus, I(1) can be rewritten as

I(1) = {S(1)
i |i ∈ {2, . . . , m}} = {Pi,1|i ∈ {1, . . . , m −

1}}.
Similarly, I(γ) = {S(γ)

i |i ∈ {γ + 1, . . . ,m}} =
{Pi,γ |i ∈ {1, . . . , m− γ}}.

The alternative simulation algorithm has several desir-
able properties: (i) the final state corresponding to time in-
terval τi is naturally and accurately accepted as the initial
state of its successive time interval, τi+1, and the obstacle
to save the state information is removed; (ii) if the number
of iterations (γ + 1) to obtain the approximate simulation
trace is known, the subset {Pi|i ∈ {m− γ + 1, . . . ,m}} is
not needed in the computation of T (I(γ)), thus the required
number of computational nodes can be reduced from m to
m− γ. In our example, the simulation set {P9, P10} is not
needed, and the required number of cluster nodes can be
reduced from 10 to 8.

3 Simulation study

We evaluate a set of metrics to establish the level of ac-
curacy of the results obtained by our time-parallel simula-
tion approach relative to an exact sequential simulation. We
study the number of iterations to obtain approximate simu-
lation results, as the simulated time is cut into segments of
different durations. We are also concerned with the sensitiv-
ity of our method to the network load and network mobility.

We use the “random waypoint” model [5, 9] to simulate
the node movement. Traffic patterns are generated by con-
stant bit rate (CBR) sources sending 512-byte UDP packets
at a rate of 1 packet per second. The simulation area is
500 × 500 and the default number of nodes is 80. All the
nodes have a transmission range of 100 meters. The simula-
tion time of 600 seconds is segmented into 20 time intervals
of 30 seconds. We run several simulation experiments by
varying the segment duration, number of CBR sources, and

732

P
1,0

P
1,1

P
1,2

P
1

P2,0 P2,1 P2,2

P3,0 P3,1 P3,2

P4,0 P4,1 P4,2

P5,0 P5,1 P5,2

P6,0 P6,1 P6,2

P7,0 P7,1 P7,2

P8,0 P8,1 P8,2

P9,0 P9,1

P10,0

P2

P3

P4

P5

P6

P7

P8

P9

P10

20 40 60 800 100 120 140 160 180 200

Time

Figure 2. An alternative approach to the simulation in Figure 1. Shaded blocks correspond to partial
results used to construct the final simulation results.

the speed. Table 1 shows the default settings and the range
of the parameters for our experiments.

Table 1. The default values and the range of
the simulation parameters.

Field Value Range
simulation area 500 × 500(m2)
number of nodes 80
transmission range 100 (m)
speed 1 (m/s) 1 - 21 (m/s)
pause time 15 (s)
simulation time 600 (s)
segment duration 30 (s) 10 - 60
number of CBR sources 20 4 - 40
CBR packet size 512 (bytes)
CBR sending rate 4 (kbps)

3.1 Performance metrics

To establish the accuracy of our time-parallel simulation
relative to an exact sequential simulation, we evaluate the
relative error for several performance indicators. Let M0

be the result produced by the exact sequential simulation
and M the one produced by our time-parallel algorithm;
the relative error for this metric is ε = M−M0

M0
× 100%. We

investigate the relative error for the packet loss ratio and the
throughput of the given algorithm.

For each experiment, we randomize the source-
destination pairs of CBR sources, and execute 10 times to
obtain the average, as well as, 95% confidence interval for
each quantity. We use Destination Sequenced Distance Vec-
tor Routing (DSDV)[16] and Ad-hoc On-Demand Distance
Vector Routing (AODV) [17] routing protocols to investigate
the performance of our time-parallel simulation algorithm.
The simulation was run on a cluster computer composed of
128 64-bit Opteron processors.

3.2 Simulation results

Segment Duration. This set of experiments (Figure 3)
allows us to investigate the effect of segment duration and
determine the number of iterations required to obtain results
with a given level of accuracy; we choose as a threshold for
the relative error α = 5%. We experiment with segment
durations of 10, 20, 30, 40, 50, and 60 seconds. As the sim-
ulation time is fixed at 600 seconds, the number of segments
are 60, 30, 20, 15, 12, and 10, respectively. We compare the
simulation results after each iteration with the simulation
results obtained by exact sequential simulation.

The curves labeled PROTOCOL.ITERATION.i in Fig-
ure 3 show the relative error after iteration i for the two pro-
tocols. Table 2 summarizes the number of iterations needed
to achieve a relative error not larger than 5%, as well as the
speedup compared to sequential execution.

We note that the speedup for a single iteration is equal
with the number of time segments (provided that there

733

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le
DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 3. Relative error for packet loss ratio and throughput as function of the segment duration in a
logarithmic scale; DSDV (left) and AODV (right). (a) and (b) show the relative error for the packet loss
ratio; (b) and (d) show the relative error for the throughput.

are sufficient number of computational nodes); however,
smaller segments require a larger number of iterations to
achieve equivalent precision. Overall, however, the speedup
tends to increase with the decrease of segment size. Thus, a
proper segment duration need to be chosen according to the
simulation time and the number of available computational
nodes.

Network Load. This set of experiments (Figure 4) in-
vestigate the effect of the network load upon the number
of iterations and the accuracy. The number of CBR sources
ranges from 4 to 40. The size of a CBR packet is 512-bytes,
and the rate for each source is 1 packet per second.

We notice that for both protocols the relative error fluc-
tuates around a stable value regardless of workload after a
certain number of iterations. The number of iterations and
the speedup for DSDV are: 4 and 5 respectively. The same
figures for AODV are 3 and 6.7 respectively. The number of
iterations required to obtain the simulation results is about
the same regardless of the number of CBR sources.

Node Mobility. We conducted this set of experiments
(Figure 4) to reveal whether the node mobility will affect
the number of iterations required to achieve a relative error
threshold. The node mobility ranges from 1 to 21 m/sec.

From Figure 5, we can see that for both protocols the rel-

734

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le
DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 5 10 15 20 25 30 35 40 45
10

−1

10
0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25 30 35 40 45
10

−1

10
0

10
1

10
2

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 4. Relative error for packet loss ratio and throughput as function of the network load in a
logarithmic scale; DSDV (left) and AODV (right). (a) and (b) show the relative error for the packet loss
ratio; (b) and (d) show the relative error for the throughput.

ative error for the metrics we investigate fluctuates around
a relatively stable value regardless of the workload. The re-
sults are increasingly more accurate as the increased num-
ber of iterations increases. After i iterations, the relative
error for packet loss ratio drops below the threshold α, and
is about the same regardless of the number of CBR sources.
The number of iterations and the speedup for both protocols
are identical with those presented earlier when we allowed
the number of CBR sources to vary.

We can draw the conclusion that the performance of the
parallel simulation is not sensitive to the network load or
the node mobility.

Speedup and Maximum Network Size. In our experi-
ments, the number of nodes range from 100 to 1500. The
density of the map is fixed at 1

2500m−2, and the other para-
meters are set as default (Table 1).

For DSDV the actual execution time for 1400 simulated
nodes is approximately 110 minutes. The parallel simula-
tion requires almost 24 minutes and has a speedup of almost
5. If we restrict the execution time to 10 minutes the maxi-
mum number of nodes is 180 for sequential simulation and
1000 for parallel simulation. The execution time for AODV
is: 90 minutes for sequential simulation and 15 minutes for
the parallel one. When we restrict the execution time to 10

735

0 5 10 15 20 25
10

0

10
1

10
2

10
3

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le
DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 5. Relative error for packet loss ratio and throughput as function of the node mobility in a
logarithmic scale; DSDV (left) and AODV (right). (a) and (b) show the relative error for the packet loss
ratio; (b) and (d) show the relative error for the throughput.

minutes the maximum number of nodes is 200 for the se-
quential and 1200 for the parallel simulation.

4 Conclusions

The time-parallel simulation algorithm presented in this
paper allows a tradeoff between the accuracy of the results
and the simulation time. Rather than seeking to produce re-
sults that are in perfect agreement with those produced by
a “classical” sequential simulation we are content with ap-
proximate results which would allow us to draw qualitative,
rather than quantitative conclusions regarding the system’s

performance.

A significant advantage of our method is that the simula-
tion segments are executed using an unmodified NS-2 sim-
ulator; this allows us to support all the protocols supported
by NS-2. It is possible to extract approximate results in
real time from a simulation in progress. The accuracy of
the results is increasing with the number of iterations. For a
given accuracy, the speedup compared to the sequential ex-
ecution is increasing when the segment size is decreasing;
it is a good practice to choose the segment size as the the
simulated time interval divided to the number of available
computational nodes.

736

Table 2. The number of iteration required to
achieve an error threshold α = 5% and the
speedup, function of segment duration.

Segment Iteration required Speedup
Duration (s) DSDV AODV DSDV AODV

10 9 3 6.7 20
20 5 3 6 10
30 4 3 5 6.7
40 3 3 5 5
50 3 2 4 6
60 2 2 5 5

The performance metrics studied in this paper are the
packet loss ratio and the throughput. The results for some
other important metrics, such as the routing overhead, could
not be included due to space limitations; however others,
such as packet latency cannot be evaluated accurately by
our method.

We found that the algorithm is not sensitive to the net-
work load or node mobility. We found that the source ini-
tiated (reactive) routing protocols such as AODV require a
lower number of iterations to achieve the same accuracy as
the table driven (proactive) ad hoc routing protocols such
as DSDV. In general, we found that the more state is main-
tained by a protocol, the lower the achievable speedup; a
more exact quantification of this conjecture across a wider
range of protocols is subject of future work.

Acknowledgment

The research reported in this paper was partially sup-
ported by National Science Foundation grants ACI0296035
and EIA0296179.

References

[1] S. Andradóttir and T. J. Ott. Time segmentation parallel sim-
ulation of networks of queues with loss or communication
blocking. ACM Transactions on Modeling and Computer
Simulations, 5(4):269–305, 1995.

[2] A. Boukerche, S. K. Das, and A. Fabbri. SWiMNet: a
scalable parallel simulation testbed for wireless and mobile
networks. ACM/Kluwer Wireless Networks, 7(5):467–486,
2001.

[3] A. Boukerche, S. K. Das, A. Fabbri, and O. Yildiz. Ex-
ploiting model independence for pcs parallel simulation. In
Proceedings of 13th ACM/IEEE workshop on Parallel and
Distributed Simulation, pages 166–173, 1999.

[4] A. Boukerche and A. Fabbri. Partitioning parallel simula-
tion of wireless networks. In Proceedings of 2000 Winter
Simulation Conference, pages 1449–1457, 2000.

[5] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop wire-
less ad hoc network routing protocols. In Proceedings of
MOBICOM, pages 85–97, 1998.

[6] R. M. Fujimoto. Parallel discrete event simulation. Commu-
nications of ACM, 33(10):30–53, 1990.

[7] M. Hoseyni-Nasab and S. Andradóttir. Parallel simula-
tion by time segmentation: Methodology and applications.
In Proceeding of the 1996 Winter Simulation Conference,
pages 376–381, 1996.

[8] M. Hoseyni-Nasab and S. Andradóttir. Time segmentation
parallel simulation of tandem queues with manufacturing
blocking. In Proceeding of the 1998 Winter Simulation Con-
ference, 1998.

[9] D. Johnson and D. Maltz. Dynamic source routing in ad
hoc wireless networks. chapter 5, pages 153–181. Kluwer
Academic Publishers, 1996.

[10] T. Kiesling. Approximate time-parallel cache simulation.
In Procedings of 2004 Winter Simulation Conference, pages
345–354, 2004.

[11] T. Kiesling. Using approximation with time-parallel simu-
lation. SIMULATION, 81(4):255–266, April 2005.

[12] Y.-B. Lin and E. D. Lazowska. A time-division algorithm
for parallel simulation. ACM Transactions on Modeling and
Computer Simulations, 1(1):73–83, 1991.

[13] V. K. Madisetti, J. C. Walrand, and D. G. Messerschmitt.
Asynchronous algorithms for the parallel simulation of
event-driven dynamical systems. ACM Transactions on
Modeling and Computer Simulations, 1(3):244–274, 1991.

[14] I. Nikolaidis, R. Fujimoto, and C. A. Cooper. Parallel simu-
lation of high-speed network multiplexers. IEEE Conference
on Decision and Control, 3(1):2224–2229, 1993.

[15] I. Nikolaidis, R. Fujimoto, and C. A. Cooper. Time-parallel
simulation of cascaded statistical multiplexers. In SIGMET-
RICS ’94: Proceedings of the 1994 ACM SIGMETRICS con-
ference on Measurement and modeling of computer systems,
pages 231–240, 1994.

[16] C. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile com-
puters. In ACM SIGCOMM ’94, pages 234–244, 1994.

[17] C. Perkins and E. Royer. Ad hoc On-demand Distance Vec-
tor Routing. In Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, pages 99–100,
1999.

[18] VINT. The UCB/LBNL/VINT network simulator-ns (ver-
sion 2). URL http://www.isi.edu/nsnam/ns.

[19] J. J. Wang and M. Abrams. Approximate time-parallel sim-
ulation of queueing systems with losses. In WSC ’92: Pro-
ceedings of the 24th conference on Winter simulation, pages
700–708, 1992.

[20] J. J. Wang and M. Abrams. Determining initial states for
time-parallel simulations. In PADS ’93: Proceedings of the
seventh workshop on Parallel and distributed simulation,
pages 19–26, 1993.

[21] PDNS – Parallel/Distributed NS. URL http://www.cc.
gatech.edu/computing/compass/pdns/, 2004.

737

