Flexible Flow Aggregation for Adaptive Network Monitoring

Falko Dressler
Autonomic Networking Group
Dept. of Computer Science 7
University of Erlangen, Germany
dressler @informatik.uni-erlangen.de

Abstract

Network monitoring is a major building block for many
domains in communication networks. Besides typical ac-
counting mechanisms and the emerging area of charging in
next generation networks, especially network security solu-
tions rely on efficient and optimized monitoring. Network
monitoring in high-speed networks is usually based on flow
accounting and aggregation techniques represent a neces-
sary enhancement in order to cope with increasing amounts
of monitoring data that accrue with the ever-growing net-
work capacities. In this paper, we propose a flexible flow
aggregation mechanism that can be directly employed on
a monitoring probe to reduce the memory and processing
demands. Alternatively, it can work as a concentrator that
collects flow data from multiple monitoring probes, com-
bines and aggregates them and forwards the results to an
analyzer. We verified and evaluated the aggregation mech-
anism by integrating it into our monitoring probe Vermont.
Our approach opens new prospects for high-speed network
monitoring and allows coping with special situations that
cannot be treated satisfyingly by traditional flow account-
ing, such as distributed denial-of-service attacks causing
very high numbers of flows. Aggregated flow data are an
easy-to-handle form of packet information especially for
anomaly detection and accounting issues.

1. Introduction

Network monitoring has become an important research
area since the development of the first computer networks.
At the beginning, monitoring data were used for network
maintenance. In this context, network operators employed
network monitoring techniques [1] in order to verify the de-
ployed routing strategies or to locate potential bottlenecks
for sufficient re-dimensioning of the networks [6]. Soon,
additional application domains appeared such as account-
ing and the detection of suspicious activities such as at-

Gerhard Miinz
Computer Networks and Internet

Wilhelm Schickard Institute for Computer Science

University of Tiibingen, Germany
muenz @informatik.uni-tuebingen.de

tacks, propagating worms etc [10]. While the aforemen-
tioned applications are still relevant, other domains also re-
quire appropriate network monitoring such as intrusion de-
tection and traceback mechanisms [13] or charging applica-
tions for next generation networks [7]. Manufacturers have
responded by developing specific monitoring devices or by
adding monitoring functionality into existing products like
routers or firewalls.

A common monitoring technique is flow accounting.
The key idea of flow accounting is to store information
about packet flows and the corresponding statistics instead
of individual packet information. In this context, a flow is
defined as a unidirectional stream of IP packets identified by
a common IP-five-tuple (protocol type, source IP address,
destination IP address, source port, destination port). To
this end, a single measurement record can contain informa-
tion on up to several thousand packets. For transmission of
monitoring data to a remote analyzer, a series of protocols
named Netflow were developed by Cisco. The latest version
Netflow.v9 has been documented as informational RFC [2].
Its successor is the IPFIX protocol [3] and the correspond-
ing information model [15], both developed by the IPFIX
working group at the IETF. First open-source implementa-
tions that support Netflow.v9 as well as IPFIX are available,
e.g. nprobe [4], NetMate [19], and Vermont [11].

Although flow accounting works well under normal con-
ditions (typical connections consist of about 7.7 packets per
flow [12]), there is a major problem during DDoS (Dis-
tributed Denial of Service) attacks [14]. Many attacks ran-
domly forge the source addresses of the attack packets,
which results in an enormous number of different IP-five-
tuples, each constituting an individual flow. As a conse-
quence, many flows get lost because of limited resources at
the monitoring probe, and the processed flows cause a huge
amount of mostly useless data that is sent to the analyzer.
Moreover, the analyzer will face a serious performance de-
ficiency in processing all the received monitoring data.

To cope with this problem, flow sampling or flow aggre-
gation schemes need to be employed. Flow sampling uti-

Collector/
Analyzer

.
Configuration ,**

> .

Settings "

Monitoring

Concentrator

Network
2
@ Monitoring Probes

Figure 1. Adaptive network monitoring

lizes similar sampling and filtering algorithms as proposed
in PSAMP but applies them to flows instead of packets [8].
Adaptive flow aggregation has been addressed by Hu et
al. [9], proposing to adapt the aggregation level dynami-
cally according to the available resources of the monitoring
probe. Although this approach avoids flow loss in DDoS
attack situations as described above, it does not take into
account that arbitrarily defined flow aggregates usually do
not meet the requirements of the analyzer. If, on the other
hand, the analyzer was satisfied with aggregated flow data,
the corresponding aggregation could be constantly applied.

In this paper, we introduce an aggregation mechanism
that performs flow aggregation in a configurable manner.
This aggregation mechanism allows adapting the amount of
exported monitoring data to the current needs and available
resources of the analyzer. Flexibility is obtained by rule-
based control of the aggregation process, thus providing the
basic functionality to build a control-loop between monitor-
ing probe and analyzer as sketched in figure 1. With exam-
ple configurations, we demonstrate the applicability and the
advantages of our approach. Furthermore, we evaluated the
capability to reduce the amount of flow data by monitoring
two typical network links: the network connection of our
group server and the Internet connection of the University
of Erlangen.

The remainder of the paper is organized as follows. The
proposed aggregation mechanism is discussed in section 2.
The implementation and evaluation of the method is pre-
sented in section 3. A discussion in section 4 concludes the

paper.

2. Flow Aggregation

2.1. Reasons for Introducing Flow Aggre-
gation Techniques

Usually, a flow is defined as a set of packets that share the
same [P-five-tuple information and that are observed within
a given time interval at a specific observation point in the
network. Distinguishing flows on the basis of the IP-five-
tuple information results in a large amount of monitoring
data that has to be exported by the monitoring probe, and
later received and processed by the analyzer. In order to
limit the amount of exported monitoring data, commercial
monitoring probes often export only flow records with high
traffic volume. Another approach is to apply sampling al-
gorithms on the generated flow records that — similar to
packet sampling techniques — select a subset of all gener-
ated flow records for export [8]. On the other hand, the
fine IP-five-tuple granularity is not required by many appli-
cations processing the monitoring data. Such a typical ap-
plication is accounting, where the total traffic volume sent
and received by a customer’s host has to be determined for
billing purposes. Reducing the amount of monitoring data
is also required if the data is to be stored. Note that already
in midsize enterprise networks, one or more Gigabytes of
flow records are easily generated in a single day'.

Flow aggregation techniques reduce the amount of mon-
itoring data by discarding unneeded flow information and
merging multiple flow records with similar properties. As a
result, the aggregated flow information describes the same
traffic observation at a coarser level of granularity and with
fewer details. The following list gives some examples:

e A common way to reduce the amount of monitoring
data is to reduce the time resolution by merging sub-
sequent records of the same flow into one record cov-
ering a larger time interval. This technique is often
deployed if the monitoring data has to be archived.

e In case of client-server applications, information about
the requested service is mostly contained in the port
number at the server side. The client port number is
usually dynamically assigned by the operating system
of the client host. Hence, client port numbers can be
discarded from the flow information without loss of
valuable information.

e As mentioned above, accounting applications usually
require information about the traffic volume sent and
received by a connected client or exchanged at a gate-
way between two peering networks. Information about
every single flow is not required. Especially, source

'In the backbone network of the University of Tiibingen, about 10GB
per day of Netflow data are generated.

and/or destination addresses and port numbers are not
considered and can be discarded.

Currently, flow aggregation techniques are largely de-
ployed at the analyzer. Depending on the needs of the ap-
plication, the monitoring data is compressed and unneeded
information is discarded. However, flow aggregation per-
formed at the analyzer does not reduce the amount of moni-
toring data generated by the monitoring probe and transmit-
ted to the analyzer. To circumvent this problem, we propose
a configurable aggregation scheme that is deployed at the
monitoring probe before the monitoring data is exported.

2.2. IPFIX Aggregation at the Monitoring
Probe

In an RFC summarizing the IPFIX requirements [16],
the IPFIX working group at the IETF has identified the ne-
cessity of implementing flow aggregation functionality in
the monitoring probes. This idea is picked up in the IPFIX
architecture draft [17] where an example shows how flows
can be aggregated after masking the source and/or destina-
tion IP addresses. In [5], we presented how the required
functionality can be realized and implemented. We further
proposed an extension to the IPFIX protocol that allows ex-
porting aggregated flow information in an efficient way. In
the following subsections, our approach will be explained
in more detail.

2.3. Aggregation Process

In accordance with [16], the proposed aggregation func-
tionality can be realized either as an additional process that
is installed between the metering process(es) and the ex-
porting process of a monitoring probe, or within a separate
device that we call a concentrator (see figure 1). Such a
concentrator receives flow records from other monitoring
probes, performs the flow aggregation, and exports the ag-
gregated flow information to an analyzer. Both options are
depicted in figure 2.

In order to differentiate between regular flow records
and records containing aggregated information, we intro-
duce the term flow aggregate. In general, a flow aggregate
comprises a set of individual IP-five-tuple flows that share
some common properties, the so called flow keys. The cor-
responding flow record contains information that identifies
and describes the flow aggregate as a whole.

Which and how individual flows are aggregated into flow
aggregates is specified by aggregation rules. An aggre-
gation rule specifies which fields (flow keys and non-flow
keys) are kept and which fields are discarded in order not
to appear in the resulting flow record any more. For IP ad-
dresses, a mask operation can be applied in order limit the

exported monitoring data (IPFIX Protocol) exported monitoring data (IPFIX Protocol)

1 ! 1

|
Cep | [p | er |
o] [| [l || [
t

EP: Exporting Process exported monitoring data (IPFIX Protocol)

AP: Aggregation Process
MP: Metering Process
CP: Collecting Process

Figure 2. Architecture of IPFIX aggregation.
Aggregation can be employed within a mon-
itoring probe (left) or in form of a separate
concentrator (right)

distinction between different flow aggregates to network ad-
dresses. Sometimes, the application of an aggregation rule
is restricted to flows that match a given criteria. For ex-
ample, to aggregate flows originating from a specific host
or network, a selection pattern for the corresponding field
must be specified.

Fields carrying measurement information are aggregated
in a special way in order to get the corresponding values for
the flow aggregate. As an example, packet and byte coun-
ters of the individual flows are summed up, while start and
end time of the flow measurement are set to the minimum
and maximum of all aggregated flows respectively.

An aggregation rule defines the treatment of the consid-
ered fields in separate lines according to the following struc-
ture:

1. A field modifier (discard, keep, mask/n, or aggregate)
specifies how this field is treated and implicitly defines
if the field appears in the resulting flow record or not;

2. the considered field identified by the corresponding in-
formation element ID [15];

3. an optional pattern that restricts the aggregation to
flows or packets that match this pattern.

An aggregation rule is only applicable to an incoming flow
or packet if all specified fields are present and if all indicated
patterns match.

Multiple aggregation rules can be specified to generate
flow aggregates with different properties. Incoming flow
records are usually checked against each rule and may thus
contribute to various flow aggregates at a time. In some
cases, however, it is preferred that an incoming flow record
that contributes to one flow aggregate is excluded from

© ® 9 L B W N —

other flow aggregates. This can be achieved by organiz-
ing aggregation rules in chains or trees that define in which
order the rules are to be checked. According to the rule se-
mantic defined in [5], only the first matching rule in a chain
or tree is applied.

2.4. Aggregation Example

We demonstrate the principles and advantages of our
flow aggregation mechanisms with the following aggrega-
tion rule example:

Aggregation rule
discard protocolIdentifier in TCP
discard sourceTransportPort
mask/24 sourceIpv4Address
discard destinationTransportPort in 80,443
keep destinationIpv4Address in 10.10.0.0/16
aggregate packetDeltaCount
aggregate octetDeltaCount
aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds

The first line indicates the beginning of the aggregation
rule. Then (lines 2 and 3), two fields (transport protocol
and source port) are specified that have to be present in each
flow record to be aggregated. However, the resulting flow
record will not include these fields because of the modi-
fier discard. The pattern in TCP restricts the rule to
TCP flows. The next line (4) requests the source address
to be present in received records. This address field will
be masked to 24 bit before aggregating (mask/24). The
discard modifier is used again in line (5) but an addi-
tional pattern is specified which must be matched by re-
ceived flows. Similarly, in (6) a pattern is provided but the
keep modifier defines that this field appears in the flow
record. Finally (6-10), the aggregate modifier is used to
collect statistics of the flow such as the number of packet-
s/octets and the flow start and end time.

Figure 3 shows some non-aggregated flow data. If the
presented aggregation rule is applied, the flow aggregates
shown in figure 4 will be created. Both, the number of
flows as well as the number of fields in each flow is reduced.
This reduction obviously depends on the kind of monitoring
data (address/port distribution etc.) and the configuration of
the aggregation rules. The proposed aggregation scheme
provides a flexible mechanism to adapt the granularity and
quantity of the aggregation depending on the particular sce-
nario. Some sample measures are provided in section 3.

2.5. Export of Flow Aggregate Information

Since IPFIX is a unidirectional protocol that does not
allow querying specific information from the monitor-
ing probe, the exported monitoring data should be self-
explanatory, i.e. the analyzer should be able to understand

Prot | Src Port
TCP | 64235
TCP | 64238
TCP | 6289
TCP | 54865
TCP | GAGE

SrcAddr | Dst Port
10.0.1.1 an
10.0.1.1 =11]
10.0.1.2 a0
10.0.21 a0
10.0.21 a0

Dt Addr #Pkt #0ct Start End
10.10.0.10 |4 144 1055 1090
10.10.0.10 56 1071 1103
10.10.0.10 34 1083 1100
10.10.0.10 165 1090 1201
10.10.0.11 77 1085 1199

MEIEr

Figure 3. Non-aggregated flow data consist-
ing of protocol information, source and desti-
nation address, source and destination port,
and statistical data

Src Met Dt Addr # Pkt #Foct Start End
10.0.1.0/24 [1010.0.10 |9 234 10545 1103
10.0.2.0/24 (1010010 | & 1585 10490 1201
10020024 1010011 |3 T 1085 1184

Figure 4. Resulting flow aggregates corre-
sponding to the given rule set

and interpret the received information without any addi-
tional knowledge. In case of flow aggregates, the analyzer
has to be informed about the corresponding aggregation
rules. Otherwise, the circumstances under which the flow
records were generated would not be clear. Especially, if
aggregation rules contain patterns that restrict their applica-
tion to a selection of incoming flow records, the analyzer
has to be informed that the received flow information is
biased. Moreover, if rules are organized in chains or tree
as explained in the previous subsection, the order in which
rules are checked also has to be disclosed.

We solved this problem by specifying a new template
type called data template. A data template describes the
structure of flow records and includes additional informa-
tion about the patterns used in the aggregation rules. In
practice, a separate data template is used for each aggre-
gation rule. A special field in the data template serves as a
backward pointer to a preceding rule if the aggregation rules
are organized in a chain or tree. Detailed information about
the data template can be found in [5].

3. Implementation and Evaluation

3.1. Implementation in Vermont

We used our modular IPFIX/PSAMP probe Vermont? to
implement the presented aggregation mechanism. The re-
sulting architecture of Vermont is shown in figure 5. Using
this architecture, it is possible to use the aggregation mecha-

2Versatile Monitoring Toolkit, http://vermont.sourceforge.net/

= =~
x =
& 3
(ol
Exporter Exporter
<
1 1 i
iz Sampler g
Aggregator | P o)
=
Collector FEIEGL
Capture
e

Raw Pk?s'\
[Fovrs)

Figure 5. Architecture of Vermont including
the aggregation module

nism in both ways as mentioned before: directly on a mon-
itoring probe before exporting the flow data or in form of
a concentrator that receives flow records (either Netflow.v9
or IPFIX) and exports flow aggregate information. The first
path is to capture packets using the pcap library, optionally
filtering the collected data, and then sending the packets to
the aggregation module using the ‘hook’ as shown in the
figure. Alternatively, a collector module can decode Net-
flow and IPFIX data and put the received flow information
directly into the aggregation module. The export of IPFIX
conform flow data is provided by a separate exporter library.
We verified the interoperability of Vermont with other IP-
FIX/Netflow exporters and collectors at an IPFIX interop-
erability event in 2005 [18].

3.2. Experimental Analysis

Even though the compression degree of the aggregation
mechanism strongly depends on the properties of the mon-
itored traffic as well as on the aggregation rules in use, we
did some measurements in order to estimate the capabilities
of our aggregation mechanism. The experiments were done
using a standard PC (2.8GHz) running FreeBSD. Vermont
was used for monitoring network data received at a dedi-
cated mirror port of a Gigabit switch. The first experiment
was done in front of our workgroup server where usually
only small traffic volumes are observed (e-mail transfers
and remote logins). The second experiment was done at
the Internet gateway of the University of Erlangen (actually
622MBit/s). Both experiments lasted for 30 minutes in or-
der to keep the amount of monitoring data at a manageable
size. We evaluated the aggregation efficiency using five dif-

srcl24

+dst/24

src/24+dsti24
+ports

Figure 6. Aggregation ratio in comparison to
flow accounting without aggregation. R1:
workgroup server, R2: Internet connection

ferent aggregation schemes:

e Standard IPFIX export (IP-five-tuple flows) without
aggregation (labeled IPFIX)

e Aggregation of flows from the same source network
(src/24)

e Aggregation of flows from the same source net-
work destined to the same destination network
(src/24+dst/24)

e Aggregation of flows without considering port infor-
mation (ports)

e Combination of the last two aggregation schemes
(src/24+dst/24+ports)

The aggregation ratio of all mentioned aggregation
schemes and for both experimental setups is shown in fig-
ure 6. Obviously, the aggregation of network addresses
seems to be inefficient with respect to data compression
(the aggregation ratio is about 0.97). This effect occurs
due to different values in the source and destination ports.
If these values are ignored, the aggregation ratio increases
(ports,about 0.6), especially if combined with aggregation
of address information (src/24+dst/24+ports). In the last
case, we achieve an aggregation ratio of 0.48 on our In-
ternet connection and down to 0.09 in the workgroup server
scenario.

The two plots shown in figures 7 and 8 depict the packet
rate of the monitoring data sent to the analyzer. Even if this
measure hides possible overhead due to packet encapsula-
tion, it is a valid basis if a continuous process is observed

- VRV S S VR C R

= IPFIX
—o—src/24+dst/24
——ports

[|-=—src/24+dst/24+ports

3.5 T

254

packets (x10)
N
)

—

L
——o
>

205

time [s]

Figure 7. Rate of flow data as sent from the
monitor to an analyzer: workgroup server
(the average observed input rate is 32 pack-
ets/s)

or high data rates must be collected. Both figures demon-
strate the reduced amount of monitoring data sent from the
monitoring probe to the analyzer. Not shown is the reduc-
tion of the load of the monitor itself. Because many flows
are mapped to a single flow aggregate, the corresponding
hash table sizes are reduced. As a consequence, the mem-
ory requirements of the monitoring probe can be decreased
and the search for existing flow records requires fewer steps,
such fewer CPU cycles.

3.3. Application Scenarios

In this subsection, we show how the aggregation mech-
anism can be practically deployed in three different scenar-
ios: accounting, anomaly detection, and TCP SYN flood
detection.

Typical accounting solutions intend to associate con-
sumed bandwidth or time to individual end systems. Ex-
act descriptions about all monitored flows are not required.
Therefore, the following rule set is appropriate to aggre-
gate transmitted octets from/to each host in the monitored
network (10.10.0.0/16) resulting in two flow aggregates for
each host (incoming/outgoing):

Aggregation rule

keep sourcelpv4Address in 10.10.0.0/16

aggregate octetDeltaCount

aggregate flowStartMilliSeconds

aggregate flowEndMilliSeconds
Aggregation rule

keep destinationIpv4Address in 10.10.0.0/16

aggregate octetDeltaCount

aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds

Using this rule set, the aggregation process provides an
efficient preprocessing of the monitored data. Therefore,

9
-= IPFIX

8 T src/24+dst/24

71 |=ports
. —e- src/24+dst/24+ports
=]
S 61
=3
°
x51—%
$ 4
% 44
E 1
2 34 I |
* Il o m 1

27 il f I3 e

I\
1] |
0 T T T T T T T T T T
0 105 205 305 405 509
time [s]

Figure 8. Rate of flow data as sent from the
monitor to an analyzer: Internet connection
(the average observed input rate is 58’500
packets/s)

flow aggregation also reduces the computational resources
at the analyzer, i.e. the accounting process in this scenario.

Attack and anomaly detection have different objectives.
Usually, the general behavior of all observed flows is con-
sidered and not individual flows. For example, the total
number of observed packets might be of interest (rule 1),
the number of monitored ICMP packets (rule 2), the dis-
tribution of traffic to different subnets (rule 3, 4), and the
number of packets sent to request a specific service, e.g.
web services (rule 5).

rule 1
packetDeltaCount
flowStartMilliSeconds
aggregate flowEndMilliSeconds
Aggregation rule 2
discard protocollIdentifier in ICMP
aggregate packetDeltaCount
aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds
Aggregation rule 3
mask/24 sourcelpv4Address in 10.10.0.0/16
aggregate packetDeltaCount
aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds
Aggregation rule 4
mask/24 destinationIpv4Address in 10.10.0.0/16
aggregate packetDeltaCount
aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds
Aggregation rule 5
discard destinationTransportPort in 80,443
aggregate packetDeltaCount
aggregate flowStartMilliSeconds
aggregate flowEndMilliSeconds

Aggregation
aggregate
aggregate

Similarly to the accounting scenario, preprocessing is
provided by the aggregation process. The resulting flow
data can be directly feed into the corresponding anomaly

detection engines of the attack or intrusion detection sys-
tem.

In the European project Diadem Firewall?, we employ
the following rule set on a monitoring probe for count-
ing TCP SYN packets per destination and TCP SYN/ACK
packets per source:

Aggregation rule
discard protocolIdentifier in TCP
keep destinationTransportPort
keep destinationIpv4Address
discard tcpControlBits in SYN
aggregate packetDeltaCount
aggregate flowStartSeconds
aggregate flowEndSeconds
Aggregation rule
discard protocolidentifier in TCP
keep sourcelpv4Address
keep sourceTransportPort
discard tcpControlBits in SYN,ACK
aggregate packetDeltaCount
aggregate flowStartSeconds
aggregate flowEndSeconds

Note that although protocol and TCP control bit fields
are discarded from the flow records, the values of the pat-
terns (TCP, SYN, SYN/ACK) are exported with the data
templates. The resulting packet counters serve as input to a
detection algorithm for TCP SYN flood attacks [20]. Under
normal conditions, every SYN packet sent to a certain des-
tination should be answered by a SYN/ACK packet, apart
from some SYN packets that are directed to closed ports or
non-existing hosts. During a TCP SYN flood attack, many
SYN packets are directed to a single open port at the vic-
tim host. Returned SYN/ACK packets remain unanswered
resulting in many half-open TCP connections. A victim
host without specific protection mechanism is able to han-
dle a limited number of half-open TCP connections only. If
this limit is reached, new SYN packets are not answered by
SYN/ACK packets any more, which is reflected by a high
difference in the exported counter values. The number of
flow records resulting from the above rule set depends on
the number of attacked (address, port) pairs but not on the
number of attack sources. This is important because address
spoofing is usually applied in a SYN flood, causing a huge
number of different IP-five-tuples.

4. Discussion and Conclusions

In this paper, we proposed an aggregation mechanism for
efficient and flexible use in flow accounting scenarios. This
mechanism is controlled by aggregation rules that allow
adapting to particular application requirements. We spec-
ified the necessary functionalities as enhancements of the

3Diadem Firewall is partly funded by the European Commission (FP6
IST-2002-002154). Homepage: http://www.diadem-firewall.org

IPFIX architecture and protocol. The aggregation mecha-
nism can be deployed in two ways: either at the monitoring
probe to reduce the number of flow directly at the observa-
tion point, or in a separated device called concentrator. The
second option allows merging and aggregating flow infor-
mation produced at different observation points in the net-
work into a single stream that is sent to the analyzer. The
aggregation mechanism supports multiple active aggrega-
tion rules at a time as well as patterns that provide a filtering
functionality.

We exemplarily evaluated the aggregation mechanism by
using an implementation of the aggregation module for the
monitoring toolkit Vermont. The experiments shows the
data compression capabilities of different aggregation rules.
Furthermore, we discussed three application scenarios and
presented appropriate aggregation rule sets.

References

[1] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. loannidis,
M. Greenwald, and J. M. Smith. Efficient Packet Monitoring
for Network Management. In 8th IEEE Network Operations
and Management Symposium (NOMS), Florence, Italy, Apr.
2002.

[2] B. Claise. Cisco Systems NetFlow Services Export Version
9. RFC 3954, Oct. 2004.

[3] B. Claise. IPFIX Protocol Specification. Internet-Draft,
work in progress, draft-ietf-ipfix-protocol-22.txt, June 2006.

[4] L. Deri. nProbe: an Open Source NetFlow Probe for Gigabit
Networks. In TERENA Networking Conference (TNC 2003),
Zagreb, Croatia, May 2003.

[5] E Dressler, C. Sommer, and G. Miinz. IPFIX Aggrega-
tion. Internet-Draft, work in progress, draft-dressler-ipfix-
aggregation-03.txt, June 2006.

[6] B. Fortz, J. Rexford, and M. Thorup. Traffic Engineering
with Traditional IP Routing Protocols. IEEE Communica-
tions Magazine, 40(10):118-124, Oct. 2002.

[7]1 F. Ghys and A. Vaaraniemi. Component-Based Charging in
a Next-generation Multimedia Network. /IEEE Communica-
tions Magazine, 41(1):99-102, Jan. 2003.

[8] N. Hohn and D. Veitch. Inverting sampled traffic. In
3rd ACM SIGCOMM Conference on Internet Measurement,
pages 222-233, Miami Beach, FL, USA, Oct. 2003.

[9] Y. Hu, D.-M. Chiu, and J. C. Lui. Adaptive Flow Aggre-
gation - A New Solution for Robust Flow Monitoring under
Security Attacks. In IEEE/IFIP Network Operations and
Management Symposium (IEEE/IFIP NOMS 2006), pages
424-435, Vancouver, Canada, Apr. 2006.

[10] R. Kemmerer and G. Vigna. Intrusion Detection: A Brief
History and Overview. IEEE Computer - Special Issue on
Security and Privacy, pages 27-30, Apr. 2002.

[11] R. T. Lampert, C. Sommer, G. Miinz, and F. Dressler.
Vermont - A Versatile Monitoring Toolkit for IPFIX and
PSAMP. In IEEE/IST Workshop on Monitoring, Attack
Detection and Mitigation (MonAM 2006), Tuebingen, Ger-
many, Sept. 2006.

[12]

[13]

(14]

[15]

[16]

(7]

[18]

[19]

(20]

T.-H. Lee, W.-K. Wu, and T.-Y. W. Huang. Scalable Packet
Digesting Schemes for IP Traceback. In IEEE International
Conference on Communications, Paris, France, June 2004.
J.Li, M. Sung, J. Xu, and L. Li. Large-Scale IP Traceback in
High-Speed Internet: Practical Techniques and Theoretical
Foundation. In IEEE Symposium on Security and Privacy,
Berkeley, CA, USA, May 2004.

J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack and
DDoS Defense Mechanisms. ACM SIGCOMM Computer
Communication Review, 34(2):39-53, Apr. 2004.

J. Quittek, S. Bryant, B. Claise, and J. Meyer. Information
Model for IP Flow Information Export. Internet-Draft, work
in progress, draft-ietf-ipfix-info-12.txt, June 2006.

J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements
for IP Flow Information Export (IPFIX). RFC 3917, Oct.
2004.

G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek. Archi-
tecture for IP Flow Information Export. Internet-Draft, work
in progress, draft-ietf-ipfix-architecture-11.txt, June 2006.
C. Schmoll, J. Quittek, S. Tartarelli, S. Niccolini, T. Dietz,
A. Bulanza, and E. Boschi. MOME Interoperability Testing
Event. Deliverable d13 of ist mome, Aug. 2005.

C. Schmoll and S. Zander. NetMate - User and Developer
Manual. Technical report, Feb. 2004.

H. Wang, D. Zhang, and K. G. Shin. SYN-dog: Sniff-
ing SYN Flooding Sources. In 22nd International Con-
ference on Distributed Computing Systems (ICDCS’02), Vi-
enna, Austria, July 2002.

