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Abstract—Bandwidth estimation techniques seek to provide an
accurate estimation of available bandwidth such that network
applications can adjust their behavior accordingly. However,
most current techniques were designed for wired networks and
produce relatively inaccurate results and long convergence times
on wireless networks where capacity can vary dramatically.
This paper presents a new Wireless Bandwidth estimation tool,
WBest, designed for fast, non-intrusive, accurate estimation of
available bandwidth in IEEE 802.11 networks. WBest is a two-
stage algorithm: 1) a packet pair technique estimates the effective
capacity over a flow path where the last hop is a wireless LAN
(WLAN); and 2) a packet train technique estimates achievable
throughput to infer the available bandwidth. WBest parameters
are optimized given the tradeoffs of accuracy, intrusiveness
and convergence time. The advantage of WBest stems from
avoiding a search algorithm to detect the available bandwidth
by statistically detecting the available fraction of the effective
capacity to mitigate estimation delay and the impact of random
wireless channel errors. WBest is implemented and evaluated
on an 802.11 wireless testbed. Comparisons with other available
bandwidth estimation tools shows WBest to have higher accuracy,
lower intrusiveness and faster convergence times. Thus, WBest
demonstrates the potential for improving the performance of
applications that need bandwidth estimation, such as multimedia
streaming, on wireless networks.

I. INTRODUCTION

Due to the shared nature of wireless network communica-

tion and MAC layer mechanisms such as wireless layer retries

and dynamic rate adaptation, bandwidth estimation is far more

challenging when the underlying network includes a wireless

Local Area Network (WLAN). Fluctuating wireless channel

conditions cause variability in wireless capacity and available

bandwidth. Other wireless factors such as reception signal

strength and bit error rates (BER) due to path loss, fading and

interference and limit the effective bandwidth over a wireless

link. While providing satisfying results on wired networks,

current bandwidth estimation tools have been shown [1]–[4]

to be adversely impacted by IEEE 802.11 wireless network

conditions.

Tools that only estimate capacity are not useful for Internet

applications such as multimedia streaming that adjust the

sending rate in response to other concurrent flows. Video

streaming flows require available bandwidth estimates with

fast convergence times to avoid client-side buffer underflows

and to satisfy users waiting to use the application. Moreover,

the inherent variability of a wireless channel implies multiple

available bandwidth invocations within a single application

stream and this adds minimal intrusiveness as a requirement

for a wireless bandwidth estimation tool.

Most of the early bandwidth estimation techniques seek to

provide accurate bandwidth information for wired networks at

the cost of long convergence times and high intrusiveness. Self-

loading techniques, such as Train of Packet Pairs (TOPP) [5],

pathload [6] and pathChirp [7], probe the end-to-end network

path using multiple traffic rates. When the probing rate exceeds

the available bandwidth, the probing packets become queued

at the tight link1 router, which results in increased delay on the

receiver side. By analyzing the packet delay at the receiver,

the available bandwidth at the tight link is obtained from the

probing rate when the queuing delay starts increasing. The

changing of the probing rate can be managed in different

ways. For example, pathload uses binary search to adjust

the probing rate, TOPP uses a linearly increasing probing

rate, while pathChirp uses an exponentially increasing probing

rate. Probe Gap Model (PGM) techniques, such as Initial

Gap Increase/Packet Transmission Rate (IGI/PTR) [9] and

Spruce [10], measure available bandwidth by estimating the

crossing traffic at the tight link and by monitoring the gap

changes after the packets pass through the tight link router.

Recent research includes bandwidth estimation techniques

specific to wireless networks [1], [3], [11]–[13]. EXACT [1]

and IdleGap [11] both assume RTS/CTS is always enabled

and provide only ns-2 simulation results. CapProbe [12]

tries to avoid the effects of crossing traffic in only estimat-

ing capacity. ProbeGap [3] estimates available bandwidth in

WLANs indirectly from the idle time fraction using one-

way delay samples over the wireless link, but requires third

party capacity estimation tools. DietTOPP [13] uses a reduced

TOPP algorithm with a modified search algorithm to determine

available bandwidth in wireless networks. However, none of

these wireless schemes address wireless layer dynamic rate

adaptation.

Packet dispersion techniques, such as packet pair or packet

train probing, measure end-to-end capacity on a network path.

Introduced in [14]–[16], packet pair dispersion techniques

have been enhanced via tools such as bprobe/cprobe [17],

sprobe [18] and pathrate [19], [20]. Dispersion techniques

send two or more packets back-to-back into the network. After

1The tight link and narrow link, as defined in [8], refer to the hop with the
minimum available bandwidth and minimum capacity, respectively.



traversing the narrow link, the time dispersion between the

two packets is linearly related to the narrow link capacity.

However, using packet dispersion for capacity estimation is

impaired by crossing traffic that interferes with probe packets.

Additionally, dynamic rate adaptation on WLANs impedes

capacity estimation methods that assume fixed capacity during

measurement.

Our previous work in packet dispersion [21] provides a

detailed analytic model of packet dispersion behavior in wire-

less networks under varying conditions. By modeling packet

dispersion variance in IEEE 802.11 WLANs, the paper ap-

proximates estimated capacity variance in terms of the packet

dispersion variance derived by the model. By introducing

two metrics suitable for wireless network performance anal-

ysis, effective capacity and achievable throughput, the packet

dispersion model lead to the development of the Wireless

Bandwidth estimation tool (WBest). WBest employs a two-

stage algorithm to determine available bandwidth along a flow

path when the last hop is a WLAN. In the first stage, WBest

utilizes packet pairs to estimate the WLAN effective capacity.

In the second stage, WBest sends a packet train at the effective

capacity rate to determine achievable throughput and infer

available bandwidth.

This paper introduces and analyzes WBest with respect

to tradeoffs in accuracy and convergence time. Thorough

evaluation in a wireless testbed shows WBest performs better

in terms of accuracy, intrusiveness and convergence time

than three currently available bandwidth estimation tools:

IGI/PTR, pathChirp and pathload. The paper is organized as

follows: Section II discusses the WBest algorithm and related

issues; Section III describes the experimental setup; Section IV

analyzes the experimental results; and Section V provides

conclusions and presents possible future work.

II. WBEST ALGORITHM

The WBest algorithm estimates available bandwidth on a

network path where the last hop is over a wireless network.

Figure 1 shows a typical network environment where an ap-

plication server with a wired Internet connection sends traffic

along the network path to a client with a last hop wireless

connection. To perform media scaling and buffer optimization

for a multimedia stream, the server needs to know the capacity

and available bandwidth on the flow path. In Figure 1, network

traffic is categorized as probing, crossing and contending.

Probing traffic (1) is sent by bandwidth estimation tools along

the network path through the AP to the client. Wireless channel

conditions and other traffic affect probing traffic behavior

and produce capacity estimation errors. Crossing traffic (2)

shares the bottleneck in the direction coming from the AP to

associated clients. Contending traffic (3) accesses the shared

wireless channel and competes with probing traffic on the path

of interest. Contending traffic comes from clients to the same

AP or from other clients and APs within interference range

(known as neighboring AP co-channel interference).

Since available bandwidth is defined as the maximum

amount of capacity that a newly arriving flow can acquire
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Fig. 1. Network Path with Last Hop Wireless Network.

at the bottleneck link without negatively impacting existing

flows, wireless contending traffic impacts not only capacity

sharing at the bottleneck AP, but also reduces the AP avail-

able bandwidth due to wireless channel access contention.

Hence, while WLAN capacity estimation techniques have to

avoid estimation errors due to crossing and contending traffic,

techniques to determine WLAN available bandwidth must

lower their estimate to account for the reduction in available

bandwidth due to both crossing and contending traffic.

A. Assumptions

To make the WBest bandwidth estimation algorithm

tractable, the following assumptions are made.

1) Assume the last hop wireless network is the bottleneck

link on the network path. As the bottleneck link, the last

hop WLAN has both the smallest available bandwidth

(tight link) and the smallest capacity (narrow link) along

the network path. Namely, we have the relationship:

A ≤ Ce ≤ min
i=1,..,h−1

(Ai) (1)

where A and Ce are the available bandwidth and ef-

fective capacity of the last hop, respectively, h is the

number of hops, and Ai is the available bandwidth and

capacity of the ith hop. This assumption implies a packet

train sent by the source at rate Ce will arrive at the last

hop at the rate of Ce [20]. If this assumption does not

hold, e.g. for some home wireless networks with a lower

capacity broadband Internet connection, the packet train

with sending rate Ce will be dispersed before the last

hop and arrive at the last hop with a lower rate than

Ce. This will cause a conservative under-estimate of the

available bandwidth which is typically a better outcome

for most applications than an aggressive, over-estimate.

2) Assume no significant changes in network conditions

between the effective capacity measurement stage and

the available bandwidth estimate stage of the WBest

algorithm. While changes in network conditions due to

rate adaptation or mobility will impact the estimation

results, given algorithm convergence times of millisec-

onds, the statistical impact of this variability is assumed

to be minimal.
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3) Assume packet pairs or trains do not overflow any of the

router queues along the flow path. A queue overflow

at the last hop impacts the accuracy of the estimation

results. The possibility of queuing loss is reduced by

limiting the number of packet pairs and the length of

the packet train sent into the network.

B. Algorithm

Algorithm 1 provides the two-stage WBest algorithm. In

the first stage (lines 1-2), n packet pairs are sent to estimate

effective capacity, Ce, the maximum capability of the wireless

network to deliver network layer traffic [21]. Unlike in wired

networks, wireless dynamic rate adaptation alters effective

capacity by adjusting the packet transmission rate. Hence,

effective capacity is a function of time and packet size:

Ce =

∫ t1

t0

L
T (t)dt

t1 − t0
(2)

where L is the packet size, T (t) is the packet dispersion at

time t. To use packet dispersion in a discrete environment, Ti,

the ith packet dispersion at time t, is used to represent T (t).

Algorithm 1 WBest Algorithm.

Require: n > 0 {Measure effective capacity (Ce)}
1: Send n packet pairs to client

2: Ce ⇐ median(Ci, i = 1, .., n)
Require: m > 0, Ce > 0 {Measure available bandwidth (A)}

3: Send packet train with length m at rate Ce to client

4: R ⇐ L
mean(Ti, i=1,..,m)

5: if R ≥ Ce

2 then

6: A ⇐ Ce

[

2 − Ce

R

]

7: else

8: A ⇐ 0
9: end if

10: p ⇐ packet loss rate in train {Error correction}
11: if p > 0 then

12: A ⇐ A × (1 − p)
13: end if

While most packet dispersion techniques use the smallest

gap between packet pair arrivals to produce a narrow link

capacity estimate, WBest uses the median of n packet pair

capacity estimates to approximate Ce in the estimation time

period and minimize the impact of crossing and contending

traffic:

Ce = median(Ci), i = 1, .., n (3)

where Ci is the estimation result of packet pair i and Ci = L
Ti

.

The median is used as opposed to the mean in order to mitigate

the impact of outliers in the arrival distribution. In such cases,

the mean results in a lower capacity estimate than does the

median, and would make the second stage packet train less

effective at accurately determining the available bandwidth.

During the second stage of WBest, (lines 3-13), a packet

train of length m is sent at rate Ce to estimate available

bandwidth. Similar to probe gap techniques, a fluid model is

used to estimate the relationship between available bandwidth

and dispersion rate. From assumption 1, the arriving rate at

the last hop is Ce. Assuming downstream AP traffic can be

modeled as a FIFO queue, the downstream probing traffic

shares the same ratio of the total amount of traffic before and

after the AP queue:

Ce

Ce + S
=

R

R + S′
=

R

Ce

(4)

where, as depicted in Figure 2, R is the average dispersion

rate at the receiver, S represents the available bandwidth

reduction due to last hop crossing and contending traffic

and S′ is the share of the capacity taking away from probe

packets by the crossing and contending traffic. Combining the

relationship between available bandwidth and the estimated

effective capacity:

A = Ce − S (5)

and Equation 4, the available bandwidth can be expressed as:

A = Ce(2 −
Ce

R
) = 2Ce −

C2
e

R
(6)

Note, for a WLAN, achievable throughput [21] is R, the

average dispersion rate at the receiver for a probing rate of

Ce. Using Equation 6, Figure 3 shows the relationship between

available bandwidth and achievable throughput. Any achiev-

able throughput less than half of Ce implies zero available

bandwidth, and an achievable throughput of Ce implies an

idle wireless network.

Packet losses on the wireless network and along the network

path impact WBest accuracy. Some tools, e.g. pathload, dis-

card estimates when packet losses occur to avoid errors in the

estimation computation. However, this yields longer and more

variable measurement times. Instead of discarding estimates

when packet losses occur, WBest detects packet loss in both

packet pairs and packet trains and removes the appropriate pair

from the computation. For a packet train, loss rate p is recorded

and the available bandwidth estimate reduced (lines 10-13 of

Algorithm 1).

WBest’s advantages stem from statistically detecting the

relative available fraction of effective capacity at the WLAN

AP instead of using search algorithms to measure available



bandwidth. Many available bandwidth mechanisms detect

available bandwidth by measuring the delay changes in the

probing traffic. However, random changes in packet delay due

to wireless network conditions make it difficult to clearly

determine packet delay trends. This reduces accuracy and

increases the convergence time, intrusiveness and instability

of the estimation scheme. By avoiding a search algorithm to

determine the probing rate, WBest is designed to converge

faster and yield less estimation error. Instead of probing for

the available bandwidth, WBest estimates available bandwidth

using the effective capacity. (2−Ce

R
) in Equation 6 is treated as

the fraction of Ce available to all wireless flows. Derived from

the ratio of the effective capacity to the average dispersion

rate, this available fraction statistically removes random errors

while capturing the impact of crossing/contending traffic and

rate adaptation inherent in wireless networks.

C. Number of Packet Pairs and Length of Packet Train

The number of packet pairs in the first stage of WBest and

the number of packets in the packet train in the second stage

play important roles in the accuracy, convergence time and

intrusiveness of the algorithm. Generally, more packet pairs

and longer packet trains improve accuracy at the cost of higher

convergence time and more intrusiveness.

WBest seeks to minimize convergence time and intrusive-

ness at a given accuracy level. The confidence interval (CI)

and the estimated capacity variance from the packet dispersion

model [21], σ, are used to determine the required minimum

number of packet pairs using:

n =
Z2σ2

CI2
(7)

where Z is a confidence level constant. For example, assume

a streaming video flow wants to bound the effective capacity

estimate within 500 Kbps to match the granularity of encoded

video scaling levels. To keep the effective capacity estimate

within 500 Kbps with 95% confidence, Equation 7 indicates at

least 6 (5.34) samples are needed. This is based on σ = 0.59
Mbps for an 11 Mbps wireless channel and a packet size of

1500 bytes with Z = 1.96 and CI = 500 Kbps [21]. Similarly,

the number of packets m in the packet train can also be com-

puted. With the same available bandwidth estimation bounds

and given a modeled maximum σ = 1.38 Mbps [21] for an 11

Mbps channel and packet size of 1500 bytes with contending

traffic, Z = 1.96 and CI = 500 Kbps, the minimum train

size m is 30 (29.26). As real network conditions may change

unexpectedly, Equation 7 only approximates the number of

samples needed.

The number of packets in a train also impacts the time

scale and sensitivity of available bandwidth estimations. In

general, the available bandwidth estimate represents the aver-

age estimate during the measurement period [8]. As a major

part of the convergence time, the time Tm spent to estimate

available bandwidth depends on the number of packets m in

the train. Tm can be approximated using m and packet size

L as Tm = m ∗ L/Ce. Furthermore, the probability crossing

traffic gets included in the bandwidth estimation is related to

the length of the train and packet sizes. Assume CBR crossing

traffic is sent at rate S with at least one packet caught by the

packet train:

S ∗ Tm/L ≥ 1

S ≥ L/Tm = Ce/m (8)

The sensitivity of the available bandwidth estimation can be

defined based on the number of packets in the train, which

has a negative relationship with train length. For instance, to

catch crossing traffic sent at rate Ce/10, a packet train with

at least 10 packets is needed.

Selecting the number of packet pairs and train length is

complicated in practice because the bottleneck queue size

limits the number of packet pairs and the length of the packet

train. The pathrate queue size probing method [20] can be

used to detect buffer limitations along the flow path. However,

this probing method increases intrusiveness and measurement

time and is not appropriate for many applications. Since the

WBest packet train sending rate is set to the effective capacity

of the wireless AP, the probability of queue overflow in the

network is determined by the queue size at the AP. Previous

research [22] indicates current wireless AP queue lengths

range from 40 to 300 packets. Thus, WBest simply limits the

packet train to less than 40 packets. To further avoid queue

overflow due to packet pairs, WBest inserts a 10 millisecond

gap between pairs to reduce the packet pair probing rate during

capacity estimation.

As discussed in [1], [12], the ability for crossing and

contending traffic to interfere with packet dispersion de-

pends on the relative size of the probe packets versus cross-

ing/contending packets. However, to effectively estimate band-

width, probing packet size must be close to the packet size

of the application using the bandwidth estimator. Thus, using

high bitrate video streaming as a motivating example of an

application that can benefit from bandwidth estimation, 1500

bytes is used as our probe packet size.

D. Error Detection

Packet loss observed at a wireless receiver may be attributed

to either wireless losses or congestion losses (queue overflow).

The WBest error correction adjusts for wireless losses. How-

ever, while WBest controls the probing traffic sending rate

to avoid queue overflow, large amounts of crossing traffic

and contending traffic may still produce queue losses that

can cause an over-estimate of available bandwidth. In most

cases, one can assume that any queuing loss is due to a

saturated wireless link with no available bandwidth. However,

to guard against queue overflow at an upstream router, Loss

Discrimination Algorithms (LDA), such as [23], [24] could be

added to WBest to distinguish congestion loss from wireless

loss.

Another potential source of estimation error comes from last

hop probe packet compression. System factors, such as high

CPU load at the wireless clients and user-level timestamps [20]



may cause two or more packets to have very close arrival

timestamps. Last hop compression can result in recorded

arrival rates that are higher than the effective capacity. For

example, our measurements show the minimum timestamp

from the user level timer is about 2.3 µs. This results in a

dispersion rate over 5000 Mbps for a probe packet size of 1500

bytes. Thus, to reduce the error due to last hop compression,

when the received timestamp yields a higher rate than the

actual sending rate, WBest uses the actual sending rate instead

of the dispersion rate to compute available bandwidth.

III. EXPERIMENTS

WBest is implemented2 in Linux and evaluated by varying

network conditions in an IEEE 802.11 wireless testbed. As

shown in Figure 1, the wireless testbed consists of an applica-

tion server that performs the estimation (wbestserver), a traffic

server (tgenserver), a wireless AP and three clients (Client A,

B and C). The AP in the testbed is a Cisco Air-AP1121G3

with IEEE 802.11b/g mode. Both servers are PCs with P4 3.0

GHz CPUs and 512 MBytes RAM and the three clients are

PCs with P4 2.8 GHz CPUs with 512 MBytes RAM. All the

testbed PCs run SUSE4 9.3 with Linux kernel version 2.6.11.

The servers connect to the AP with a wired 100 Mbps LAN,

and the clients connect to the AP with IEEE 802.11b/g WLAN

using Allnet5 ALL0271 54 Mbps wireless PCI card with a

prism GT chipset.6

For performance comparison, three popular and available

bandwidth estimation tools were selected: IGI/PTR v2.0,

pathChirp v2.4.1 and pathload v1.3.2. For the experimental

runs, the four tools are run sequentially to estimate the

downstream available bandwidth from wbestserver to client

A. While all the tools were setup using their default configu-

ration, to provide a fair performance comparison, the following

methodology was used to run and summarize the estimation

results. Although IGI/PTR converges with two results, the

PTR results are used as the author suggests. Since pathload

converges with a range of available bandwidths, the median

of the range is used for comparison. During the evaluation,

some pathload runs never converge under particular wireless

channel conditions. These runs were halted if they fail to

converge in 100 seconds which is the upper limit of normal

convergence time for pathload. Since pathChirp is designed as

a continuous monitoring tool without an explicit convergence

policy, convergence follows the author’s method described

in [7] whereby the difference between the 90th and 10th

percentiles of the estimates are computed and convergence is

defined when the difference is less than 1/5 7 of the available

bandwidth (approximately 6 Mbps in our testbed).

To evaluate accuracy, the true available bandwidth of the

wireless network under different configurations is needed –

2WBest source code can be download from http://perform.wpi.edu/tools
3http://www.cisco.com/en/US/products/hw/wireless/ps4570/index.html
4http://www.novell.com/linux/
5http://www.allnet-usa.com/
6http://www.conexant.com/products/entry.jsp?id=885
7This ratio is computed from the evaluation setup in [7]

referred to here as the ground truth. Since determining ground

truth during dynamic WLAN conditions is difficult, the ground

truth of the available bandwidth is approximated by the down-

stream throughput of a single saturated CBR UDP flow with

a packet size of the Maximum Transmission Unit (MTU) for

each case tested. However, due to the elastic nature of the TCP

sliding window mechanism, for cases with TCP crossing and

contending traffic, ground truth for the available bandwidth in

the wireless network is zero. Each evaluation consists of back-

to-back runs employing four bandwidth estimation tools and

one downstream CBR traffic. For all cases with crossing or

contending traffic, the estimations start five seconds after the

background traffic starts to let the system stabilize. Similarly,

there is a five second delay between the end of one tool and

the start of the next to allow background traffic to stabilize.

Table I itemizes the fourteen experimental cases. The base

configuration, case 0, has no contending or crossing traffic and

no induced changes in wireless conditions. Cases 1-12 include

a variety of crossing and contending traffic situations provided

by UDP and TCP traffic generators residing on client B, client

C and tgenserver. The Multi-Generator Toolset8 (mgen) v4.2b6

and iperf9 v2.0.2 are used to generate UDP and TCP traffic,

respectively. For case 13, wireless rate adaptation is induced

by removing the antenna of a wireless client and reducing the

wireless AP’s sending power and receiving antenna gain. With

a client received signal strength indicator (RSSI) between -70

dbm and -74 dbm, the wireless transmission rate ranged from

1 to 48 Mbps. Figure 4 shows one actual rate adaptation case

measured with a wireless sniffer.10 This rate adaptation case

results in 8% wireless layer retries for both the AP and the

client.

TABLE I
EVALUATION CASES FOR EXPERIMENTS.

Case Crossing Traffic Contending Traffic

0 None None

1 Client B: UDP 4.6 Mbps None

2 None Client B: UDP 4.6 Mbps

3 Client B: TCP None

4 None Client B: TCP

5 Client B: UDP 2.3 Mbps None
Client C: UDP 2.3 Mbps

6 None Client B: UDP 2.3 Mbps
Client C: UDP 2.3 Mbps

7 Client B: TCP None
Client C: TCP

8 None Client B: TCP
Client C: TCP

9 Client B: UDP 2.3 Mbps Client C: UDP 2.3 Mbps

10 Client B: TCP Client C: TCP

11 Client B: UDP 2.3 Mbps Client C: TCP

12 Client B: TCP Client C: UDP 2.3 Mbps

13 Case 0 with rate adaptation

Each of the fourteen cases were tested 30 times with

8http://pf.itd.nrl.navy.mil/mgen/
9http://dast.nlanr.net/Projects/Iperf/
10http://perform.wpi.edu/tools/



0

10

20

30

40

50

0 20 40 60 80 100

D
a

ta
 R

a
te

 (
M

b
p

s
)

Time (Sec)

Fig. 4. Rate adaptation Behavior.

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50

E
ff

e
c
ti
v
e

 C
a

p
a

c
it
y
 E

rr
o

r 
(f

ra
c
ti
o

n
)

Number of Packet Pairs

No traffic
Crossing

Contending
Rate adaptation

Fig. 5. Analysis of Number of Packet Pairs.

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50

A
v
a

ila
b

le
 B

a
n

d
w

id
th

 E
rr

o
r 

(f
ra

c
ti
o

n
)

Number of Packets in Packet Train

No traffic
Crossing

Contending
Rate adaptation

Fig. 6. Analysis of Length of Packet Train.

the median and quartiles reported for all runs. To ensure

comparability across different runs, the RSSI range for all

wireless clients is between -38 dbm and -42 dbm, and all

clients were shown to have the same maximum throughput

of about 29 Mbps. To mitigate interference from co-existing

campus wireless networks, all experiments were run in our

wireless streaming multimedia lab11 which was painted with

an additive12 to reduce radio transmissions going through the

walls. Furthermore, all the experiments were conducted after

midnight during the WPI summer break when most campus

wireless network is assumed to be in an idle state.

Figure 5 shows the relationship between effective capacity

error (modeled in [25]) and the number of packet pairs sent for

four typical wireless cases: idle, crossing traffic, contending

traffic, and rate adaptation. The real effective capacity is

defined as the median of the 90 packet pair run. As the

number of packet pairs sent increases, the error decreases.

Rate adaptation requires the highest number of packet pairs

to produce reasonably accurate measurements. To provide

accuracy for all the cases while reducing the impact on the

available bandwidth estimations, 30 packet pairs were used in

all the WBest evaluations. Similarly, from Figure 6, 30 was

chosen as the length of the packet train for all the WBest

experiments.

IV. ANALYSIS

For each of the fourteen test cases, Table II lists the median

estimated available bandwidth for 30 evaluations runs of each

of the four bandwidth estimation tools. The ‘ground truth’

column gives the available bandwidth measured as CBR UDP

throughput with 1500-byte packets or set to zero when a test

includes a TCP bulk transfer. For Case 6, UDP traffic from

two contending clients yields sufficient WLAN congestion to

cause the AP queue to overflow. This mistakenly triggers rate

adaptation for the wireless clients. While rate adaptation is a

consequence of high wireless contention, the saturated CBR

throughput of 9.29 Mbps is not ground truth because higher

throughput can be obtained by using a lower offered CBR rate.

Thus, ground truth is set to unknown for case 6. For all other

cases in Table II, WBest generally provides the most accurate

estimation of the available bandwidth compared to the other

three bandwidth estimation techniques.

11http://perform.wpi.edu/wsml/
12http://www.forcefieldwireless.com/defendairadditive.html

Intrusiveness is the total bytes sent by each tool during

an estimation and the convergence time is the time spent by

each tool to converge to a bandwidth estimation result in each

estimation. Table III gives the median of recorded intrusive-

ness and convergence time over 30 runs for the fourteen tests.

WBest yields the lowest intrusiveness and convergence time

in every case.

TABLE II
ESTIMATED AVAILABLE BANDWIDTH (MEDIAN, IN MBPS).

# IGI/PTR PathChirp Pathload WBest Ground truth

0 8.11 30.15 6.78 28.47 28.94

1 8.74 28.89 6.81 23.24 24.39

2 10.06 27.59 6.91 15.76 20.52

3 1.92 5.00 1.95 1.01 0

4 1.12 14.50 1.69 0.00 0

5 9.99 26.91 7.07 22.87 24.50

6 9.62 26.98 6.78 14.56 -

7 1.48 5.00 1.10 0.00 0

8 0.66 11.97 0.92 0.00 0

9 6.89 25.60 6.47 13.26 16.26

10 0.67 5.72 0.99 0.00 0

11 0.59 9.95 0.48 0.00 0

12 0.77 12.73 1.06 0.00 0

13 5.18 16.79 5.99 13.99 15.26

TABLE III
INTRUSIVENESS (MEDIAN, IN MBYTES) AND CONVERGENCE TIME

(MEDIAN, IN SECONDS).

IGI/PTR PathChirp Pathload WBest

# intru time intru time intru time intru time

0 0.56 1.55 0.45 17.43 1.18 14.88 0.13 0.41

1 0.56 1.42 0.45 17.58 1.55 20.22 0.13 0.42

2 0.47 1.29 0.45 17.62 1.53 17.04 0.13 0.42

3 2.54 17.21 0.46 17.24 1.22 42.06 0.13 0.67

4 1.51 7.86 0.45 17.22 0.86 32.16 0.13 0.44

5 0.56 1.35 0.45 17.68 1.67 19.24 0.13 0.42

6 0.47 1.30 0.45 17.79 1.66 17.33 0.13 0.42

7 3.11 26.69 0.46 18.41 0.95 53.90 0.13 0.70

8 1.98 19.57 0.46 17.89 0.98 55.02 0.13 0.51

9 0.66 1.60 0.45 18.10 1.57 18.42 0.13 0.42

10 2.17 23.30 0.46 17.15 1.24 80.86 0.13 0.98

11 1.79 28.37 0.49 18.27 0.53 30.24 0.13 0.59

12 2.17 15.59 0.46 17.45 1.46 74.94 0.13 0.44

13 0.66 1.86 0.45 17.48 1.66 23.73 0.13 0.42

Due to space limitations, brief analysis is provided for only

four cases from the set of fourteen experiments: case 0 - idle



channel, case 1 - crossing traffic, case 2 - contending traffic,

and case 13 - rate adaptation; [25] provides a complete analysis

of all the test results.

When the wireless channel is idle (case 0), available band-

width and effective capacity are the same. With a measured

ground truth throughput of 28.94 Mbps, the available band-

width/effective capacity is close to the maximum throughput

of 31.4 Mbps listed by Cisco.13 Table II shows that IGI/PTR

and pathload significantly under-estimate available bandwidth.

A possible reason is that the probing packet sizes used by

these two tools are small – IGI/PTR uses a 500 byte packet

and pathload uses a 200 byte packet. The overhead caused by

the sizes of probing packets has been shown to be larger in

wireless networks than in wired networks [3], [13]. Hence,

the maximum throughput will be lower for these smaller

packet sizes. Allowing for reduced maximum throughput of

19.2 Mbps and 11.4 Mbps with 500 byte and 200 byte probe

packets, respectively, IGI/PTR and pathload still significantly

under-estimate available bandwidth. PathChirp and WBest

get an available bandwidth estimate close to the ground

truth. However, pathChirp tends to overestimate the available

bandwidth with a large estimation variance [25]. Pathload

and pathChirp both have long convergence times caused by a

search algorithm that adapts the probing rate.

Table III provides intrusiveness and convergence times

for case 1 when there is one UDP crossing flow. WBest

performs better than the other tools in this case, with low

intrusiveness and convergence times and accurate estimated

available bandwidth results. The under-estimation caused by

the smaller packet sizes used in IGI/PTR and pathload shows

that they are insensitive to crossing traffic, as well. Pathload,

in particular, has large intrusiveness and convergence times.

For case 2 in Table II and Table III, WBest still performs

well in the presence of contending traffic. Comparing case 2

with case 0 and 1, IGI/PTR and pathload are insensitive to

contending traffic.

With wireless rate adaptation in case 13, where packet

transmission rate and channel access delay vary as in Fig-

ure 4, WBest provides the closest available bandwidth estimate

below the ground truth. Remember, it is much better for

applications such as multimedia streaming to receive an under-

estimate of available bandwidth than it is to receive an over-

estimate of available bandwidth.

The estimation error of each case is computed [25] and the

distributions of error versus the convergence time and error

versus intrusiveness are plotted in Figure 7 and 8, respectively.

In these figures, on the x-axis, a negative error represents

an under-estimation and a positive error represents an over-

estimation; and on the y-axis, lower numbers are better. Thus,

good, fast estimates lie in the bottom center of the two figures.

IGI/PTR greatly under-estimates available bandwidth with

UDP crossing or contending traffic and even when the channel

is idle. IGI/PTR has widely variable convergence times and

intrusiveness, varying by a factor of 20 times for the different

13Cisco AVVID Wireless LAN Design, http://www.cisco.com
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Fig. 8. Summary of All Experiments – Intrusiveness versus Error.

cases. PathChirp over-estimates available bandwidth in all

cases. PathChirp has a consistent convergence time of around

17 seconds and a consistent intrusiveness of about 400 KBytes.

Pathload greatly under-estimates available bandwidth in most

cases including: idle channel, UDP crossing or contending

traffic, and rate adaptation. Pathload has the longest overall

convergence time, taking up to 85 seconds in some cases

and fails to converge in 100 seconds for some crossing and

contending cases. WBest provides the most accurate estima-

tions compared with these other tools. In most cases, WBest

converges in less than half a second with a nearly constant

intrusiveness of 130 KBytes.

For wireless networks, IGI/PTR, pathChirp and pathload

accuracy is poor because they rely on delay changes to

measure available bandwidth. Unfortunately, queuing delay

is not the only source of wireless delay. Contention, MAC

layer retries and rate adaptation also introduce delay changes

to wireless links that disturb the searching algorithms, yield

inaccurate results and often increase the convergence times

and intrusiveness. Moreover, with higher packet loss rates in

WLANs, many estimation techniques discard probes impacted

by loss to improve accuracy. This further increases conver-

gence time and intrusiveness.

WBest estimates the available bandwidth without using

searching algorithms which means a low, consistent conver-



gence time and intrusiveness. Furthermore, rather than relying

on delay measurements to detect the available bandwidth,

WBest detects the available bandwidth in terms of fraction of

the effective capacity by measuring relative changes in packet

dispersion between its two stages. This makes WBest robust

even when packet dispersion is affected by wireless conditions.

V. CONCLUSION

This paper presents WBest, a new bandwidth estimation

tool for wireless networks, designed to provide accurate band-

width estimation without excessively intruding on existing

traffic. By utilizing the packet dispersion model [21], WBest

avoids depending upon search algorithms to measure available

bandwidth. Instead, WBest statistically measures the relative

available fraction of the effective capacity, mitigating estima-

tion delay and the effects of wireless channel errors. WBest

is compared with other available bandwidth estimation tools

in a wireless testbed under a variety of wireless network

conditions.

From experiments on a wireless testbed, a few conclusions

can be drawn. First, current bandwidth estimation tools are

significantly impacted by wireless network conditions, such

as contention from other traffic and rate adaptation. This

yields inaccurate estimates, high and varying convergence

times, and intrusiveness. Thus, current tools are generally

impractical for applications such as streaming multimedia that

require fast, accurate and non-intrusive bandwidth estimates

even when the last hop is over a WLAN. Second, WBest

consistently provides fast available bandwidth estimation, with

generally more accurate estimates and lower intrusiveness over

all conditions evaluated.

Our ongoing work includes applying WBest to multimedia

streaming applications to improve media scaling performance

and playout buffer optimization in wireless networks. Other

possible future work includes the improvement to WBest

evaluations under more complex wireless conditions, including

experiments that deliberately cause pre-dispersion and pre-

compression to validate the WBest model and to enhance

WBest robustness during AP queue overflow. A more philo-

sophical future work is to develop and study a new metric

to replace available bandwidth when TCP flows are involved.

This new metric would involve the ability for a new TCP flow

to take its fair share of capacity away from existing crossing

and contending TCP flows which the current definition of

available bandwidth does not allow.
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