
 Universität Konstanz

Light-weight End-to-End QoS as DoS Prevention

Marcel Waldvogel
Tobias Köck

Konstanzer Schriften in Mathematik und Informatik
Nr. 234, Juli 2007

ISSN 1430-3558

© Fachbereich Mathematik und Statistik
© Fachbereich Informatik und Informationswissenschaft
Universität Konstanz
Fach D 188, 78457 Konstanz, Germany
E-Mail: preprints@informatik.uni-konstanz.de
WWW: http://www.informatik.uni-konstanz.de/Schriften/

mailto:preprints@informatik.uni-konstanz.de
http://www.ub.uni-konstanz.de/kops/volltexte/2007/3238/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-32386

1

Light-weight End-to-End QoS as DoS Prevention
Marcel Waldvogel Tobias Köck

Abstract—Despite decades of QoS research and many
years of DoS defence work, neither group of proponents
have been able to get their results included into mainstream
Internet service. It seems that demand for either solution
exists, but individually, they seem to be just below the cost/
benefit threshold. This paper proposes a first step into a
common solution, where combined and extended interests
will hopefully allow us to surpass this threshold. While
there are still some open issues, we hope to not only pro-
pose a basic working mechanism but also provide fresh ideas
to start thinking off the beaten path. Our main contribution
is to create a lightweight, end-to-end binding between path
and service, which is then used as a basis to associate fur-
ther attributes and mechanisms to this binding. As a result,
both DoS defence and QoS can be achieved with stateless
routers and only with prior consent of receiving the end sys-
tems, short, achieving several of the IntServ advantages in
a DiffServ-style system, i.e., avoiding per-connection state.

I. Introduction

Despite decades of QoS research and many years of DoS
defence work, neither group of proponents have been able
to get their results included into mainstream Internet ser-
vice. Besides technical issues, such as statefulness or man-
agement overhead, there seem to be different reasons for
either category. For QoS, limiting factors seem to include
fears from the service providers, such as the uncertainty
of a new service, and the current ability to manually set
the priorities for the few services or customers that need
it. For DoS, the reluctance seems to be related to some
ISPs considering DoS their customers’ problems and to
the general segregation of ISPs into two classes, namely,
ISPs who serve home customers (which frequently are the
DoS sources) and those who serve content providers (which
became the victims). The former rarely have a business
interest to act on behalf of the latter to clean up their
customers’ insecure clients turned into zombies.

In this paper, we propose a new mechanism which also
shifts the interests: Involve different stakeholders into the
DoS problem, which might actually be interested in solving
it; provide more immediate return-on-investment; provide
two services at the cost of one; allow other services to build
on top of our mechanism; focus on end-to-end mechanisms
with minimal network involvement; the absence of an a
priori requirement modifications to a large installed base
of network equipment characterise our new approach.

Our lightweight scheme–router-assisted, receiver-driven
QoS (RarQoS)–allows the parties with vested interest to
take action and as a result obtain better quality under
heavy load. This not only presents a line of defence against
rare events such as DoS, but at the same time can be used

Distributed Systems Laboratory, Department of Computer and
Information Science, University of Konstanz, 78457 Konstanz, Ger-
many, <firstname>.<lastname>@uni-konstanz.de. Work was
started at IBM Research, Zurich Research Laboratory [1].

to improve QoS, a stronger driving force. The change nec-
essary for the network providers is minimal, their role is
essentially limited to only act as a third-party verifier of
the sources claims. All the important decisions remain
with the end systems and their users or administrators.
It further allows incremental deployment, where already
a small deployment will show benefits, something which is
generally lacking in other approaches. We believe that this
better reflects the interests, market forces, and end-to-end
design of the Internet.

The paper is organised as follows. Section II provides
background. Section III introduces the techniques behind
RarQoS, our router-assisted, receiver-driven QoS mecha-
nism. Section IV provides information about our ongoing
implementation. Finally, Section V concludes the paper.

II. Background

A. Denial of Service

In early 2000, the Internet world was shocked: Several
resource-rich commercial sites were unreachable for several
hours, probably due to the actions of a single individual
who previously had gained control over many thousand
computers world-wide [2]. This shock resulted in a series
of proposals how to prevent future disasters. In the past six
years, it was tried to reach consensus on how to improve the
situation, but to no avail [3]. We believe that the reasons
do partly lie in the form of the proposals, as they address
the wrong audience. To set the stage, we first identify five
components of a DDoS attack:

Zombies. The perpetrator starts collecting nodes to use
for his attack, the Zombies, typically through a worm,
virus or trojan with a remote control interface.

Start signal. One component to influence or identify the
perpetrator would be to listen into his control network
and/or to inject commands. Our perpetrator thus sets
up a series of intermediate agents, to which the Zom-
bies connect and which can be used to conceal the
source of the commands. Alternatively, the malware
that was injected into the Zombies may include time-
dependent instructions.

Attack. At some later stage, the hosts’ new master issues
the attack command, causing the Zombies to send pre-
defined byte and packet sequences to the victim, typ-
ically at maximum speed. These sequences are typi-
cally designed such that they cause maximum effect
without being easily identifiable for filtering purposes.

Fake source. To conceal the IP addresses of the Zombies,
many attacks try to spoof their source address.

Abort. The victim will try to abort the attack by identi-
fying sources or packet properties and selectively shut-
ting them down.

The manifold approaches at DDoS prevention try to hin-
der the first four components or improving the countermea-

2

sures in the Abort phase. We can classify these approaches
into seven categories:

Anti-spoofing. Each router should be able to verify
whether this source IP address could legitimately
come in on that interface [4]. This also limits sev-
eral legitimate uses of asymmetric routing, from link
sharing to satellite-downlink-modem-uplink scenarios.

Packet information. Routers should include informa-
tion in each passing packet [5, 6, 7]. Besides breaking
fragmentation (or excluding fragments from traceabil-
ity), it has been shown that attackers can more effi-
ciently insert fake traceback paths than the system
can insert real paths, potentially causing a DoS on
the system used to analyse traceback information [8].

Router storage. Routers should store a fingerprint of
each packet for a short period of time, allowing the re-
turn route to be identified when the receiver presents
an unwanted packet to the system [9].

Automatic identification. Potential DoS activities
should be directly identified at routers, potentially
enabling them to directly take measures [10,11].

Manual blocks. Some ISPs reportedly identify their net-
work’s ingress routers which provide a particularly
large part of DDoS traffic to the given victim and
block all traffic from these ingress routers to the vic-
tim in an attempt to minimise DDoS traffic without
shutting off too many legitimate sources.

Peer-to-peer systems. Instead of controlling the prob-
lem, control the reaction: When a resource is in high
demand, create more replicas [12,13]. A close relative
of this proposal is the Google way of throwing enough
resources at the problem to handle any load. These
hosts can also be used to do prefiltering of requests,
such as described in SOS [14].

Pricing. Let the market forces decide by increasing the
price for packets to overloaded destinations [15]. Ob-
viously, such a system would charge the owners of the
Zombies, not the attacker. Even though it might be
argued that this will teach the careless Zombie owners
a lesson, an ISP would have a hard time obtaining the
money from such customers or surviving the bad press
the attempt would generate.

Besides technical issues, some of which are outlined
above, there are also market issues: Those who should
invest money in upgrading their equipment and risk more
customer support calls or dropping customer satisfaction,
among other things, are frequently not those that have an
interest in setting up such a system. Typically, the vic-
tim’s business partner is a hosting provider. This provider
can at most do per-attack filtering and has no influence on
the source of the traffic. Furthermore, the large consumer
ISPs frequently offer only limited commercial hosting ser-
vices and rarely have customers who form an attractive
target or who would complain loudly if such an attack oc-
curred; many would not even notice.

Even ISPs which are active in both high-profile hosting
and have a large consumer base may not feel the pressure
or may be unable to force the responsible departments to

Src DstR1 R2

Assure route
Echo

Packets with verified routeTime

Fig. 1

RarQoS messages: Setup and data flow

team up. The lack of pressure is frequently caused by the
minute minority of the attack traffic coming from the own
network and the availability of tools and processes that can
be used to trace traffic within a single network.

III. Router-assisted, receiver-driven QoS

A. Overview

The design of RarQoS diverges from the established DoS
prevention path. It was influenced by QoS ideas instead,
noting that preventing DoS is just a special case of han-
dling QoS. But as there is no need to provide QoS guaran-
tees, but just a simple form of differentiating between mul-
tiple classes of best effort service, it does not suffer from
the complexity and state explosion common to many QoS
approaches, such as IntServ [16]. It also does not require
establishing a mapping between different QoS parameters
and contract negotiations, as necessitated by DiffServ [17].

How are these snippets constructed? Traditionally,
routes have been recorded using the IP “record route” op-
tion, which records the full IP address of all intervening
routers. The probabilistic packet marking schemes [5, 6, 7]
distributed this information over multiple packets, requir-
ing additional information for reassembly of the fragments
by the receiver. RarQoS avoids both the data expansion
and the potential state explosion at the receiver by making
the packet marking a mechanism which is in the interest
of the involved parties to gain better service. This avoids
the need to squeeze data surreptitiously into some hope-
fully unused areas of the IP header as is currently done in
anti-DoS mechanisms.

B. Basic route recording

A first step would be to record tuples (hop count, verifier
code) into the designated section of the packet. The veri-
fier code consists of a value derived from flow information
(e.g. the address/port/protocol five-tuple) and a secret
known only to the issuing router. The derivation function
must not be invertible by any other party than the router.
Potential functions include keyed hashes or encrypting the
flow information with the secret. Using 8 bits of verifier
gives each router a 255-in-256 chance to identify forgeries,
weakening the attacker’s effort by a factor of 256.

It may seem that 256 options are easy to probe, which it
in fact is. RarQoS does include mechanisms (described be-
low), which do prevent effective probing of a single router’s
verifier code and restrict potential attackers to only probe
the entire path.

LIGHT-WEIGHT END-TO-END QOS AS DOS PREVENTION 3

Assuming both values in the tuple to consist of 8 bits,
this would require 16 bits of information per RarQoS-
enabled router along the path. Today, paths of 20. . . 30
hops are quite common, this encoding would result
in 320. . . 480 bits to be included in each packet, plus
some distinguishing header, clearly an undesirable cost-
performance ratio.

The information can be halved by noting that the hop
count fields do not provide 8 bits of information each.
Options include delta-encoding the hop-count differences
(more effort at the router) or having an index header point-
ing to the next field to use, to be updated at each RarQoS-
step (requiring packet update). As a result, we get down
to 8 + ε bits per step, but making the packet forwarding
process more expensive.

The process can be further strengthened by having
routers set a flag when they recognise a mismatch in the
verifier code, as an alert to routers further down the road,
that this packet has been tampered with and that it should
be forwarded only when there is no congestion (Fig. 2,
“misbehavior detected bit”). Then, the efforts of all the
routers are multiplicative, no longer just additive. For r
RarQoS routers using b bits of verifier each, we reduce the
chance of an attacker picking an invalid identifier from 1
in r × 2b to 1 in 2rb. Assuming a path of only 8 RarQoS-
enabled routers, the chance of guessing the right result is
thereby limited to one in 2568 = 264, clearly impractical
for a single source.

A clever attacker, trying to create a fake verification
string, might consider to do a traceroute using the infor-
mation and see when the “misbehaviour detected” bit is
set as an indication to the downstream routers. One ap-
proach would be to prevent packets containing assurances
(verifiers being built) from being returned. This would re-
quire including the assurance only in ICMP error packets,
which will not cause further error messages. This would be
a kludge at best, many would consider this a major abuse
of the Internet protocol.

It turns out that this can be avoided by including the
current hop count together with the flow information as an
input to the keyed hash or encryption. For traceroute or
other programs that would like to have packets returned
at controlled locations in the network, it is essential to
modify the time-to-live/hop-count field of the IP header,
breaking the assurance of a packet actually coming from
the designated source.1

This multiplicative effort allows us to limit the number
of bits per RarQoS step to one, the impact of an attack
will be reduced by a factor of 2r, with each router using

1 It seems to be hard or even impossible to obtain echoes from se-
lected routers along the path without using the time-to-live field in
traceroute fashion. The use of Path MTU discovery-style mecha-
nisms does not seem to be controllable enough for a successful attack,
even more so in the backbone. A simple countermeasure would be
to have ingress routers limit the MTU to a known maximum value
valid until at least core egress, a useful mechanism in anyway. In
either case the MTU reduction sites in the core will be rare. The
user will have no choice on their placement, eliminating any useful-
ness it might have to an attacker’s large-scale attempt to create false
bindings, which is necessary to mount a DDoS siege.

R1
"Misbehaviour
detected" bit

Verifier Vector
R2

Fig. 2

Minimal RarQoS information

just a single bit. This allows us to get rid of all counters:
The bit is indexed by the time-to-live/hop-count field of
the IP header, modulo the maximum number of expected
hops, a number which can be determined during the setup
message exchange.

The entities enjoying the greatest benefit from this sys-
tem are now the users/administrators of the systems that
communicate. The ISPs also do not have to fear a mas-
sive surge in support calls, when they enable this feature,
as it will not affect normal operation, only benefit under
high load, such as those caused by DoS attacks. The host-
ing providers will be under the biggest pressure to enable
their routers, as they will be under pressure from both the
DoS load generated and their hosting customers. But also
other ISPs, such as those providing connectivity to home
users will have no disincentive to enable this feature. If it
requires upgrade of the router hardware, this can be done
in the normal router replacement process, as already a few
routers spread throughout the path provide a tangible ben-
efit to all involved parties.

C. Path binding properties

To summarise, we have seen the following basic RarQoS
path binding properties:

• Securely bind packets to a path with high probability.
• Require no router storage.
• Require minimal packet data.
• Session establishment can be piggybacked on existing

transport or application layer setup or in a separate
protocol.

• Receive IntServ-style path binding with minimal over-
head (i.e., “DiffServ-style”).

• Does not rely on symmetric routing (how to reduce the
dependency on stable routing will be discussed below).

In the following section, we will extend these proper-
ties, bind parameters to the path, and discuss how these
properties can be used to securely bind a path to QoS pa-
rameters or prevent senders from performing DoS under
fake addresses, thus simplifying the filtering process and
making it more effective.

IV. Implementation considerations

We are currently implementing a prototype in the Scal-
able Simulation Framework, SSFNet,2 to gain experience
with the properties, refine open issues, and evaluate fur-
ther applications. An inline session setup mechanism could

2 http://www.ssfnet.org

http://www.ssfnet.org

4

Verify route

Insert verifier bit

Verify route

Insert verifier bit

Router

For high MDB
values,
remember to set
RP in next
message

Remember
received client
verifier

Remember
echoed server
verifier

Create option
with AR and ER
set;
echo received
client verifier

Server

Insert empty
option plus
verifier

Insert empty
option with AR
set

Create option
with AR clear,
ER set; insert
client verifier;
echo server
verifier

Remember
echoed client
verifier and
received server
verifier

Client

SYNACK

SYNSYN

SYNACK

ACK ACK

DATA DATA

(Please note that RarQoS is not tied to TCP or inline session setup.)

Fig. 3

Message/component interaction

look as shown in Figures 3–5, when implemented as an IP
option.3

Fig. 3 shows how a bidirectional RarQoS handshake
could be integrated into TCP’s three-way-handshake and
the following data transfer. Integration into TCP’s setup
is not necessary, any application messages or even out-of-
band signalling can be used to set up the RarQoS associ-
ation. On the first message, the source asks the routers
to set the bits they would like to see on further messages,
such as their path can be validated. The target then echoes
these bits back (potentially only after authenticating the
source as trustworthy), such that the sender can now use
elevated priority. A potential function for the router to use
could be

b = h(routerSecret ‖ timeToLivetypeOfService ‖
sourceAddress ‖ destinationAddress),

(1)

where h is a secure hash function returning a single bit, ‖
is the concatenation operator, routerSecret is a per-router
secret (no per-host or per-connection state), inclusion of
timeToLive defeats hop-by-hop verifier secret gaining at-
tempts, and the remaining variables are pieces of informa-
tion from the packet which should be linked to this path.4

Fig. 4 shows the steps necessary in a router to process
RarQoS messages, discriminating between legacy IP data-
grams, setup and verification messages. The optional route
adaptation process is described in Section B.

3 We are evaluating alternatives such as IPv6-style Extension Head-
ers, incorporation into IPv6 flow label or IPv6 addresses, as well as
the reuse of existing IPv4 header fields. As the protocol relies on the
co-operation of parties, unlike some surreptitious DoS packet mark-
ing schemes, the IP ID field could be “legally” used, with options to
use the fragmentation header fields as well.

4 Source and destination ports could be included into the calcula-
tion but would prevent a client from reconnecting to a server under
DoS.

Packet
arrival

RarQoS
option?

verifier
valid?

yes

AR flag
set?

yes

no

queue
according
to MDB

increment
MDB

yes

no

no legacy
processing

set verifier
bit

adapt to
route

changes
(optional)

Fig. 4

Router message processing

Index
(6)

MDB
(2)

Flags
(8)

Length
(8)

Type
(8)

Verifier
(32)

 Legend
Type: IP option type
Length: IP option length
Basic flags:
– AR: Assure Route (sender to router)
– ER: Echo Reply (sender to receiver)
– RP: Re-Probe (sender to receiver)
Optional flags:
– BM/AM: Before/After Match (router to router)
– Shift/Dir: Compensate minimal route changes (router to router)
MDB: Misbehaviour Detection Bits (router to router)
Index: Number of verifier bits used (router to router)
Verifier: Route recorder (AR=1: router to receiver; AR=0: sender to router)
Verifier echo: Let receiver learn about verifier (sender to receiver)

Verifier echo
(32; present if ER-flag set)

Fig. 5

Possible message format when implemented as an IP option

A. To option or not to option

A clean and flexible way to implement RarQoS would be
as an IP option. It would be fully downward compatible
for both routers and end-systems without requiring any
extra packets. A full-fledged IP option is shown in Fig. 5.
The most important field is the verifier field, which will
be used by the source to prove the binding to the users.
When the assure route (AR) flag is set, it will instead be
used by the routers to let the receiver know the bits they
would like to see for future packets following this path. The
other big field, verifier echo can be used, together with the
Echo Reply (ER) flag, by the interested receiver to tell the
source how to get at this improved binding.

LIGHT-WEIGHT END-TO-END QOS AS DOS PREVENTION 5

Fragment Offset
(13)

MF
(1)

DF
(1)

Resvd=0
(1)

IP ID
(16)

Verifier part 2
(13)

MDB
(1)

DF=1
(1)

RarQoS=1
(1)

Verifier part 1
(16)

Verifier part 2
(8)

Index
(5)

MDB
(1)

DF=1
(1)

RarQoS=1
(1)

Verifier part 1
(16)

Current IPv4
3rd header word:

RarQoS with
≤29 total hops:

RarQoS with
≤24 RarQoS hops:

Fig. 6

Possible message format when avoiding IP options

But how do routers find out their bit in the verifier
chain? One simple approach would be to take the cur-
rent TTL/Hop Count value and use it (modulo 32) as an
index into the verifier field. While this sounds attractive,
it will limit RarQoS-protected paths to 32 hops, a design
decision which, if realised, future users might soon regret.
A better option is to include an index field, which will be
decremented similar to the TTL field, but only by RarQoS
routers. This index can then be used to select the appro-
priate bit to set or verify. This limits the path to contain at
most 32 RarQoS-enabled routers, a variable which is much
easier to control and provides a further benefit, as we will
see.5 Once paths start going beyond 32 RarQoS routers,
an ISP might decide to disable RarQoS on select routers.
This will not harm the efficiency, as most paths will still
contain many RarQoS routers even after this reduction.
Thanks to the exponential nature of the number of routers,
already a few RarQoS routers will create a strong binding
which only a tiny fraction of the total packets will be able
to circumvent.

The introduction of an index field provides a further
benefit, namely the opposite: allowing the introduction of
virtual RarQoS routers. In the beginning, when only few
routers will support RarQoS, only few hops will be verified,
clearly not enough to bind paths with only a single bit per
router. In this initial phase, a single router can extract
several bits from its hash function to act as the local verifier
“bit.”

If verification of a single bit fails, a router will incre-
ment the value stored in the Misbehaviour Detection Bits.
A single difference may not be an indication of cheating,
as a router could have changed its secret key, e.g. through
reboot, or a path component might have been replaced.
Therefore, we propose that routers will gradually decrease
the packet’s priority when discrepancies in the verifier be-
come apparent. Also, using the Re-Probe bit, a friendly re-
ceiver might tell the source that verifier information along
the route has changed.

While the implementation as an IP option has several
design advantages, as shown above, it has the practical
disadvantage that many current routers will process pack-
ets with IP options very inefficiently along the “slow path”
through the main CPU, bypassing the specialised forward-
ing hardware. RarQoS, being a co-operative protocol, un-

5 The index field with 6 bits seems excessive for enumerating 32
values. But with the ability to distinguish 33 cases, the “none used”
and “all bits used” cases can be distinguished and wrap-arounds
prevented.

Fig. 7

Path changes with optional reduced impact

like DDoS packet marking schemes, can use several fields
from the stock IPv4 header. Especially convenient is the
third word from the header, which contains IP ID, frag-
mentation flags, and fragmentation offset (Fig. 6). With
the pervading use of Path MTU Discovery, many modern
operating systems no longer require these fields. Therefore,
they can be put to good use. The must-be-zero reserved
bit would be modified to become a RarQoS indicator and
the Don’t Fragment flag would need to be set for legacy
routers; the other bits could be used. Again, we have the
option of using TTL indexing or putting aside a separate
index field, to obtain more flexibility. Even in this space-
constrained environment, the index solution shows its ad-
vantage.

The fields, as used here, do not provide an option for
establishment of the binding. This has been purpose-
fully chosen, as legacy end-systems might become confused
when receiving messages with non-zero fragment offset or
must-be-zero bits set to one. In this case, the path would
be bound using separate establishment datagrams sent be-
fore or with the actual connection-setup. This would be
achieved using special ICMP messages or end-to-end pack-
ets with the IP option described above. This separation
choice not only resolves the “slow-path” issue, it further
degrades gracefully if an overzealous yet RarQoS-ignorant
middlebox is in the path.6

B. Dynamics options

Network paths today are rather stable, but only so much.
There are always possibilities for a box to be replaced
(Fig. 7), a component failing and requiring an automatic
or manual replacement, or even the path getting slightly
longer or shorter. Another aspects of dynamism includes
wilful changes of the router secret.

While we expect RarQoS to react very quickly to path
changes, especially if routers always update their verifier
status in messages, not only in setup messages, the frame-
work allows for the use of more sophisticated mechanisms
to overcome small route changes at the local level. These
changes will typically cause a single router to be replaced
by it’s hot standby or an alternative path being chosen,
which might be slightly shorter or longer, in terms of hop
count. These options are outlined in Fig. 7.

6 Such firewalls have been reported to impede Explicit Congestion
Notification (ECN) deployment.

6

Our optional mechanism includes a router, which notices
a mismatch to the verifier bit and tries to guess whether
the path has been shortened or prolonged by a single hop,
i.e., verifying whether the previous or next bit would have
matched. It records this result in the Before/After Match
bits (shown in Fig. 5, but also possible in Fig. 6). If the
next hope finds this hint confirmed, it can set the Shift/
Direction bits to indicate a single-bit offset from the orig-
inal plan. Such guesswork slightly weakens the binding;
our simulations will show whether this is worth the higher
stability of the system.

A simple step to increase stability and which each router
can implement independently, is to use a slightly different
hash function input (Eq. (1)): Instead of taking the TTL,
take the contents of the index field. This will only cause a
change only, if a RarQoS router in the path changes or is
inserted/deleted, but not if a legacy router is inserted into
or deleted from the path.

When a router purposefully changes its secret to require
old bindings to time out, it might also not flag new mes-
sages hard, but only set a flag indicating the usefulness of
a reprobe to update the binding.

C. QoS properties

While still maintaining DiffServ-style storage and com-
munications overhead, it is now also possible to bind a
path to the DiffServ parameters. This allows to reserve re-
sources along the path and potentially also rejecting Diff-
Serv requests by changing the code point or setting a flag
in the RarQoS setup message. The path binding not only
allows to borrow some IntServ properties into the DiffServ
world, it may also offer new options for fraud detection
and prevention in general.

This system can also be combined with (forward or re-
verse) charging mechanisms, requiring both parties’ ongo-
ing consent and thus making the system more transparent
to the end users, combined with lower abuse potential due
to the path binding.

D. Anti-DDoS properties

How would such a system not only provide QoS path
binding but also DDoS prevention? First of all, it provides
a QoS differentiation for accepted users at the receiver and
the passing-on of QoS binding credentials to other hosts
with a sufficiently different path. These two properties
will already significantly reduce the feasibility and effect
of a DDoS attack. Yet, it does not prevent the sudden
change of an apparently begin user of the system into a DoS
attacker. As RarQoS enforces the path binding, at least
if the attacker packets should consistently be treated at
high priority, it allows the victim to ask upstream routers
to install filters which reduce or stop the attack traffic [9].
Unlike other filter systems, it has very low false-positive
and false-negative rates: (a) The attacker can not easily
switch source address, as it would lose the QoS binding
and (b) it is ineffective to blame someone else with fake
sender addresses and thus causing the victim to install a
filter blocking a legitimate communications peer.

RarQoS does not seem to be a mechanism that can be
used to mount a DoS attack on the participating systems.
The additional message processing requires slightly more
CPU cycles, but it is independent of the actual message.
Especially noteworthy is that setup messages do not re-
quire more processing that ordinary verification messages.

V. Conclusions and future work

We described a lightweight scheme where the parties
with vested interest need to take action and then obtain
better quality under heavy load. The change necessary for
the network providers is minimal, their role is essentially
limited to only act as a third-party verifier of the sources’
claims. All the important decisions remain with the end
systems and their users or administrators. It further allows
incremental deployment, might be combined with future
charging mechanisms, where already a small deployment
will show benefits, something which is generally lacking
in other approaches. We believe that this better reflects
the interests, market forces, and end-to-end design of the
Internet. Our analysis of the properties of this scheme is
very promising and will open new opportunities for merg-
ing QoS, DoS and path management.

Our next steps are to finish our SSFnet implementation,
gain experience from our simulations and to experimentally
implement it in a real operating system.

References

[1] Sean Rooney, Christopher J. Giblin, Marcel Waldvogel, and
Paul T. Hurley, “Identifying a distributed denial of service
(DDoS) attack within a network and defending against such an
attack,” European Patent Application EP04405438.5, 2004.

[2] Jelena Mirkovic, Janice Martin, and Peter Reiher, “A taxon-
omy of ddos attacks and ddos defense mechanisms,” Tech. Rep.
020018, Computer Science Department, University of California,
Los Angeles, 2002.

[3] Rich Pethia, Alan Paller, and Gene Spafford, “Consensus
roadmap for defeating distributed denial of service attacks,”
http://www.sans.org/dosstep/roadmap.php, 2000.

[4] Jun Li, Jelena Mirkovic, Mengqiu Wang, Peter Reiher, and Lixia
Zhang, “SAVE: Source address validity enforcement protocol,”
in Proceedings of IEEE Infocom, 2002, pp. 1557–1566.

[5] Dawn X. Song and Adrian Perrig, “Advanced and authenti-
cated marking schemes for IP traceback,” in Proceedings IEEE
INFOCOM, 2001.

[6] Drew Dean, Matt Franklin, and Adam Stubblefield, “An alge-
braic approach to IP traceback,” in Proceedings of the Network
and Distributed System Security Symposium, Feb. 2001.

[7] Stefan Savage, David Wetherall, Anna R. Karlin, and Tom An-
derson, “Practical network support for IP traceback,” in Pro-
ceedings of ACM SIGCOMM, 2000, pp. 295–306.

[8] Marcel Waldvogel, “GOSSIB vs. IP traceback rumors,” in 18th
Annual Computer Security Applications Conference (ACSAC
2002), Dec. 2002, pp. 5–13.

[9] John Ioannidis and Steven M. Bellovin, “Implementing push-
back: Router-based defense against DDoS attacks,” in Proceed-
ings of Network and Distributed System Security Symposium,
Reston, VA, USA, Feb. 2002, The Internet Society.

[10] João B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee,
Ravi K. Prasanth, B. Ravichandran, and Raman K. Mehra,
“Proactive detection of distributed denial of service attacks us-
ing MIB traffic variables – a feasibility study,” in Proceedings of
International Symposium on Integrated Network Management,
2001.

[11] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioanni-
dis, Vern Paxson, and Scott Shenker, “Controlling high band-
width aggregates in the network,” Tech. Rep., AT&T Center
for Internet Research at ICSI, July 2001.

http://www.sans.org/dosstep/roadmap.php

LIGHT-WEIGHT END-TO-END QOS AS DOS PREVENTION 7

[12] Jianxin Yan, Stephen Early, and Ross Anderson, “The XenoSer-
vice – a distributed defeat for distributed denial of service,”
in Proceedings of CERT Information Survivability Workshop
2000, Oct. 2000.

[13] Marcel Waldvogel, Paul Hurley, and Daniel Bauer, “Dynamic
replica management in distributed hash tables,” Research Re-
port RZ–3502, IBM, July 2003.

[14] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein,
“SOS: an architecture for mitigating DDoS attacks,” Journal
on Selected Areas in Communications (JSAC), vol. 22, no. 1,
pp. 176–188, Jan. 2004.

[15] David Mankins, Rajesh Krishnan, Ceilyn Boyd, John Zaho, and
Michael Frentz, “Mitigating distributed denial of service attacks
with dynamic resource pricing,” in Proceedings of Annual Com-
puter Security Applications Conference (ACSAC 2001), 2001.

[16] Robert Braden, David Clark, and Scott Shenker, “Integrated
services in the Internet architecture: An overview,” Internet
RFC 1633, June 1994.

[17] Steven Blake, David Black, Mark A. Carlson, Elwyn Davies,
Zheng Wang, and Walter Weiss, “An architecture for differen-
tiated services,” Internet RFC 2475, Dec. 1998.

	Title
	Introduction
	Background
	Denial of Service

	Router-assisted, receiver-driven QoS
	Overview
	Basic route recording
	Path binding properties

	Implementation considerations
	To option or not to option
	Dynamics options
	QoS properties
	Anti-DDoS properties

	Conclusions and future work

	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2007/3238/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-32386

