
Prototyping Service Discovery and Usage

in Wireless Sensor Networks

Raluca Marin-Perianu, Hans Scholten and Paul Havinga

University of Twente

Enschede, The Netherlands

Email: {r.s.marinperianu, j.scholten, p.j.m.havinga}@utwente.nl

Abstract—Heterogeneous Wireless Sensor Networks (WSNs)
are envisioned to provide different types of services in an open
and dynamic environment. This paper presents the design, im-
plementation and evaluation of a service discovery and usage so-
lution for heterogeneous WSNs. The users have the possibility to
discover and use the services available in the WSN, while sensor
nodes can search for the existing gateways to the outside world
in order to signal important events. The WSN self-organizes in a
clustered structure that acts as a distributed directory of service
registrations. The clustering offers the necessary support to
achieve energy-efficient discovery within the WSN. We implement
the combined solution on resource-constrained sensor nodes, and
we analyse the performance characteristics. The results show that
the clustering algorithm has low communication overhead and
the service discovery protocol scales with the number of nodes
and network density. In addition, we show that the solution is
lightweight (both code and data memory footprint) and the the
interaction user-WSN is straightforward and intuitive.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) can make real the vision

of smart surrounding spaces, such as houses, offices or public

places. The potential ubiquitous usage has led to a rather het-

erogeneous market, offering today a broad spectrum of sensor

nodes, ranging from tiny devices operating with limited hard-

ware resources, to powerful nodes approaching the capabilities

of an embedded computer [9]. WSNs are typically static

networks of sensor nodes, homogeneous both in hardware and

software, mainly deployed to collect sensor readings and route

them to the sink [4]. However, we see nowadays a new trend,

where heterogeneous and mobile WSNs are able to assist

multiple applications in dynamic environments [3]. Compared

to using one platform that imposes a set of compromises, a

heterogeneous collection of devices benefits from the func-

tionality and flexibility provided by the resource-lean nodes, in

conjunction with the enhanced capabilities offered by the more

endowed nodes [6]. We envision that large-scale heterogeneous

sensor infrastructures will eventually be integrated into offices,

public places and the environment, where multiple clients will

configure, discover and use a variety of services.

We see therefore a strong motivation for having a uniform

abstraction to expose the functionality of the WSN to the

user. In this sense, service-based solutions have become pop-

ular [7], as they provide an easy-to-use interaction paradigm

and decouple the application from the low-level technologies.

In addition, the mobility and ad-hoc nature of the WSN

applications can be handled through dynamic mechanisms,

such as service discovery. As a first step towards service-

oriented WSNs, we proposed an energy-efficient, distributed

service discovery mechanism SD4WSN [14], which allows

for automatic detection and usage of services in a WSN.

The algorithm is simple enough to run on resource-constraint

devices and is shown to be energy-efficient especially in large-

scale, dense sensor networks.

In this paper, we focus on practical issues with designing,

implementing and evaluating the service discovery and usage

mechanisms on resource-lean sensor nodes. The resulting

service-oriented WSN has to fulfil the following three objec-

tives:

1) To self-organize in a clustered structure and to detect

and react to topology changes due to mobility or com-

munication errors.

2) To offer the users the possibility to discover and use the

services available in the network. The discovery protocol

should exploit the underlying clustered topology for a

scalable and energy-efficient search.

3) To discover and use the available gateways to the outside

world (mobile phones, PDAs, laptops) that can be used

for signalling relevant events, for example alarms in the

case of safety-critical situations.

From the practical point of view, we show that the solution

is lightweight (both code and data memory footprint), the

interaction user-WSN is straightforward and intuitive and the

alarming from WSN to the world is simplified by using

the same discovery and communication protocol. From the

theoretical point of view, the performance measurements show

that the clustering algorithm has low communication overhead

and the service discovery protocol scales with the number of

nodes and network density.

The remaining part of the paper is organized as follows: we

give an overview of the related work in the fields of service-

oriented WSN and service discovery in Section II. We briefly

describe the main modules of our solution in Section III.

In addition, Section IV presents a series of optimizations

and extended functionality. Sections V and VI give the im-

plementation details and describe the demonstration setting.

The experiments and performance evaluation are addressed in

Section VII. Section VIII describes the practical challenges

that we faced during the implementation process. Finally,

Section IX presents the conclusions.

II. RELATED WORK

Heterogeneous WSNs are envisioned to provide different

types of services in an open and dynamic environment. Tilak

et al. [15] identify the resource and service discovery as the

first step towards enabling interoperability of sensor networks.

However, the fact that different sensor networks are deployed

by different organizations introduce unique challenges for

achieving interoperability. Therefore, researchers have been

investigating service-oriented solutions for WSNs, which can

offer a well-defined set of interfaces for a standardized network

operation and easy access to the WSN functionality. A possible

approach is to have a uniform abstraction layer at the level of

sink or gateway nodes, which can act as a bridge between

different WSNs. Isomura et al. [10] propose that WSNs are

connected through a UPnP bridge, which offers a way to

discover and access the services from various sensor networks.

This method solves the problem of exposing the functionality

of the WSN, but is not a solution for dynamic sensor networks,

where there is a need to actively update, configure and discover

the available services inside the network.

The Atlas service-oriented platform [11] offers a hardware

and software solution for connecting heterogeneous devices

within a service-oriented architecture. The service registry

resides on a centralized server, running the OSGi middleware.

Due to the centralized architecture and the lack of ad-hoc net-

working support, Atlas is more suited for small-scale settings

such as smart houses, rather than multi-hop dynamic WSNs.

Delicato et al. [7] propose a flexible Web Services approach

for the design of a sensor network, where the sensor nodes act

as service providers for the external users. The communication

within the sensor network is accomplished by using directed

diffusion and formatted SOAP messages. Sink nodes have a

double role, acting both as registries for the services inside

the sensor network and as service providers to the external

environment. Every sink node has the complete knowledge

of all the services in the network. However, this approach

cannot meet the scalability and energy-efficiency requirements

for large-scale dynamic WSNs.

Service discovery is a topic of great interest in the field

of ad-hoc networks [13]. However, the protocols proposed are

not directly applicable to WSNs, as they build complex overlay

structures that require a high maintenance effort. For example,

Kozat and Tassiulas [12] build a dominating set, or backbone,

to which devices register their services. Due to the high

density of nodes in the backbone, many loops are generated

during service discovery. To overcome this drawback, the

backbone organizes in a source-based multicast tree. However,

building and maintaining two overlay networks is expensive

for resource-constraint sensor nodes.

Our discovery method relies on a lightweight clustering

structure which allows for low maintenance overhead and

low discovery cost even in highly dense sensor networks. We

show the feasibility and the effectiveness of the solution by

implementation on real sensor nodes.

III. SOLUTION OVERVIEW

At a high level, a service-oriented solution is composed of

three core pieces: service providers, service consumers and

service registries, or directories. The directories facilitate the

discovery of services in the network, acting as intermediaries

between providers and consumers: providers need to publish

and register their services, while consumers are interested in

finding the service providers. This process is regulated by a

service discovery protocol, which offers the service search

capability needed by the service consumers.

The prototype service-oriented WSN that we present in

this paper uses SD4WSN [14], a service discovery protocol

for heterogeneous WSNs. SD4WSN is designed for energy-

efficiency and scalability by taking advantage of the network

heterogeneity. The idea is that the network is organized into

clusters, where the most capable nodes are the clusterheads.

The service-discovery messages travel among the clusterhead

nodes, which form a distributed directory of service registra-

tions.

A. Clustering algorithm

The clustering structure facilitates the construction and

maintenance of a distributed directory. Among the features

of the algorithm we mention the following: (1) decisions are

made based on the 1-hop neighbourhood information, which

leads to a fast convergence in face of topology changes, (2)

the chain reactions [5] are avoided, such that local topology

changes determine only local modifications of the directory

structure, (3) the algorithm constructs small-height clusters

without imposing a maximal height limit [14].

For building the distributed directory, each node is assigned

a weight, termed the capability grade, representing an estimate

of the node’s dynamics and available resources. These weights

are assumed to be unique, as the node hardware identifier may

be used to break ties.

1) Cluster setup: The algorithm constructs a set of trees,

based on local knowledge about neighbouring nodes. The

protocol works as follows:

• Nodes that have the highest capability grades among their

neighbours declare themselves clusterheads and broadcast

a SetRoot message announcing their roles.

• The remaining nodes choose as parent the neighbour with

the highest capability grade.

• When a node receives a SetRoot message from its parent,

it learns the cluster membership and rebroadcasts the

SetRoot message.

Figure 1 shows an example network of nine nodes, where

each node is assigned a capability grade. Based on these

capability grades, the nodes organize into three trees (clusters),

having as roots the nodes with the highest capability grades in

their neighbourhood (7, 8 and 9). The straight arrows indicate

the parent-child relationship.

2) Knowledge of adjacent clusters: The identity of the root

node is propagated in the cluster down to the leaf nodes via the

broadcast message SetRoot. Thus, the message also reaches

Fig. 1. Example of a clustered network.

nodes from adjacent clusters, which store the adjacent root

identity. This information is then propagated up in the tree

until it reaches the root node, by using a message which we

term UpdateInfo. Through this message, nodes learn which are

the clusters adjacent to their sub-trees and the next hops on

the paths leading to their clusterheads. In particular, the root

nodes learn the identity of all the root nodes from the adjacent

clusters.

In Figure 1, the local knowledge on the adjacent clusters is

displayed next to each node. This information is aggregated

at the higher levels in the hierarchy, such that the root nodes

inherit the information acquired by all the nodes in their

cluster.

3) Maintenance in face of topology changes: Nodes adjust

their cluster membership when the network topology changes

in the following way:

• A node discovers a new neighbour with a higher capa-

bility grade than its current parent. The node then selects

that neighbour as its new parent.

• A root node discovers a neighbour with a higher capa-

bility grade. As a result, the root node gives up its role

and chooses that neighbour as its parent.

• A node detects the failure of the link to its parent. The

node then chooses as new parent the node with the highest

capability grade in its neighbourhood.

The knowledge of adjacent clusters changes according to

the modifications of the clustering structure.

An in-depth description of the clustering algorithm can be

found in [14].

B. Service discovery protocol

The service discovery protocol uses the clustering structure

to maintain a distributed directory of service descriptions. In

this way, the communication cost is reduced, since the service

discovery messages are exchanged only among the directory

nodes.

Nodes register their services with their parents and thus

every node in the hierarchy maintains information on the

services offered by the nodes in its sub-tree. The root nodes

have a complete view of the services in their clusters. The

service registration process is integrated with the construction

and maintenance of the clustering structure, by using the same

message UpdateInfo. The service discovery protocol consists

Fig. 2. The hardware.

of two phases: the discovery phase and the reply phase. We

describe each of them in turn.

1) The discovery phase: During the service discovery

phase, the discovery message travels among the nodes which

are part of the distributed directory. Suppose a node in the

network generates a service discovery request ServDisc. The

request is first checked against the local registrations. If no

match is found, the message is forwarded to the parent. This

process is repeated until the ServDisc message reaches the root

of the cluster. When a root node receives a service discovery

request message and it does not find any match in the local

registry, the ServDisc message is forwarded to the roots of

the adjacent clusters. The next hop on the path leading to the

adjacent cluster is decided by every node that acts as forwarder

of the ServDisc message, by using the local knowledge of

adjacent clusters. Figure 1 shows an example of how service

discovery messages travel from root node 7 to the adjacent

clusters 8 and 9. The paths followed by the two messages is

indicated with dashed arrows.

2) The reply phase: The result of a service search is typi-

cally the address of one or more service providers, information

which is included in the reply message. The reply message

may follow the reverse cluster-path to the client, or any other

path if a routing protocol is available. In the first case, if there

is a cluster partition, the path can be reconstructed by using

the same search strategy as for the ServDisc message, where

this time the service is the address of the client.

IV. OPTIMIZATIONS AND EXTENDED FUNCTIONALITY

In addition to the clustering and service discovery modules,

our solution integrates a series of optimizations for further

reducing the energy consumption. Moreover, the functionality

is extended by allowing mobile gateway nodes to join the

WSN in an ad-hoc manner.

A. Cross-layer integration with MAC

During cluster setup and maintenance, each node broadcasts

SetRoot messages, announcing its role. Via this message, the

root identity is disseminated to the whole cluster and to

the borderline nodes belonging to adjacent clusters. A cross-

layer approach with a TDMA-based MAC protocol allows for

Fig. 3. Implementation overview.

integration of the SetRoot message with the control message

exchanged periodically by neighbours. This method reduces

the communication overhead and thus increases the network

lifetime (see Section V-B for a description of the cross-layer

integration with LMAC).

B. Integration of discovery and usage

After service discovery, the consumer is interested to make

use of the desired service, by selecting and establishing a

connection with the appropriate service provider. In the case

where providing a service is equivalent to sending a short piece

of information to the consumer, extensive message exchange

can be avoided by integrating the service usage in the service

discovery process. We identify the following cases:

1) Service discovery and usage integration during the reply

phase. The service reply may incorporate partially or

totally the information exchanged during service usage.

For example, suppose a service consumer issues a dis-

covery message which searches for the location of the

nodes that are sensing a particular measure or detecting

an event. Upon receiving this message, the nodes that

match the service description issue a reply message that

already includes the location coordinates. In this way,

subsequent service usage dialogue is avoided.

2) Service discovery and usage integration during the

discovery phase. In a similar manner, the discovery

message may include an event, such as an alarm about an

undesired situation detected in the network (for example

a temperature exceeding a threshold value). In this

case, the service discovery message tries to discover

gateway nodes capable of announcing the event outside

the network. The discovery message contains the service

usage information (e.g. the sensor readings), so the

service reply and usage phases may be no longer be

required.

Fig. 4. Demonstration setting.

C. Integration with mobile platforms

The traditional model of a WSN requires one sink node that

collects the sensor data and acts as a gateway to other networks

such as Internet [4]. Our environment is composed of a

multitude of sensor platforms and mobile devices, which form

a heterogeneous network. Some sensor nodes have gateway

capabilities, being connected via wireless links (Bluetooth) to

Smartphones or PDAs, which in turn are connected to the

GSM network or to the Internet (through WLAN). In this

way, the traditional model of WSN is extended to multiple,

mobile gateway nodes. Using the gateway nodes, a two-way

communication is possible: (1) users can interact with the

WSN by discovering and using the available services, and (2)

the WSN can discover and use the gateway nodes to announce

relevant events, for example alarms in the case of safety-

critical situations.

V. IMPLEMENTATION

We implement our service-oriented solution on sensor

nodes, taking into account the optimizations mentioned in

Section IV and the multiple gateway integration. In what

follows, we describe the hardware and the software details

of our implementation.

A. Hardware

We implement SD4WSN on the Ambient µNode 2.0

platform [1], provided with the low-power MSP430 micro-

controller produced by Texas Instruments. The sensor node

offers 48kB of Flash memory and 10kB of RAM. The radio

operates in the 868MHz and 915MHz band and has a maxi-

mum data rate of 100kbps.

The connection of sensor nodes to mobile devices is done by

using the Parani-ESD200 Bluetooth module [2]. This module

can communicate through its on-board antenna with other

Bluetooth devices in the range of 30m. It can be connected

to the Ambient µNodes via standard UART interface, and

(a) Sensor reading service usage (b) Monitoring service - message ex-
change

(c) Result of monitoring service usage (d) Gateway discovery for announcing
events

Fig. 5. Service discovery and usage console.

configured and controlled by typical AT command set. Fig-

ure 2 shows the Ambient sensor node platform and the Parani

Bluetooth module.

The node provided with a Bluetooth interface can connect

to any other Bluetooth-enabled device that supports the Serial

Port Profile. We use Smartphones and PDAs carried by people

as mobile gateways that can connect to the GSM network and

the Internet.

B. Software

Figure 3 shows the main functional modules of our proto-

type implementation. For regulating the access of the sensor

nodes to the wireless medium, we use LMAC [8], an energy-

efficient TDMA-based MAC protocol designed for WSNs.

LMAC divides time into slots, each node being assigned one

slot when it can transmit the data in a collision-free wireless

medium. During its time slot, a node transmits a control packet

(as a heartbeat), followed by the actual data (if any). The

higher-layer protocols can use the control packet to piggyback

a small piece of information for an energy-efficient cross-layer

integration. We use this facility to disseminate and locally

update the root identity, thus replacing the SetRoot message

of our clustering algorithm (see Section IV).

By analysing the control messages received from the neigh-

bours, LMAC constructs a neighbour table which is constantly

maintained up-to-date. In this way, LMAC can inform the

higher layer protocols of the changes in the network topology

(links added or deleted). The Clustering Topology Control

module analyses the neighbourhood information provided by

LMAC and constructs the clustering structure, by choosing the

appropriate parent node. Using the cross-layer optimization,

this module is informed about the root identity from the control

message exchanged periodically by LMAC. Through LMAC,

the Clustering Topology Control module receives from the

children nodes and transmits to the parent node the knowledge

on adjacent clusters and the service registrations.

The Service Discovery and Usage module receives either

from the neighbours, through LMAC, or from the mobile

gateway, through Bluetooth, the service discovery and usage

unicast messages. In order to decide the next hop for the

service discovery messages, this module uses the clustering

structure, the information on adjacent clusters and the service

registrations provided by the Clustering Topology Control

module. The received message is then forwarded either to a

neighbour from the WSN through LMAC, or to the gateway,

through Bluetooth. The Service Discovery and Usage module

also receives the sampled values from the attached sensors,

so that it can include the sensor readings in the service usage

message exchange.

The SD4WSN modules, (e.g. Clustering Topology Control

Service Discovery and Usage) have a total code memory

footprint of 3KB and require 342B of RAM, considering an

average network density of 32 neighbours per node.

VI. DEMONSTRATION SETTING

We build a demonstration setting as a proof of concept for

our service-oriented solution. Figure 4 shows a set of sensor

nodes organized into three clusters and connected to gateway

devices via Bluetooth interfaces. The capability grades of the

nodes determine the formation of clusters. The gateway nodes

have the two highest capability grades (14 and 15), as they are

connected to the Smartphones and PDAs. Consequently, they

are chosen as clusterheads of clusters 3 and 1. The clustering

structure dynamically reorganizes in case of mobility or node

addition/removal.

The sensor nodes are equipped with light, temperature and

movement (tilt switch) sensors (see Table I). The following

services are available in this setting:

1) Sensor reading service - provides a simple sensor

reading at the moment of invocation (e.g. temperature

reading).

2) Monitoring service - provides the history of a specified

measure (e.g. light monitoring over the last 20 minutes).

This service necessitates the establishment of a commu-

nication session between the provider and the consumer.

First, the service parameters (e.g. time history) are

established between the two parties. Then, the service

provider delivers the desired history measurements to

the user.

3) Alert service - enables the sending of SMS or Email

through the mobile devices when an an abnormal sit-

uation occurs in the network. The WSN searches for

these services provided by gateway nodes in order to

announce the event to the GSM network or Internet.

Figure 5 shows the service discovery and usage console

which runs on the mobile devices. The user can select the

desired service from a list and launch the search command

which initiates a service discovery message. The message is

transmitted via the Bluetooth interface to the gateway node and

then forwarded according to the SD4WSN protocol. When the

service is found, a service reply message will announce the

consumer about the result of the search.

The result of discovering a simple temperature reading

service is shown in Figure 5(a). Besides the address of the

service provider, the service reply message also incorporates

the temperature value (see Section IV for the integration of

service discovery and usage). The user can browse the list of

sensor nodes that offer the temperature service, having also

access to the sensor readings.

In contrast to the sensor reading service, the monitoring

services require a more complex dialogue between provider

and consumer. First, the user launches a discovery message

to find out the providers of the monitoring service. Upon

receiving the list of providers, the user selects one of them,

establishes the service parameters and invokes the service.

Figure 5(b) shows an example of a light monitoring service.

The user selects node 11 from the list of providers and

specifies the time history (20 minutes) over which to retrieve

the sampled data (the maximum time history is embedded in

the service reply messages: 25 minutes for node 11). The result

of the service invocation is illustrated in Figure 5(c), where

the history of the sampled data is plotted on the mobile device.

In the case where a sensor node registers an abnormal sensor

value (temperature or light level exceeded, vibrations), the

TABLE I
SENSOR TYPES

Sensor Manufacturer Model

Light Texas Advanced TSL2550
Optoelectronic Solutions

Temperature National Semiconductor LM92
Tilt switch Assemtech Europe CW1300-1

Fig. 6. Announcing events.

node issues a service discovery message which incorporates

the sensor reading. The discovery message travels the clustered

WSN in search for an SMS or an Email service. Upon

receiving the message, the mobile device displays an alarm

and announces the event (see Figure 5(d)).

Figure 6 shows a detail of the demonstration setting, namely

two sensor nodes, a mobile phone and a Smartphone. The first

sensor node is equipped with a tilt switch sensor and is thus

capable of detecting vibrations. The second node is provided

with a Bluetooth interface and can connect to the Smartphone

to send events. The situation depicted in the figure is the

following: the node with a tilt switch sensor detects a high

level of vibrations and issues a discovery message for an SMS

service. The message travels the clustered WSN and reaches

the node with the Bluetooth module, which provides the

desired service and transmits the message to the Smartphone.

The Smartphone in turn, displays an alarm and sends an SMS

to the mobile phone.

VII. PERFORMANCE MEASUREMENTS

We implement SD4WSN on the Ambient µNodes and we

measure the performance by deploying a series of testbeds of

up to 25 nodes. We analyse the number of messages exchanged

until network convergence, the number of resulting clusters,

the cost of service discovery and the discovery time, on an

average case scenario. In order to estimate the average case,

we generate a series of random topologies offline (up to 5

hops), which we disseminate to the WSN at the beginning of

each test. The nodes are considered to be placed on a fixed-

sized area. We vary the number of nodes from 5 to 25 and

thus the network density (e.g. average node degree) increases

from 1.4 to 7. For each network density in turn we run 20

experiments, each consisting of the following steps:

1) Disseminate the network topology

2) Compute the number of messages exchanged until net-

work convergence.

3) Count the number of resulting clusters.

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c
lu

s
te

rs

Number of nodes

(a) Average number of clusters (or root nodes).

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Number of nodes

(b) Average number of UpdateInfo messages sent and
received per node until network convergence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Number of nodes

(c) Average number of ServDisc messages sent and re-
ceived per node during one service discovery phase.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25

A
v
e

ra
g

e
 d

is
c
o

e
ry

 t
im

e

Number of nodes

(d) Average service discovery time in seconds.

Fig. 7. Performance measurements.

4) Issue a service discovery message from a random node

in the network.

5) Calculate the number of service discovery messages

exchanged and the time until the service is found.

Figure 7(a) shows the average number of clusters depending

on the network density. The number of clusters is an important

measure for the performance of a clustering algorithm that is

intended to be used as a basis for a search mechanism. A high

density of clusters leads to a large number of loops that occur

during the discovery process. In the first part of the curve, the

nodes are sparsely distributed on the area and generally form

clusters with only one member. When the network becomes

denser, the new nodes added either join the already existing

clusters or they form their own cluster and force the root nodes

in the neighbourhood to join. We notice the general trend that

adding new nodes to the network does not significantly change

the number of clusters, and consequently, the number of root

nodes.

Figure 7(b) shows the average number of UpdateInfo mes-

sages sent and received per node for updating the knowledge

on adjacent clusters and the service registrations. The mes-

sages are counted starting from a newly initialized network

until the network convergence. We notice that in the first part

of the curve, the number of messages per node grows linearly

with the network density. The reason is that when increasing

the density, the network becomes more connected and thus,

the root nodes receive more information about the clusters in

vicinity. However, in the last part of the curve, the number

of messages per node remains relatively constant. For dense

networks, it is likely that the information received from a new

neighbour does not change the already acquired knowledge of

adjacent clusters, so it is not propagated further in the tree.

We represent in Figure 7(c) the number of service discovery

messages sent and received per node during one service

discovery phase. We notice that in the first part of the plot,

the number of service discovery messages increases with

the number of nodes in the network. The reason is that in

comparison with a sparse network, a connected network allows

for messages to travel among all the clusters which are formed

as a result of the clustering algorithm. This results in a higher

discovery cost. Once the network is connected, increasing the

density does not increase total discovery cost, because the

service discovery messages travel only among the clusterhead

nodes, which remain constant in number. Therefore, in the

second part of the plot, the total number of discovery messages

remains on average approximately constant, which means that

the average number of discovery messages sent and received

per node decreases.

The average discovery time is represented in Figure 7(d).

We notice the same effect as in the case of discovery cost:

once the network is connected, the average time it takes for

a service discovery message to reach the service provider

remains approximatively constant.

We summarize the most important observations that validate

from a practical point of view the theoretical results presented

in [14]:

• After a certain network density, increasing the number of

nodes in the network does not further increase the number

of clusters.

• The average message overhead per node for cluster setup

and maintenance is limited, since there is no need to

transmit the knowledge on adjacent clusters that is al-

ready known in the higher levels of the cluster hierarchy.

• The discovery cost per node decreases with the network

density, as the discovery messages travel only among

clusterhead nodes.

VIII. PRACTICAL CHALLENGES

We faced a number of practical challenges while implement-

ing the service discovery and usage mechanisms on sensor

nodes:

• Debugging: Debugging proves to be very difficult in

a WSN environment. We implemented the following

mechanisms which helped us understand the behaviour of

the nodes: (1) a report status message, sent periodically

by every node to the base station, (2) a network packet

sniffer that captures the traffic within the WSN, and (3)

a GUI that shows online the functional nodes and the

clustering structure. However, debug support for a real-

life, large-scale multihop deployment is still an open

problem.

• Resource limitations: The limited computational power

of the sensor nodes makes it difficult to maintain the

precise synchronization of the TDMA-based MAC proto-

col, while also running the other tasks, such as sampling,

clustering, service discovery and Bluetooth communi-

cation. Especially the nodes equipped with Bluetooth

had sometimes problems in establishing both wireless

connections. Therefore, the timer values and scheduling

scheme have to be carefully chosen.

• Latency and uncertainty: Latency can be an issue if a

low duty-cycle MAC protocol is used. The clients of the

service discovery protocol cannot expect fast answers to

their queries, and also they do not have feedback on the

progress of the discovery process within the network.

IX. CONCLUSIONS

Heterogeneous WSNs are envisioned to provide different

types of services in an open and dynamic environment. In this

context, a necessary ingredient to achieve full functionality and

interoperability is the ability to discover and use the services

available in the network. This paper presents the design,

implementation and evaluation of SD4WSN, which solves the

problem of energy-efficient service discovery and usage in

heterogeneous WSNs. For achieving low communication costs

during searching for services, the discovery protocol exploits a

cluster overlay, where the clusterhead nodes form a distributed

service registry. A service lookup results in visiting only the

clusterhead nodes.

For evaluating the feasibility and the effectiveness of our

approach, we implement the protocol on sensor nodes. As a

first step, we build a demonstration setting, where the user can

discover and use a set of services inside the WSN. Moreover,

nodes from WSN can discover and use the available gateways

to the outside world (mobile phones, PDAs, laptops) for

signalling relevant events. We show that the solution is light-

weight (both code and memory footprints) and alarming from

WSN to the world is simplified by using the same discovery

and communication protocol. As a second step, we build a

testbed to evaluate the performance under different network

conditions. The results show that our solution achieves low

communication overhead and good scalability properties with

respect to the number of nodes and network density.

REFERENCES

[1] Ambient systems. http://www.ambient-systems.net.
[2] Parani-ESD200 Bluetooth module.

http://www.sena.com/download/datasheet/ds parani esd.pdf.
[3] Smart surroundings. http://wwwes.cs.utwente.nl/smartsurroundings/.
[4] I. F. Akyildiz, Su Weilian, Y. Sankarasubramaniam, and E. E. Cayirci.

A survey on sensor networks. IEEE Communications Magazine,
40(8):102–114, 2002.

[5] C. Bettstetter. Mobility Modeling, Connectivity, and Adaptive Clustering

in Ad Hoc Networks. PhD thesis, Technische Universität München,
Germany, October 2003.

[6] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael
Hamilton, and Jerry Zhao. Habitat monitoring: application driver for
wireless communications technology. SIGCOMM Computer Communi-

cation Review, 31(2 supplement):20–41, 2001.
[7] Flavia Coimbra Delicato, Paulo F. Pires, Luci Pirmez, and Luiz Fernando

Carmo. A service approach for architecting application independent
wireless sensor networks. Cluster Computing, 8(2-3):211–221, 2005.

[8] L. Van Hoesel, T. Nieberg, J. Wu, and P.J.M. Havinga. Prolonging the
lifetime of wireless sensor networks by cross-layer interaction. IEEE

Wireless Communications, 11(6):78–86, 2004.
[9] Mike Horton and John Suh. A vision for wireless sensor networks. In

IEEE MTT-S International Microwave Symposium Digest, pages 361–
364. IEEE Computer Society, June 2005.

[10] Manabu Isomura, Till Riedel, Christian Decker, Michael Beigl, and
Hiroki Horiuchi. Sharing sensor networks. In ICDCSW ’06: Proceedings

of the 26th IEEE International ConferenceWorkshops on Distributed

Computing Systems, page 61, Washington, DC, USA, 2006. IEEE
Computer Society.

[11] Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, and Abdelsalam
Helal. Atlas: A service-oriented sensor platform: Hardware and middle-
ware to enable programmable pervasive spaces. In Proceedings of the

31st IEEE Conference on Local Computer Networks, pages 630–638.
IEEE Computer Society, November 2006.

[12] Ulas C. Kozat and Leandros Tassiulas. Service discovery in mobile
ad hoc networks: An overall perspective on architectural choices and
network layer support issues. Ad Hoc Networks, 2(1):23–44, June 2003.

[13] R. Marin-Perianu, P. H. Hartel, and J. Scholten. A classification of
service discovery protocols. Technical Report TR-CTIT-05-25, Centre
for Telematics and Information Technology, Univ. of Twente, The
Netherlands, 2005.

[14] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga, and P. H. Hartel.
Energy-efficient cluster-based service discovery in wireless sensor net-
works. In Proceedings of the 31st IEEE Conference on Local Computer

Networks, pages 931–938, November 2006.
[15] Sameer Tilak, Kenneth Chiu, Nael B. Abu-Ghazaleh, and Tony Fountain.

Dynamic resource discovery for sensor networks. In EUC Workshops,
pages 785–796, 2005.

