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Abstract— Accurate identification of network elements (net-
work bricks) composing end-to-end paths represents a novel and
interesting research topic. In heterogeneous scenarios, automatic
network bricks identification can improve the performance of
adaptive and network-aware applications. This work proposes an
approach, based on Bayesian classifiers, for the identification of
network bricks belonging to a large number of real heterogeneous
end-to-end paths. The identification is performed by means of
measurement and off-line observation of delay, jitter, and packet
loss. We introduce the term “blind identification” meaning the
capability to identify network bricks, by looking at Quality of
Service (QoS) parameters observed on the end-to-end path.
We propose first insights and preliminary results regarding the
identification stage, based on both concise and detailed QoS
parameters statistics. Moreover, we show some results of the
identification performed using a reduced set of QoS parameters.
Data traces and tools used in this work are publicly and freely
available at http://www.grid.unina.it/Traffic/.

I. INTRODUCTION

In current heterogeneous networks, end-to-end paths are
composed of a wide range of different elements. Indeed,
End user Devices (EuD), Operating Systems (OS), Access
Networks (AN), and applications/protocols, exacerbate the
heterogeneity of each path. Therefore, simple, efficient, and ac-
curate methods for the identification of parts of the whole end-
to-end path are useful to properly monitor, control, and manage
networks. The automated knowledge of the above mentioned
elements helps in efficiently tuning the adaptive application
parameters over heterogeneous and mobile scenarios. For
example, in a general end-to-end communication scenario, the
knowledge of the access network at receiver side (eg, ADSL
or UMTS), as well as the possibility to estimate the bitrate,
helps in setting up efficient control and management activities
(eg, peer selection in peer-to-peer applications). Acquiring this
information in a direct way (i.e. asking to the application) is
often not possible. Indeed, there are several situations in which
the application can report erroneous information (eg, no direct
knowledge, user trying to obtain different consideration, ...).

In this work we propose a framework for the blind identi-
fication of network bricks (see Section II for the definition
of network bricks). With the term blind, we refer to an
identification performed using parameters different from the
network properties we are identifying. More precisely, our
identification process is based on measures (actively) collected
at the edge of each considered heterogeneous path. It is
straightforward that the availability of accurate end-to-end
measures is of great importance for the identification process.

In general, inferring network proprieties from end-to-end
measurements represents an important and challenging task.
In this framework, some interesting works have been proposed
in literature. In [1], the authors propose a passive approach
to detect bottlenecks in network paths. [2] presents results
on detecting shared congestion of flows by means of end-
to-end measurements. The authors of [3] propose inference
techniques to estimate the loss rates of network links. The
techniques are based on measures collected on a server. In [4]
and [5], approaches aiming to estimate links capacity along a
path via end-to-end measurements are presented. Taking into
account the final target of the identification of path elements,
our approach is similar to that presented in [6]. In this work, an
iterative Bayesian technique, based on passive measurements,
is used to identify 802.11 traffic. Differently from [6], we use
an active approach to collect our measures. Such an approach
has been used also in [7]. In this work, the authors classify the
access networks in three types and show how it is possible to
recognize the class elements using the outcomes of an active
probing tool. Finally, several works use TCP/IP fingerprinting
to detect host’s characteristics. As an example, [8] uses a
Bayesian classifier to passively detect host’s operating system.

We would like to underline that the aim of this paper
is not to present a tool for network bricks identification.
The development of a such tool requires, in fact, several
aspect to be considered (eg, intrusiveness of the measurement
process, scalability, ...). We would rather assess the feasibility
of identifying end-to-end path components by looking at
Quality of Service (QoS) parameter statistics. More precisely,
our approach aims at providing some experimental basis to
demonstrate that a blind identification of different “network
bricks” is possible. To support our thesis we present some
results of the identification framework we set up. In particular,
first we present network bricks identification results (over a
number of end-to-end heterogeneous paths). Then, taking into
account the relationships among QoS parameters, we present
identification results over a reduced set of QoS parameters.

The rest of the paper is organized as follows. Section II
provides some definitions to clarify our approach, and gives
details about the paper contribution. Section III contains a
short description of the analytical tools we used in the identifi-
cation stage. In Section IV we give an overview of considered
end-to-end paths, measurement methodology, used data traces,
and statistical tools adopted to determine the discriminators.
Section V contains preliminary results on network bricks
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TABLE I

NETWORK BRICKS.

Protocol Sender OS Receiver OS Sender AN Receiver AN Bitrate Sender EuD Receiver EuD

1 UDP Linux Linux Ethernet Ethernet 51,2 kbps Workstation Workstation
2 TCP Windows Windows WLAN 802.11b WLAN 802.11b 409,6 kbps PC Desktop PC Desktop
3 SCTP Linux Familiar Linux Familiar GPRS GPRS 819,2 kbps Laptop Laptop
4 UMTS UMTS Palmtop Palmtop
5 ADSL ADSL

Fig. 1. Abstraction of Network Scenarios and Network Bricks.

identification. Also, it presents results after a reduction of the
number of the considered QoS parameters. Finally, Section VI
ends the paper with conclusions and issues for future research.

II. PROBLEM DEFINITION AND APPROACH

A blind identification, based on QoS metrics, of network
bricks permits to identify network elements without physically
dealing with them (eg, identify elements that are physically
unreachable). In general, active or passive measurements can
be used to accomplish this task.

In this paper we use a number of terms and abbreviations. To
help the reader, we provide the following simple definitions.

DEFINITION 1: Network brick. With the term network brick
we mean a network element (or a device component) from
those shown in Table I and graphically represented in Figure 1.

DEFINITION 2: End-to-end path. With the term end-to-end
path we mean a network path composed of network bricks
(see Figure 1). Differently from the literature, our definition of
end-to-end path includes also elements like bitrate of the path,
sender and receiver end user devices, their operating systems,
and, finally the used protocol (see Section IV-A).

DEFINITION 3: QoS parameter. With the term QoS parame-
ter we mean a parameter among delay, jitter, and packet loss.
Each of them is used to calculate the adopted discriminators
(see Section IV-B).

DEFINITION 4: Discriminators. With the term discrimi-
nators we mean a set of statistical values calculated over
each QoS parameter data trace. In this work we consider the
discriminators reported in Table III.

Using the previous definitions, we propose a framework
where, by looking at the statistics of QoS parameters, it is
possible to identify network bricks of a number of hetero-
geneous end-to-end paths. The identification process uses as
discriminators a set of QoS parameter statistics we divided in
concise and detailed statistics (see Table III).

Even if the network bricks identification constitutes our
principal contribution, our work consists of three main parts
carried out in three successive phases. First, we collect several
traces of some selected QoS parameters over a broad range of

heterogeneous end-to-end paths. The traces are collected with
an active measurement approach over the heterogeneous net-
work depicted in Figure 2. More details regarding the adopted
measurement approach are provided in Section IV-B. Second,
after data acquisition and sanitization, we calculate some
statistics for each considered QoS parameter. The statistics are
selected looking at their capability to identify network bricks.
Third, using these statistics in a supervised classification
algorithm, we identify the network bricks composing the end-
to-end paths. Moreover, taking into account the relationships
between the considered QoS parameters extensively discussed
in literature, we show how it is possible to discard one of
them without affecting the overall identification accuracy (i.e.
the percentage of network bricks correctly identified). This
result appears extremely interesting when just two of the
three parameters are accessible or measurable (eg, in network
scenarios where there is loose or no synchronization between
sender and receiver the one way delay is unmeasurable).

To highlight the significance of our contribution we under-
line that, to the best of our knowledge, it extends the results
present in literature in that: (I) we propose a framework for
the blind identification of network bricks; (II) we show that
the considered QoS parameter detailed statistics represent a
complete and robust set of discriminators; (III) we show that
the reduction of the set of discriminators slightly affects the
overall accuracy; (IV) we present a proof of concept over a
number of real end-to-end heterogeneous paths; (V) we make
the data traces we collected freely available at [9].

III. ANALYTICAL BASIS: A BRIEF OVERVIEW

To achieve its goal, the identification process requires a
supervised classification algorithm. Despite this, the idea at
the base of the proposed methodology is independent of the
particular classification algorithm it uses. In this paper, as a
proof of concept, we use Bayesian classifiers. In particular, we
use Bayesian Network (BN ) classifiers and, to check a first
proof of result generalization, we also consider Naı̈ve Bayesian
(NB) classifiers. The motivations at the base of this choice
are their simplicity, spread diffusion, and their ability to work
in an intuitively fashion. Additionally, we choose the simplest
of the computational methods in order to ensure an acceptable
processing time [10]. To introduce the classifiers we used, in
this Section, we provide a brief overview of Bayesian Network
and Naı̈ve Bayesian classifiers.

A. Bayesian Network Classifier

Let S = {x1, ..., xn} with n ≥ 1 be a set of variables.
A Bayesian Network (BN ) over the set S is a directed
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TABLE II

COORDINATES OF CONSIDERED END-TO-END PATHS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
I Protocol 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
II Sender OS 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 2 2 2 1
III Receiver OS 1 1 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1
IV Sender AN 5 5 3 3 3 3 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
V Receiver AN 1 1 1 1 2 2 3 3 3 1 1 2 2 5 5 3 3 3 3 3 3 3 3 3 3 3 3 2
VI Bitrate 2 1 3 2 3 2 3 2 1 2 1 2 1 3 2 3 2 1 3 2 1 3 2 1 3 2 1 1
VII Sender EuD 2 2 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3
VIII Receiver EuD 1 1 1 1 3 3 3 3 3 1 1 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

acyclic graph (called BNS) and a set of probability tables
BNP = {p(s|pa(s))|s ∈ S)} in which pa(s) is the set of
parents of s in BNS . A Bayesian Network represents the chain
rule for a joint probability distribution

P (S) =
∏
s∈S

p(s|pa(s)) (1)

In general, the classification consists in assigning a set
of variables x = x1, ..., xn, called attribute variables, to
some other variables y = x0, called the class variable. The
classifier b : x → y is, therefore, a function that maps each
instance of x to the related class y. The classifier learns
how to achieve its goal from a data set LS consisting of
previously classified points (x, y). Therefore, the learning
stage is very important. For this classifier, it consists in finding
the appropriate Bayesian Network given a data set LS over
S. Once a good network structure is found, the conditional
probability tables (for each variable) can be estimated.

In order to perform a classification by using a Bayesian
Network, it is necessary to simply calculate argmaxy P (y|x)
using the distribution P (S) represented by the Bayesian Net-
work. Observing that

P (y|x) = P (S)/P (X) ∝ P (S) =
∏
s∈S

p(s|pa(s)) (2)

and that all variables in x are known, no complicated inference
algorithms are necessary. It is sufficient to calculate Equation
(1) for all class values. For further details refer to [11].

B. Naı̈ve Bayesian Classifier

Let x = {x1, ..., xn} be a data sample representing a
realization of X = {X1, ..., Xn}, and let each random
variable Xi be described by m attributes {A1, ..., Am},

then Xi = (A(i)
1 , ..., A

(i)
m )

T
is a random vector. Let C =

{c1, ..., ch} be the set of classes of interest. For each obser-
vation xi in x, there is a mapping C : x → C indicating the
membership of instances xi to a class of interest. Bayesian
statistical conclusions about the class cj , when y is observed,
are based on the a posteriori probability p(cj |y). The Bayes
rules provides

p(cj |y) =
p(cj) · f(y|cj)∑
cj

p(cj) · f(y|cj)
(3)

where p(cj) represents the a priory probability of class cj ,
f(y|cj) represents the conditional (given cj) probability of
y, and the denominator is a normalizing factor representing

Fig. 2. Network Test-bed.

the average probability to observe y. The target of the super-
vised Bayes classification problem is to estimate f(y|cj), j =
1, ...., h given some training set x. To achieve this goal,
Naı̈ve Bayes makes some assumptions on f(·|cj) such as
the independence of Ai’s and the standard Gaussian behavior
of them. The problem is then reduced to estimating the
parameters of the Gaussian distribution and p(cj). Despite its
simplicity, Naı̈ve Bayes has been shown to work better than
more complex methods and to be able to cope with complex
situations [12].

IV. PATHS, TOOLS, METRICS, AND DISCRIMINATORS

As already said in Section II, our work is carried out in
three main steps.

First, we conduct an active measurement stage on the
heterogeneous network depicted in Figure 2. In Section IV-
A, the testbed we used and the considered end-to-end paths
are described. This measurement stage allows us to collect a
number of data traces related to three QoS parameters (that
are jitter, delay, and packet loss). In Section IV-B details about
measurement methodology and data traces are given.

Second, we select 13 statistics (dividing them in concise and
detailed) that are able to capture the peculiar characteristics
of the network bricks we identify. We then calculate these
statistics using all the data traces collected in the previous
stage (in an off-line fashion). In this way, we obtain the
discriminators we use in the successive step. Section IV-C
contains a description of considered discriminators and the
motivations for which we chose them.

Third, using the discriminators previously calculated, we
adopt supervised classification algorithms to identify the net-
work bricks. Details regarding the used tool and the way we
perform the identification task are provided in Section IV-D.

A. Network Scenario and End-to-end paths

Figure 2 shows the network test-bed on which we applied
our measurement and identification approach. The test-bed
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TABLE III

USED DISCRIMINATORS.

Concise statistics Detailed statistics

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
Mean Median Standard Deviation Min Max IQR r(2) r(10) τ(2) τ(10) s(2) s(10) Entropy

comprises different heterogeneous wireless/wired networks,
as well as different Devices and Operating Systems. The
details of the hardware we used are reported in Table IV.
The measurements are carried out considering several possible
combinations of these variables. In particular, we perform
throughput, jitter, delay, and packet loss measurements by
varying all the possible testbed parameters (that are Operating
System, End User Device, Access Network, Transport Proto-
col, and Traffic Condition).

TABLE IV

DEVICES DESCRIPTION.

Devices Description
Laptop 1 Toshiba Satellite Pro 4300, Intel PIII 650 Mhz,

186MB RAM, 256KB Cache, Windows 2000 Prof. O.S.
Laptop 2 Toshiba Satellite S5200-801, Intel P4 2.0 Ghz,

512MB RAM, 512KB Cache, Windows XP Prof. O.S.
PC 1 Intel P4 2.6 Ghz, 1024MB RAM,

512KB Cache, Windows XP Prof. O.S.
GPRS Modem Merlin G301 - Novatel Wireless
UMTS Modem Merlin U530 - Fast Mobile Card 3
ADSL Modem D-Link DSL-502T
WLAN NIC D-Link Air-Plus
Ethernet NIC 3Com EtherLink XL 10/100

For the purpose of bricks identification, the selected network
scenario exhibits a wide parameter space composed of a large
number of variables (see also Table I) to setup, configure, and
analyze. Mixing all variables reported in Table I we obtain
a large number of end-to-end paths. In this paper, to show
the applicability of our idea, we present results related to 28
end-to-end paths (with 20 observations for each path).

The details of the considered paths are reported in Table
II. In such a Table, 8 coordinates for each path are con-
tained. Their meaning is shown in the columns of Table
I and in Figure 1. More precisely, each column of Table
II represents the coordinates of a path we consider. The
meaning of these coordinates is contained in Table I. As
an example, consider the column of Table II named 1. This
column represents the coordinates of the first path we consider,
that are (1, 1, 1, 5, 1, 2, 2, 1). Looking at Figure 1, we can see
that the first coordinate represents the protocol used in the
end-to-end path. According to Table I, the value of 1 means
that the protocol is UDP. Following this approach, the Sender
OS (second coordinate) is Linux. The receiving OS (third
coordinate) is Linux, and so on.

From all the possible end-to-end paths, in this work we
consider just those using UDP and not containing Palmtop (as
end user device) or Linux Familiar1 (as Operating System).
This allows us to (i) restrict our attention to a reduced set of
paths and to (ii) include packet loss statistics in our set of
discriminators.

1Open Source Operating System for PDA devices

B. Measurements Approach and Data traces

Data traces of QoS parameters we used in this work are
collected by means of an active measurement approach using
D-ITG [13]. It is a synthetic traffic generator able to produce
a number of traffic patterns by modeling PS (Packet Size) and
IDT (Inter Departure Time) random processes. Therefore, it is
capable of generating synthetic traffic that is, at the same time,
realistic. In order to reduce the number of variables to consider,
we use only Constant Bitrate (CBR) traffic generated with
constant PS and IDT. The measurements are performed by
using three traffic conditions named Low, Medium, and High
Traffic respectively. These traffic conditions differ, from each
other, in terms of the used IDT, that are 1/100 s, 1/1000 s,
and 1/10000 s respectively. For each IDT different PS, ranging
from 64 to 1500 Bytes, are used.

Due to the nominal bandwidth of some AN (GPRS and
UMTS), for the network bricks identification we consider
only Low Traffic condition (IDT = 1/100 s) with PS ranging
in {64, 512, 1024} Bytes. With PS of 64 Bytes the wireless
(GPRS and UMTS) channel is far from saturation. Instead,
with a PS equal to 1024 Bytes it is in saturation.

Traffic is generated for a duration of 120 seconds. This
duration is chosen to correctly evaluate performance out of
the transient phase. Each log file has a size of about 1.5
MByes. The measurement stage has been performed in the
time period between December 2003 and November 2004,
in the day hours between 9:00 am and 6:00 pm. To avoid
measure polarization due to external causes of errors, the
measurements have been opportunely interleaved. In the
measurement stage, over 34 GB of traffic traces have been
collected. Such traces have been previously inspected and
sanitized in order to detect and remove samples affected
by errors. Also, it is worth noting that the used GPRS
and UMTS connections have been provided by two of the
principal Italian Telecom Operators. Such connections are the
same provided to all their customers; for this reason, the used
data is related to that a common user would experience.

1) Data Archives: At [9] we made freely available sev-
eral archives containing outcomes of measurements over real
networks. Each archive contains files with samples of QoS pa-
rameters measured over several end-to-end paths. Samples are
obtained, by adopting the above described active measurement
approach, sending probe packets with a rate of 100 pps and
size ranging in {64, 512, 1024} Bytes. More details about the
traffic parameters are contained in Table V.

Each sample is calculated using non-overlapping windows
of 10 ms length. At [9] we provide also archives containing
samples calculated on a per packet basis.
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TABLE V

TRAFFIC PARAMETERS.

IDT PS Generated Bit Rate
1/100 s 64 Bytes 51.2 Kbps
1/100 s 512 Bytes 409.6 Kbps
1/100 s 1024 Bytes 819.2 Kbps

C. Discriminators

Using the samples contained in each QoS parameter trace,
we calculated 13 discriminators (see Table III) in an off-line
fashion. They represent a small set of statistics, we divided in
concise and detailed statistics, able to correctly identify the
characteristics of the considered “network bricks”. Detailed
statistics permit to better understand the behavior of QoS
parameters [14] [15].

As for the concise statistics, we consider well know parame-
ters like the minimum, maximum, mean, and median values.
Also, we consider the inter quantile range (IQR), defined as
the difference between the 75th and 25th percentiles. Average
and standard deviation are more useful when analyzed along
with minimum and maximum values. Moreover, the IQR and
median value are better estimators for skewed distributions,
than the standard deviation and the average value respectively.
They are less influenced by extreme samples.

As for the detailed statistics, we consider the entropy and
three types of correlation coefficients. Generally speaking,
entropy is a measure of the uncertainty of a random variable
X . It is defined as

H(X) = −
∑
x∈X

P (x) · log2 P (x) (4)

It was used to classify network links in [7] too. As regards
correlation coefficients, we use three correlation measures:
Pearson, Spearman, and Kendall correlation. The most spread
is the correlation coefficient of Pearson (r)

r =

∑
i∈[1,n](Xi − X) · (Yi − Y )√∑

i∈[1,n](Xi − X)2 · ∑i∈[1,n](Yi − Y )2
(5)

where X and Y represent the mean values of the two
random variable X and Y . It ranges from -1 to +1. The cor-
relation of Spearman (s) measures the linear relation existing
between two variables. It differs from the previously analyzed
correlation of Pearson only in that the calculations are done
after changing the numbers into ranks. Spearman’s correlation
can be therefore evaluated by means of Equation (5) using the
ranked data.

Linear correlations have some disadvantages. In particular,
they are sensitive to outliers and they measure the “average
dependencies” of random variables. To overcome these limita-
tions and to properly take into account upper tail dependencies
between variables, we also consider Kendall’s correlation.
Let (X̃, Ỹ ) be an independent copy of (X, Y ). Two pairs
(x, y) and (x̃, ỹ) are then defined as a concordant pair

if (x − x̃) · (y − ỹ) > 0. While they are said to be a
discordant pair if (x− x̃) · (y − ỹ) < 0. We can then define
the Kendall’s tau (τ ) as in Equation (6) that can be estimated
as in Equation (7).

τ(X, Y ) = P ((X − �X) · (Y − �Y ) > 0)−P ((X − �X) · (Y − �Y ) < 0) (6)

�τ(X, Y ) =
#concordant pairs − #discordant pairs

#pairs
(7)

Thanks to its properties, Kendall’s tau has been already used
in the study of traffic flows dependence in [16]. In this work
all the above cited correlation coefficients are evaluated on
samples of the same variable (auto-correlation) at both lag 2
and lag 10. This permits to evaluate the extent to which the
samples of the considered variables are dependent.

The simple set of discriminators we just presented provide
us the possibility to identify the network bricks of a large
number of end-to-end heterogeneous paths.

D. Identification tool

We provide identification results using version 3.4.7 of
WEKA [17], an intuitive and complete software for solving
classification and clustering problems. We use the 50% per-
centage split option of WEKA software for our identification
stage. For each path, 20 instances are considered. Therefore,
10 of them are used in the classifier training (or learning) stage,
while the other 10 instances are used in the testing stage.

The identification process can be summarized as follows.
For each network brick we identify, we first instruct the
classification algorithm. This learning stage is performed using
280 (10 realizations for each of the 28 paths) vectors of
discriminators (instances). In a successive stage, classification
phase, we use another 280 instances (test set) for testing the
identification process. These two sets are called learning set
and test set respectively. The former, learning set, represents
the attributes (see Section III) the classifier uses to build its
model. In such phase, the classifier discovers the peculiar
characteristics, in terms of discriminator values, of each class.
Using those characteristics, it attributes, in the classification
stage, the elements of the test set to some class. To perform
the identification, we instruct the classifier to consider each
brick instance (eg, UDP for protocol brick) as a separate class.
Therefore, looking at the classification results, we consider
a network brick instance as correctly identified if the clas-
sification algorithm ascribes it to the correct class. For each
network brick, using the computer named PC1 in Table IV,
the identification stage takes about 1.5 seconds.

V. EXPERIMENTAL RESULTS

A. Blind identification

Table VI contains our preliminary results. For each net-
work brick, we report the percentage of correctly identified
instances. Moreover, in this Table the percentage of identified
instances is presented for the two considered classifiers. Also,
for each brick and for each classifier, two values are reported.
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The first one is related to an identification based on a smaller
set of discriminators (concise statistics), while the second one
is obtained by using a larger set of discriminators that includes
also the detailed parameters (concise plus detailed statistics).
The components of these two sets are indicated in Table III.

As shown in Table VI, the identification proves to be
more accurate when performed by using the complete set of
discriminators. For this reason, in the following we discuss just
the results related to this kind of identification. Moreover, for
the sake of brevity, comments are given just for the Bayesian
Network results. Similar consideration can be done for the
Naı̈ve Bayes results.

As one would expect, some bricks are simpler to identify
than others. For them, the number of misclassified instances is
very low. Digging into numerical details, the best performance
is achieved by the Receiver OS. In this case, the percentage
of correctly identified instances is equal to 93%. The Receiver
AN, Receiver EuD, and Bitrate achieve the same results in
terms of identification accuracy. For all of them, the percentage
of correctly identified instances is indeed equal to 86%. The
percentage of Sender AN instances correctly identified is equal
to 82%. The Sender OS identification presents the 79% of
correctly identified instances. Finally, 75% of Sender EuD
instances are correctly assigned to the related class.

Obtained results show that the blind identification of net-
work bricks is possible and its accuracy is dependent on
the considered brick. It ranges from 75% to 93% therefore
providing satisfying results. The motivations at the base of
such variation are different. First, if we compare the results
obtained for the network bricks related to sender and receiver
hosts (Operating System, Access Network, and End User
Device) we can see that in the first case the accuracy is
lower than in the second one. This behavior is probably due
to the fact that, because our data is collected at the receiver
side of the communication, the collected statistics are more
influenced by the receiver host. Moreover, we can observe
that the OS is one of the bricks whose identification is more
accurate. If we look at the values reported in Table II (II and III
coordinates), we can see that the considered end-to-end paths
comprise Windows and Linux OSs. The different way these
two OSs manage network related operations (TCP/IP stack
implementation, queue management ...) is at the base of this
result. Finally, the bitrate identification is highly accurate. This
is an interesting result. It witnesses that the bitrate influences
several parameters of the end-to-end communication making
it possible its identification by looking at delay, jitter, and
packet loss. Finally, the different percentages achieved by
the bricks are probably due also to the nature of our traces.
Despite this, the overall result witnesses that the network
bricks identification reveals promising.

B. Blind Identification with QoS parameters reduction

A number of works, studying the dependencies among the
considered QoS parameters, are present in literature. Accord-
ing to our experience in managing networks, and taking into
account these works, we propose a methodology aiming to

withdraw one the three QoS parameters considered in Section
V-A. First, we discuss results of a blind identification with
a reduced set of QoS parameters. Second, in Section V-B.1
we justify our intuition, quantifying the dependences between
QoS parameters (using information theory based tools).

The relationships between different QoS parameters have
been extensively studied in literature. As for packet loss
and delay, a number of works have shown the dependencies
between them [18], [19], [20], [21], [22]. In [21] the authors
analyzed the correlation between packet loss and network
delay considering that those events occur in sequence. In [22] a
model, based on Hidden Markov Models, able to jointly model
packet loss and delay over heterogeneous network paths, is
presented. Several studies investigate the relationships between
packet loss and jitter. In [23] the authors found that a high
traffic load can cause packet loss and jitter. In [24] Wu and
Chen propose a jitter-based scheme to adapt sending rate to
packet loss and jitter ratios. In [25] authors found that jitter
degrades perceptual quality nearly as much as packet loss does.

Finally, a clear dependence exists between delay and jit-
ter. In this work the jitter samples are calculated using the
following formula

j0 = |d1 − d0| , j1 = |d2 − d1| , ... , jk = |dk+1 − dk| (8)

where jk is the k-th jitter sample and dk is the one way
delay experimented by the k-th received packet. This formula
is compliant with the definition given in [26].

Starting from the previous considerations, we perform a
network bricks identification using the discriminators from two
out of the three considered QoS parameters. More precisely,
we apply our blind identification process using the following
pairs: (i) packet loss and jitter; (ii) packet loss and delay; (iii)
jitter and delay.

Table VII shows that the identification based on two QoS
parameters is still possible. The overall identification ac-
curacy is indeed almost preserved. This confirms that the
QoS parameters are dependent. Table VII shows also that
this dependency differently influences the different bricks. In
particular we can observe that, for the Sender and Receiver OS
bricks, the identification performs equally for the three QoS
parameter pairs. This means that the identification algorithm
gives the same importance to the three parameters. In the
case of Sender/Receiver AN and Sender/Receiver EuD, the
accuracy decreases mainly when the packet loss discriminators
are not taken into account. For these bricks a minor decrease is
noticed also when the jitter discriminators are discarded. The
Bitrate identification accuracy seems to be more dependent on
the delay discriminators. As in the previous case, the accuracy
is slightly influenced by the jitter too.

1) Quantifying dependencies between QoS parameters:
In the previous Section (V-B), we have supposed that some
relationship exists between QoS parameters. According to this
hypothesis, we have withdrawn one of the three considered
QoS parameters, showing that the accuracy of the identi-
fication process remains almost unchanged. In this Section
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TABLE VI

IDENTIFICATION RESULTS: PERCENTAGE OF IDENTIFIED INSTANCES.

Bayesian Network (BN) Naı̈ve Bayes (NB)
Brick Concise Parameters Concise + Detailed Parameters Concise Parameters Concise + Detailed Parameters

Sender OS 79% 79% 64% 82%
Receiver OS 93% 93% 64% 79%
Sender AN 79% 82% 68% 86%

Receiver AN 75% 86% 68% 79%
Bitrate 57% 86% 64% 89%

Sender EuD 75% 75% 57% 82%
Receiver EuD 86% 86% 75% 82%

TABLE VII

RESULTS OF THE IDENTIFICATION BASED ON TWO QOS PARAMETERS.

packet loss/jitter packet loss/delay delay/jitter
Brick BN NB BN NB BN NB

Sender OS 71% 79% 71% 79% 79% 79%
Receiver OS 79% 93% 71% 93% 82% 93%
Sender AN 79% 79% 75% 79% 79% 79%

Receiver AN 79% 86% 71% 82% 82% 75%
Bitrate 89% 79% 89% 86% 89% 82%

Sender EuD 71% 75% 75% 75% 89% 64%
Receiver EuD 68% 86% 82% 82% 82% 86%

we provide an information theory-based validation of the
previously supposed thesis, also useful to quantify the de-
pendencies between parameters. In particular, the Symmetrical
Uncertainty (a measure from the information theory) and the
Correlation Coefficient (r as in Equation (5)) are used to
achieve this goal.

The Symmetrical Uncertainty is based on the concept of
Entropy (see Equation (4)) and the concept of Information
Gain. The Conditional Entropy of X given Y is defined as

H(X |Y ) = −
∑
y∈Y

∑
x∈X

P (x|y) · log2 P (x|y) (9)

The Information Gain is defined as

IG(X |Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X) (10)

IG represents the amount of information gained about X by
observing Y . As shown in Equation (10), it is a symmetrical
estimate, therefore it also represents the amount of information
gained about Y by observing X . Finally, the Symmetrical
Uncertainty (SU ) is defined as

SU(X, Y ) = 2 · IG(X |Y )
H(X) + H(Y )

= SU(Y, X) (11)

It ranges from 0 to 1, where the value 0 means that X
and Y are independent whereas the value 1 suggests that the
knowledge of Y implies the knowledge of X . Despite the
information gain, SU is not influenced by random variables
with more samples. To obtain a correct SU estimate, it is
necessary to evaluate the appropriate number of bins necessary
to represent the probability density function (pdf). In this work,
to find such an appropriate number, a preliminary analysis is
conducted. Thanks to it, we learn that, as shown in Figure 3,
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Fig. 3. Packet Loss/Delay (left) and Packet Loss/Jitter (right) SU trend.

the SU presents an increasing trend when sketched against
the number of bins of the two variables (X and Y ). More
precisely, Figure 3 shows that, despite their differences, all the
curves present a variable trend for small bin number values2.
This trend finally stabilizes when a sufficiently high value is
reached. This result implies that, the SU could be wrongly
estimated if a such analysis is not taken into account.

Table VIII contains the average values of SU and Corre-
lation Coefficient (r) calculated for each of the considered
end-to-end paths. In this case, the SU is evaluated using
2000 bins. Moreover, for each path, we report the SU and
r values calculated for all the pairs of QoS parameters.
Values in Table VIII and the trends sketched in Figure 3
demonstrate that SU and r values are different for different
paths. More interesting, this Table permits to identify the
paths for which the identification process, based on two QoS
parameters, produces wrong results. As an example, let us
consider the path labeled P11. For this configuration the SU
value calculated between packet loss and delay is the lowest.
P11 is indeed the path which instances are wrongly classified
when the identification is performed with no discriminators
related to the delay (see Table VII).

2This figure witnesses the SU trend. The legend is not included because
there is no need to identify single plots. For numerical details see Table VIII.
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TABLE VIII

SYMMETRICAL UNCERTAINTY AND CORRELATION COEFFICIENT BETWEEN QOS PARAMETERS.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
Packet Loss and Delay SU 0.06 0.01 0.03 0.03 0.05 0.03 0.22 0.04 0.80 0.02 0.01 0.04 0.04 0.04
Packet Loss and Delay r -0.23 0.01 -0.16 -0.14 -0.27 -0.16 0.11 0.11 0.36 -0.09 -0.04 -0.13 -0.03 -0.11

Packet Loss and Jitter SU 0.23 0.01 0.04 0.05 0.08 0.05 0.26 0.08 0.70 0.06 0.06 0.08 0.13 0.08
Packet Loss and Jitter r 0.12 -0.01 0.91 0.87 0.91 0.87 0.34 0.03 0.83 0.05 0.27 0.23 0.66 0.05

Delay and Jitter SU 0.45 0.37 0.82 0.70 0.76 0.68 0.91 0.68 0.83 0.53 0.28 0.60 0.29 0.32
Delay and Jitter r -0.33 0.09 -0.09 -0.16 -0.29 -0.20 -0.09 -0.09 0.24 -0.24 -0.04 -0.28 0.03 0.12

P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28
Packet Loss and Delay SU 0.01 0.35 0.07 0.29 0.29 0.07 0.31 0.12 0.05 0.37 0.12 0.05 0.26 0.01
Packet Loss and Delay r 0.01 -0.09 -0.13 0.23 -0.16 -0.10 -0.07 -0.10 -0.02 0.14 -0.06 0.01 0.23 0.27

Packet Loss and Jitter SU 0.01 0.38 0.09 0.22 0.29 0.08 0.23 0.14 0.05 0.28 0.13 0.06 0.17 0.01
Packet Loss and Jitter r -0.01 0.94 0.98 0.13 0.41 0.99 0.86 -0.19 0.06 0.83 0.74 0.88 0.11 0.94

Delay and Jitter SU 0.32 0.95 0.88 0.67 0.98 0.94 0.61 0.95 0.94 0.68 0.96 0.89 0.58 0.71
Delay and Jitter r 0.34 -0.18 -0.08 0.01 -0.30 -0.09 -0.13 -0.19 0.14 -0.01 -0.02 0.04 0.03 0.30

Comparing the different QoS parameter pairs, we can see
that delay and jitter have achieved higher values of SU and
r. This is consistent with their mathematical relation (see
Equation (8)). Despite these higher values, the identification
process based on delay and jitter achieves the same accuracy
(in almost all cases) of the other two pairs.

VI. CONCLUSIONS AND ISSUES FOR RESEARCH

In this paper we studied the problem of (blind) identifi-
cation of network elements (we called them network bricks)
over heterogeneous wired/wireless networks. The proof of
concept results shown in this paper confirm that our idea of
blind identification of network bricks is feasible. Also, we
demonstrated how a complete set of statistical discriminators
perform better that a reduced set. Furthermore, we have shown
that blind identification is possible also with a reduced set
of QoS parameters. It represents a per se result, also useful
when only a limited set of QoS parameters is available. To
increase the number of path instances, our ongoing work
deals with performing an increasing number of measurements
over the considered end-to-end paths. This allows to confirm
the preliminary identification results shown here. Finally, it
is worth to underline that our current implementation of
the identification process operates in an off-line fashion. It
requires, in fact, the data traces to be previously collected and
preprocessed. In this stage we were interested in testing the
applicability and suitability of our idea of identification. At
present, we have still to investigate the implications related to
developing our approach in an on-line fashion. This change
of modus operandi requires several aspects to be investigated
(eg, intrusiveness of the measurement process, scalability, ...).
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