
RMD: Reliable Multicast Data Dissemination

within Groups of Collaborating Objects

Mihai Marin-Perianu and Paul Havinga

University of Twente, Enschede, The Netherlands

Email: {m.marinperianu, p.j.m.havinga}@utwente.nl

Abstract

Factory and industrial automation systems gradually

start to incorporate wireless networks of smart objects and

sensor nodes. In this context, one fundamental problem

is the reliability of data dissemination, particularly in the

case of total or partial network reconfiguration. We pro-

pose RMD, a reliable data dissemination solution targeting

multicast groups of collaborating objects. Compared to pre-

vious work, our approach focuses on guaranteeing the data

transmission rather than improving the delivery ratio. In

addition, RMD scales better by utilizing the multicast sup-

port and proves more energy efficient due to cross-layer op-

timizations. To achieve these, we combine end-to-end ag-

gregated acknowledgements with local error detection and

recovery, and apply a selective listening scheme for reduc-

ing unnecessary radio operation.

1. Introduction

Attaching wireless sensor nodes to everyday items en-

ables the vision of smart collaborating objects. The inherent

benefits (no wires, distributed intelligence, autonomy, fault

tolerance) are particularly interesting for a large spectrum of

emerging applications in factory and industrial automation

systems [2]. Therefore, it can be envisaged that wireless

collaborating objects will be able to provide complex ser-

vices [12], beyond the traditional functionality of wireless

sensor networks (WSNs).

In this paper we focus on reliable information dissemina-

tion in large networks of collaborating objects. The need for

reliable dissemination stems from concrete applications in

oil and gas industry, and transport and logistics processes,

respectively [11]. In this context, the backend application

often needs to access groups of nodes running certain tasks,

in order to modify their parameters, or to deploy and run

new tasks reflecting functional changes.

Solutions for WSN reprogramming have already been

proposed, as well as several dedicated reliable transport pro-

tocols. Nevertheless, we can still observe two major prob-

lems that limit their applicability. First, due to the wireless

medium, a mesh topology is typically assumed. Accord-

ingly, many issues related to the data link (MAC) and rout-

ing are taken into account and solved at the transport layer.

We argue that these approaches are either too specialised,

or less efficient than a cross-layer solution, which can use

the functionality (including topology control) of the most

effective MAC and routing protocols. Second, end-to-end

error control is most often disregarded, as being inefficient.

However, the high degree of reliability required by indus-

trial processes cannot be achieved without that. It is our goal

to prove that a simplified end-to-end error control, relying

on in-network aggregation of window-based acknowledge-

ments, is possible without significant losses in the overall

performance.

Distributing data or code to groups of nodes require a re-

liable multicast transport solution. The main requirement

of such a protocol is to correctly deliver all the data to

every intended recipient. The reliable multicast protocols

developed for traditional networks are not directly applica-

ble in the context of WSNs, due to the limited available

resources and harsh operating environments. It follows that

energy efficiency, along with memory and bandwidth con-

straints, represent difficult challenges. Mechanisms to deal

with these issues include minimizing the amount of radio

transmissions and receptions, as well as the time spent for

idle listening, performing data aggregation, and using cross-

layer interactions.

The paper is organised as follows. Section II presents

the related work. Following this, Section III discusses the

most relevant design considerations. Section IV describes

the protocol operation. Sections V and VI provide analyti-

cal and simulation-based performance evaluation. Early ex-

periences with implementing RMD are described in Section

VII. Finally, Section VIII concludes the paper.

2. Related Work

We distinguish three broad related work areas: general-

purpose multicast protocols, reliable transport solutions for

WSNs, and sensor network reprogramming. For the first

topic, a comprehensive survey and taxonomy is given by

Obraczka et. al [13]; the authors identify two major classes

of applications that have motivated a whole suite of multi-

cast protocols: multipoint interactive applications and data

dissemination applications. Another interesting taxonomy

[8] describes four generic approaches for reliable multicast-

ing: sender-initiated, receiver-initiated, tree-based and ring-

based. It is shown that tree-based protocols constitute the

most scalable class of all reliable multicast protocols and

also the best choice in terms of processing and memory re-

quirements.

The problem of reliable transport in WSNs has received

increasing concern lately. The proposed solutions consider

performing hop-by-hop error recoveries (see PSFQ pro-

tocol [19]) or constructing a loss recovery infrastructure

(see GARUDA [14]). Stann and Heidemann [17] pro-

pose RMST (Reliable Multi-Segment Transport), a trans-

port layer designed for Directed Diffusion and discuss sev-

eral design choices for MAC, transport and application lay-

ers. ESRT [16] and CODA [20] address mainly the problem

of congestion detection and control.

Finally, the existing work on sensor network reprogram-

ming can be split in two sub-categories: entire code delivery

(see MOAP [18], Deluge [6] and MNP [7]) and difference-

based update (see Maté [9]). The usual approach is to dis-

tribute the code or the updates in a hop-by-hop manner, with

repairs being done within the local neighbourhood.

Our contribution consists in providing a cross-layer

solution for reliable, multicast-based data dissemination

(RMD). We conceive our work at the intersection of gen-

eral purpose reliable transport protocols and network repro-

gramming. By using the multicast group support, the appli-

cations running in the network are more selective, closer to

the real process and more scalable.

3. Design Considerations

In this Section, we discuss the considerations that under-

pin the design of RMD.

3.1. Tree-based Reliable Multicast

Tree-based reliable multicast protocols (TRMP) [8] are

shown to exhibit good scalability properties by delegating

responsibility to local groups (i.e., a node and its children

in the tree). In addition, a considerable amount of network

traffic can be saved by using local and aggregate ACKs. The

local ACKs (or NACKs) trigger local retransmissions from

a parent node to its children. The aggregate ACKs indi-

cate correct overall reception to the source; a parent node

will send an aggregate ACK only after it receives aggre-

gate ACKs from all its children. Hence, the ACK-implosion

problem is avoided and the source does not need to know

the whole receiver set. The local behaviour of these proto-

cols makes them suitable for the case of dense networks of

collaborating objects and sensor nodes. Although these net-

works usually rely on a mesh model, a tree or cluster overlay

organisation is often required for a proper, distributed oper-

ation. The reliable multicast protocol can thus directly use

the available overlay structure. The construction and main-

tenance of such a topology are, however, beyond the scope

of this paper.

3.2. Cross-layer Design

In our previous work [10], we reported on experiments

with several reliable transport solutions in a sensor network

testbed. The experimental results showed the following:

1. Traditional end-to-end error control cannot be applied

directly, but has to be combined with local error detec-

tion and recovery.

2. Errors usually occur in burst and determine the loss of

one or more packets. Therefore, a transport protocol

should mainly handle packet losses, and rely on the

MAC layer to deal with bit errors.

3. A cross-layer design, where the transport layer inter-

acts with routing and MAC, can improve the energy

and throughput performance.

According to these results, we design the tree-based re-

liable dissemination protocol to work jointly with the MAC

layer. The functionality is split as follows:

The MAC layer provides:

1. Neighbour information, from which a node can derive

the identity of its parent and children in the tree.

2. Local (one-hop) ACKs and retransmissions (timeout

or ARQ based).

3. Interaction points (callbacks) for signaling local ACKs

to the dissemination layer.

The dissemination protocol:

1. Fragments the message into fixed size windows of

packets (the packets are identified by sequences num-

bers).

2. Ensures end-to-end delivery through window ACKs.

3. Controls the MAC layer for the listening phase, in or-

der to save energy (see the local multicast primitive

defined in Section 5.3).

It follows that we distinguish between local ACKs (one

hop, MAC-based, one for each packet), and window (or ag-

gregate) ACKs (end-to-end, handled by the dissemination

layer, one for each window). The reason is that MAC-based

ACKs and retransmissions consume less time and energy

than transport layer ACKs. Therefore, local ACKs, along

with cross-layer listening, form the mechanisms to address

the energy efficiency requirement. In order to guarantee the

delivery, we use end-to-end aggregated ACKs that allow the

source node to safely release the data from the memory. Fi-

nally, the memory and bandwidth limitations are addressed

by reducing the necessary cache size and pipelining along

the tree, respectively.

(a) (b)

Figure 1. Protocol operation.

4. Protocol Description

We consider the case of a dense network of heteroge-

neous nodes, organised into multicast groups according to

application specific criteria (for example, nodes with simi-

lar sensors or placed in the same area). In what follows, we

first introduce the network and error model, then describe

the protocol operation, and finally comment on additional

extensions.

4.1. Network and Error Model

For simplicity, we assume that only one group is in-

volved in the dissemination process at one time and that the

initiator, also referred as source node, is the root of the mul-

ticast tree. The multicast tree comprises the group members

and the additional forwarders needed for propagating the

data. According to the position in the tree, we distinguish

between source, intermediate and leaf nodes (see also Fig-

ure 1(b)). Moreover, the parent-children relation is impor-

tant, since RMD relies on local error detection and recovery.

We assume that the source and intermediate nodes have on

average B children, i.e. the average tree degree is B.

We consider the following types of errors (assumed to be

independent events):

1. Packet losses. Packets are lost or corrupted with prob-

ability p1 when transmitted from parent to children.

We assume that all loss events at all receivers are mu-

tually independent. This error type is detected at the

MAC layer, when the corresponding MAC ACK is not

received, and triggers an automatic retransmission.

2. Faults. By fault we mean an error that causes the re-

transmission of the entire current window. There are

three possible reasons for faults: transient link break-

downs (a node loses contact temporary with its par-

ent, and recovers within the current window), topology

changes (a node loses contact permanently with its par-

ent, and has to register to another parent) or hardware

errors (due to imperfect battery contacts, harsh envi-

ronments, watchdog behaviour, etc.). We assume that

a fault can occur with probability p2.

Algorithm 1: Intermediate node operation

// Init phase

switch packet received do

case NEW MESSAGE
init variables (sequence no., message length, etc.);

forward NEW MESSAGE to children;
case ACK

mark child ACK;

if all children have sent ACKs then
decide role, compute τ2;

send ACK to parent;

end

end

// Running phase

switch event do

// Timers

case τ1

send current packet to children;

case τ2

restart to send window at rate τ1;

send RETRY to parent;

// MAC ACK callback

case MAC ACK callback

if all children have sent MAC ACKs then
advance to next packet;

if end window or end message then
start τ2;

end

end

// Packet received

case DATA

if correct sequence number then
store packet in cache;

end

case ACK

if all children have sent ACKs then
send ACK to parent;

advance window;
end

case RETRY
extend τ2;

forward RETRY up to parent;

case RECOVERY REQ
send RECOVERY;

restart to send window at rate τ1;

send RETRY to parent;

case RECOVERY
init variables (sequence no., message length, etc.);

end

4.2. Protocol Operation

Algorithm 1 describes the operation of an intermediate

node. During the initial phase, the new message is an-

nounced and the nodes initialize the dissemination session

as follows:

1. Set protocol parameters, such as sequence numbers,

message length, etc.

2. Forward the message announcement to all children,

3. Based on the replies from the children, compute the

height in the tree, the timeouts and decide the role,

4. Acknowledge the parent and piggyback the height and

role.

During the running phase, the source starts sending

the packets from the current window, which are further

pipelined down the tree by the intermediate nodes. The

sending rate is τ1. Each packet is sent until all the di-

rect children acknowledge it through MAC ACKs (see Fig-

ure 1(a)) or a maximum number of retransmissions is ex-

ceeded. In the latter case, the faulty nodes are considered

lost and ignored for the rest of the dissemination session,

unless they request a recovery within the current window

(according to the definition of a fault from the previous sec-

tion). The MAC ACKs are signaled through the callbacks

defined by the dissemination layer.

Nodes that are group members store every correctly re-

ceived data packet in non-volatile memory, in order to per-

form an update/reconfiguration at the end of the dissemina-

tion session. Nodes that are just data forwarders cache only

the current window in RAM, so that they can perform local

repairs. The leaves of the tree indicate the correct reception

of an entire window through window ACKs. Further, the

window ACKs travel back to the root by being aggregated

at every intermediate node (see Figure 1(b)). If a node does

not receive window ACKs from all direct children before

the expiration of τ2, it starts resending the window from its

cache. In addition, it informs the upstream nodes about the

error through a RETRY packet, so that unnecessary retrans-

missions are prevented. Finally, a node that experienced a

fault, can request a recovery operation within the current

window through the RECOVERY REQ packet.

4.3. Discussion

There are a number of remarks concerning the network

and error model, as well as further extensions to the basic

protocol. First, the source node is assumed to be the root

of the tree. Nevertheless, any node in the tree can be the

initiator, if the tree is re-hanged with that node as root. The

tree re-hanging process can be easily embedded in the ini-

tial phase. In addition, it has the property of preserving the

average tree degree B, which is relevant for the general-

ity of the analysis from Section 5. Second, in the case of

a hardware reset, a node can resume the dissemination be-

cause the incoming message is stored in non-volatile mem-

ory (e.g. EEPROM) until session completion. However, in

the case of a node with permanent hardware problems, its

children are required to register to a different parent. This

situation is handled by the tree maintenance procedure and

is beyond the scope of RMD. Finally, the assumption on

transient link breakdowns holds only for fixed nodes. For

future work plans on handling mobility, see Section 8.

5. Protocol Analysis

In this Section, we estimate theoretically the energy con-

sumption and average latency. The results of this analy-

sis are then further used to characterize the performance of

RMD.

5.1. Energy Analysis

We consider network communication to be the most

power consuming operation, and therefore compute the

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Packet loss rate

Source
Intermediate

Leaf

Figure 2. Energy consumption on source,
leaf and intermediate nodes.

number of packets sent and received by a node during the

transmission of one window. The MAC ACKs are consid-

ered to consume negligible time and energy compared to

data packets and window ACKs.

Let us assume the simple case of one sender and one re-

ceiver. If p1 is the probability of a packet loss, then the

expected number of transmissions required for a correct re-

ception is given by the geometric distribution

E[T1] = 1/(1 − p1). (1)

Now consider that the receiver can experience a fault

with probability p2 at time ti corresponding to the reception

of the ith packet. As a result, the sender has to resend the

window. We refer to this as a new attempt. The probability

that a fault occurs during one attempt is p2w = 1−(1−p2)
w,

where w is the window size. The expected number of at-

tempts until a successful window transmission is

E[N2] = 1/(1 − p2w) = 1/(1 − p2)
w. (2)

Since the number of faults is E[N2] − 1, the expected

number of transmissions is

E[T2] =
E[N2] − 1

p2

=
1/(1 − p2)

w − 1

p2

. (3)

Let us analyse now the case of multiple receivers, where

we denote by B the average number of receivers (i.e., the

average tree degree). As the errors at different receivers are

independent events, Eq. 1 becomes [15]

E[TB
1] =

B
∑

k=1

(

B

k

)

(−1)k+1 1

1 − pk
1

. (4)

The probability of a fault during one attempt becomes

pB
2w = 1 − (1 − p2)

wB , and accordingly

E[NB
2] = 1/(1 − p2)

wB (5)

E[TB
2] =

1/(1 − p2)
wB − 1

1 − (1 − p2)B
. (6)

We can compute now the energy costs at the source, leaf

and intermediate nodes, for sending a complete window and

receiving the corresponding ACKs. For the source node, we

have E[XS] = ξT E[TS] + ξR E[RS], where TS , RS are

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Average tree degree

1% loss rate
10% loss rate
30% loss rate
50% loss rate

Figure 3. Energy consumption on intermedi-
ate nodes, as a function of the tree degree.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5

D
e
la

y
 (

s
e
c
o
n
d
s
)

Packet loss rate

Avg. tree degree = 4
Avg. tree degree = 8

Avg. tree degree = 16

Figure 4. Average latency.

the number of transmissions and receptions, and ξT , ξR rep-

resent the energy costs for sending and receiving a packet,

respectively. Analogous equations can be written for inter-

mediate and leaf nodes.

After successfully sending a window, the source node

receives B ACKs. Using Eq. 4 and 6

E[XS] = ξT E[TB
2]E[TB

1] + ξR B. (7)

A leaf node sends one ACK per window and receives

all the packets sent by the parent through local broadcasts,

except its own packet losses. Therefore

E[XL] = ξT + ξR E[TB
2]E[TB

1] (1 − p1). (8)

Finally, an intermediate node carries out the double task

of distributing packets and aggregating ACKs to and from

its children. In addition, it is actively involved in the dis-

semination process, by maintaining the current window in

the cache, in order to perform local repairs. The energy

costs of a source node and a leaf node are therefore com-

bined:

E[XI] = ξT (E[TB
2]E[TB

1] + 1)

+ ξR (E[TB
2]E[TB

1] (1 − p1) + B). (9)

Dividing the results from Eq. 7 - 9 by the window size w
yields the average energy costs per packet.

5.2. Average Latency

In order to examine the average latency, we derive an ap-

proximation of the transmission time required for the cor-

rect delivery of one window. We assume that the transmis-

sion time is mainly affected by the delay on the longest

branch of the tree. We compute therefore the expected

delay E[D] along the branch of length h, where h is the

level of the tree. In the absence of errors, as the trans-

mission process is pipelined, a window of size w requires

τ1(w + h − 1) time to arrive at the leaf node. Additionally,

the aggregated ACKs require τ1h time to travel back to the

source. Any retransmission occurring along the pipeline in-

creases the delay with one time unit τ1. Since the source

nodes sends on average E[TS] packets per window and

there are h − 1 intermediate nodes along the branch, each

sending on average E[TI] packets, we have

E[D] = τ1 (E[TS] + (E[TI]−w)(h−1) + 2h−1). (10)

The average latency per packet is given by E[D]/w.

5.3. Local Multicast Primitive

In Section 3.2, the design of RMD included cross-layer

efficient listening. In what follows, we show how this can

improve both latency and energy consumption.

Typically, the MAC layer provides two types of local

(one-hop) communication primitives: unicast and broad-

cast. Let us assume that a parent node has n neighbours,

out of which B are children involved in the dissemination

process. The total energy spent for sending and receiving

a packet from parent to children is Xucast = BξT + BξR

for unicast, and Xbcast = ξT + nξR for broadcast packets,

respectively. If we assume ξT ≈ ξR, it follows that broad-

casts are a good choice only for dense multicast groups

(B ≥ (n + 1)/2). However, in the case of unicasts, the de-

lay is B times higher (Ducast = BDbcast) and the sender

performs B transmissions for each packet.

Controlling the MAC layer during the listening phase

can offer a better alternative. More specifically, RMD can

instruct the MAC to listen only for those packets sent by the

parent node and intended for the specific multicast group.

In this way, unnecessary listening is avoided, and the delay

and energy consumption are minimal: Dmcast = Dbcast,

Xmcast = ξT + BξR.

6. Performance Evaluation

In this section, we examine the energy and latency per-

formance of RMD. First, we analyse the numerical results

from Section 5, then we compare via simulation with a

well known transport solution, Pump Slowly Fetch Quickly

(PSFQ) [19]. Throughout the rest of this section, we use the

following values for the various parameters: w = 5 packets,

p2 = 1%, τ1 = 1 s, ξT ≈ ξR = 0.2 mJ.

6.1. Numerical Results

Figure 2 shows the average energy costs for source, leaf

and intermediate nodes, as a function of the packet loss rate,

for an average tree degree B = 4. As expected, the interme-

diate nodes are more loaded than the source or leaf nodes,

since they are involved in both downstream and upstream

traffic, and perform local repairs. An analysis on the sep-

arate transmissions and receptions shows that the interme-

diate nodes spend comparable energy on both operations,

whereas the source and the leaf nodes execute mostly one

operation, according to their role. Figure 3 reflects the ef-

fect of the average tree degree on the energy consumption

observed at the intermediate nodes. We can note that the

local recovery and ACKs aggregation mechanisms ensure a

linear performance degradation, even under high error rates.

We further evaluate the average latency of RMD, com-

puted as the average delay per successfully transmitted

packet. Figure 4 shows the average delay variation with the

loss rate, for several values of the tree degree. Other para-

meters that affect the dissemination latency are the sending

rate at the source node and the tree height.

6.2. Comparison

We compare via simulation RMD with PSFQ. PSFQ is

one of the first protocols for WSNs that aims at provid-

ing reliable transport with minimal energy expenditure. It

has some similar properties to Scalable Reliable Multicast

(SRM) [4], such as local recovery through request/repair

packets and NACK suppression scheme. The key idea is

to slowly inject messages (pump operation) into the net-

work, while quickly performing NACK-based repairs from

direct neighbours (fetch operation). The ratio between the

pump and the fetch timers provide a number of possible re-

transmissions of the missed packets. In the simulation of

PSFQ performed by Wan et al., the scenario concerns the

re-tasking of 13 nodes, regularly placed along the hallway

of a building, with 50 packets of program data. We compare

both protocols in a more general setting, using OMNeT++

simulation environment [3]. We simulate a network of 100

nodes, randomly placed in an area of 200m x 200m, into

which a source node attempts to disseminate 10000 pack-

ets. The radio range is set to 25 meters and the channel

error (packet loss rate p1) varies between 1% and 50%. For

every value of p1, we average over 10 random topologies.

In the following, we discuss a number of design issues

that make a fully objective comparison difficult. First, RMD

relies on a tree structure, and the characteristics of the tree

affect the performance of the protocol. Since PSFQ is solely

a transport solution, decoupled from the routing substrate,

we are interested to compare only the reliable delivery por-

tions of the two protocols. Therefore, we evaluate RMD

using trees that are easy to build, rather than optimal. For

every random topology generated by the simulator, we con-

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Packet loss rate

PSFQ
RMD - 100% members
RMD - 50% members

Figure 5. Energy consumption comparison.

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5
D

e
la

y
 (

s
e
c
o
n
d
s
)

Packet loss rate

PSFQ
RMD - 100% members
RMD - 50% members

Figure 6. Average latency comparison.

struct a hopcount-based spanning tree as follows: each node

selects randomly as its parent one of the direct neighbours

with a lower hopcount to the source.

Second, PSFQ utilizes broadcast and NACK suppres-

sion, in order to reduce redundant broadcasts and avoid

NACK implosion. For this, the nodes listen always to the

medium. In contrast, RMD interacts with the MAC to pre-

vent unnecessary listening (this difference is not reflected in

the simulations).

Third, the rebroadcast mechanism in PSFQ demands

buffering along the way, otherwise the delivery ratio plum-

mets with the error rate. There is no bound on the size of

the buffers. Accordingly, in our simulation of PSFQ, the

nodes behave ideally by storing all the packets. Note that in

RMD, the intermediate nodes maintain a local cache with

the current window.

Fourth, PSFQ attempts to batch up all message losses in

a single NACK packet by looking for gaps in the sequence

numbers. However, one packet cannot accommodate any

number of gaps, and there is a limited time for recoveries

between two consecutive pump operations. We set the num-

ber of possible retransmitted packets equal to the window

size of RMD (5 packets).

Finally, the timer values affect significantly the perfor-

mance of both protocols. For PSFQ, we set Tfetch = 0.1 s,

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

N
o
d
e
s
 w

it
h
 1

0
0
%

 d
e
liv

e
ry

Packet loss rate

PSFQ
RMD

Figure 7. Nodes with 100% delivery ratio.

Tpump = 0.5 s, i.e. 5 recoveries between two consecutive

pump operations. For RMD, as mentioned, τ1 = 1 s.

Figure 5 compares the energy spent on average by a node

in the network, under various loss rates. PSFQ incurs costs

2-3 times bigger than RMD, mainly because of the broad-

cast approach. An analysis over the data recorded from

the simulation reveals that nodes running PSFQ consume

5-6 times more energy on receiving packets than on send-

ing. Furthermore, if the multicast group does not include

the whole network (which is an extreme case), the energy

performance of RMD is even better (see Figure 5, RMD-

50% members). Note that having 50% group members does

not mean that the other 50% nodes are passive, as some of

them may become forwarders at tree creation time. Fig-

ure 6 shows the average delay as a function of the packet

loss rate. Since PSFQ has a fixed rate pump operation, the

delay is affected only by the number of hops the packets

have to travel, and not by the loss rate. Conversely, RMD is

influenced both by the tree height (between 5 and 10, with

an average of 7.7, for the various simulated topologies) and

the loss rate.

The constant delay exhibited by PSFQ comes at the cost

of having nodes that do not receive the entire message. This

is shown in Figure 7. To cope with this problem, PSFQ in-

troduces a periodic report operation, where the nodes send

aggregate feedbacks to the source. In our opinion, this is

only a partial solution, since (1) the report messages do not

benefit from the hop-by-hop error recovery and, therefore,

have higher chances of being lost along the path, and (2)

there is no support for performing local repairs by examin-

ing the report messages.

7. Implementation

In this section, we present some early experiences im-

plementing RMD in an experimental sensor network test-

bed. The practical goal is to disseminate data from the

backend application, through a gateway node, to a multi-

cast group specified by a group ID. In our experiments, we

are using Ambient uNode 2.0 platform [1]. The onboard

Figure 8. RMD implementation.

Code (FLASH) Data (RAM)

Dissemination 2.7 kB 188 B

LMAC 3.6 kB 296 B

OS kernel+drivers 21.6 kB 400 B

Total available 48 kB 10 kB

Table 1. Code and data memory footprints

micro-controller is the Texas Instruments MSP430, which

offers 48kB of Flash memory and 10kB of RAM. The radio

transceiver has a maximum data rate of 100kbps.

Table 1 lists the code and memory footprints of the im-

plementation. According to our cross-layer design, the reli-

able data dissemination interacts with LMAC [5], a TDMA-

based, lightweight medium access control protocol. Fig-

ure 8 shows the basic architecture. RMD consists of two

main tasks: Send and Receive. The Receive task is trig-

gered by a radio packet received from LMAC. Within the

Send task, regular packets are sent at τ1 rate, whereas win-

dow retransmissions occur after a τ2 timeout. There are two

explicit interaction points with LMAC, where RMD defines

callbacks and takes control over the normal operation: MAC

acknowledgment and prepare to listen phase. The first is

needed for advancing to the next packet in window. The

latter implements the local multicast primitive.

We performed several experiments for a preliminary

evaluation of RMD. We used the following simple setting:

one gateway node attached to the serial port of a PC acting

as the source, one intermediate node, and a variable number

of leaves. A typical experimental run consisted in transmit-

ting a message of 1 kB from the PC to all the leaf nodes.

The packet size was 32 bytes. The communication on the

serial link was performed reliably. At the end of the mes-

sage, all the nodes reported back the number of packets sent

and received, and the number of errors. By executing many

experimental runs, we could study the effect of error rates

on the energy consumption and compare with the numerical

results from Section 6.1. However, due to the limited scale

of the experiment, the maximum observed rate of MAC er-

rors was relatively low (p1 ≤ 20%) and no faults occured

(p2 ≈ 0%). Figure 9(a) shows the average energy cost on

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Packet loss rate

Analytical
Experimental

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Average tree degree

Analytical
Experimental

(b)

Figure 9. Experiment - energy consumption.

the intermediate node, for a setting with B = 4 leaves.

The results for various values of B and a constant loss rate

p1 = 5% are plotted in Figure 9(b). Overall, the experi-

mental results confirm the linear dependencies indicated by

calculus and simulations.

8. Conclusions

We presented RMD, a reliable, multicast-based dissem-

ination protocol that supports dynamic reconfiguration of

groups of collaborating objects and sensor nodes. We eval-

uated analytically and through simulation the performance

of RMD. The results show the benefits of using cross-layer

interactions between dissemination and MAC. Compared

to PSFQ, one of the well-known transport protocols for

WSNs, RMD ensures the data delivery to all recipients even

under high error rates, while consuming 2-3 times less en-

ergy, and maintaining a comparable delay. Early experi-

ences with implementing on sensor nodes yielded promis-

ing results, but also indicated the need for a future larger

scale testbed, where different errors and error rates can be

better observed.

For future work, we consider to support mobility, by dis-

tinguishing between two types of messages that an applica-

tion can send: with guaranteed and best-effort reliability.

For example, guaranteed message represent code updates,

whereas best-effort messages are sent when altering para-

meters, such as the sampling rate. The dissemination of

guaranteed messages will be done in two steps, i.e. the mo-

bile nodes will be updated after stabilizing and registering

to the new parents. Conversely, best-effort messages may

not be received eventually by all group members, but still,

the backend application will receive the list of non-updated

nodes, for management purposes.

References

[1] Ambient system. http://www.ambient-systems.net.
[2] Collaborative business items. http://www.cobis-online.de.
[3] OMNeT++. http://www.omnetpp.org.
[4] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and

L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Transac-
tions on Networking, 5:784–803, 1997.

[5] L. V. Hoesel, T. Nieberg, J. Wu, and P. Havinga. Prolonging
the lifetime of wireless sensor networks by cross-layer inter-
action. IEEE Wireless Communication Magazine, 12 2004.

[6] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale.
In SenSys ’04, pages 81–94.

[7] S. S. Kulkarni and L. Wang. MNP: Multihop network re-
programming service for sensor networks. Technical Report
MSU-CSE-04-19, Michigan State University, 2004.

[8] B. N. Levine and J. Garcia-Luna-Aceves. A comparison of
reliable multicast protocols. Multimedia Syst., 6:334–348,
1998.

[9] P. Levis, D. Gay, and D. Culler. Bridging the gap: Pro-
gramming sensor networks with application specific virtual
machines. Technical report, UC Berkeley, 2005.

[10] M. Marin-Perianu and P. Havinga. Experiments with reliable
data delivery in wireless sensor networks. In ISSNIP 2005,
pages 109–114.

[11] M. Marin-Perianu, T. Hofmeijer, and P. J. M.Havinga. As-
sisting business processes through wireless sensor networks.
In International Conference on Telecommunications 2006.

[12] R. Marin-Perianu, H. Scholten, and P. Havinga. CODE: De-
scription language for wireless collaborating objects. In ISS-
NIP 2005, pages 169–174.

[13] K. Obraczka. Multicast transport protocols: A survey and
taxonomy. IEEE Comm. Magazine, 36(1):94–102, 1998.

[14] S.-J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz.
A scalable approach for reliable downstream data delivery
in wireless sensor networks. In MobiHoc ’04, pages 78–89.

[15] S. Pingali, D. Towsley, and J. F. Kurose. A comparison of
sender-initiated and receiver-initiated reliable multicast pro-
tocols. In SIGMETRICS ’94, pages 221–230.

[16] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz.
ESRT: Event to sink reliable transport in wireless sensor net-
works. In MobiHoc ’03, pages 177–188.

[17] F. Stann and J. Heidemann. RMST: Reliable data transport
in sensor networks. In SNPA 2003, pages 102–112.

[18] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks. Tech-
nical report, UCLA, 2003.

[19] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ:
A reliable transport protocol for wireless sensor networks.
In WSNA ’02, pages 1–11.

[20] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA:
Congestion detection and avoidance in sensor networks. In
SenSys ’03, pages 266–279.

