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Abstract—The internet was designed with host-oriented net-
working applications such as file transfer and remote login.
However, recent internet statistics show that content-oriented
traffic (e.g. web pages, multimedia clips) becomes more and
more dominant. Even though content-oriented networking has
received increasing attention, there have been few comprehensive
and quantitative studies on how to realize a content-oriented
networking framework. In this paper, we focus on the operational
issues of the new networking framework: (i) how to locate
contents, (ii) how to deliver contents, and (iii) how to cache
contents. There are two major infrastructure alternatives in
substantiating these mechanisms: a tree and a distributed hash
table (DHT). We carry out comprehensive simulation experiments
to compare these alternatives in terms of content transfer latency,
cache effectiveness, and failure resilience.

I. I NTRODUCTION

The Internet has evolved from a small-scale academic
testbed into a crucial social infrastructure. For 40 years since
its inception, the Internet has tried to accommodate new and
unanticipated requirements. However, its rigid design based
on TCP/IP, internet service providers’ exclusive control of
networks and so on have ossified the Internet [6]. One of
the Internet design principles that hinders the current Internet
evolution is the host-oriented communications. That is, the
early stage Internet applications, such as remote login, file
transfer, and e-mail, focused strictly on host-to-host commu-
nications, where an end user explicitly directs his/her host to
communicate with another host.

Over the past several years, however, the vast majority
of Internet usage has become data retrieval and service ac-
cess [23], [3], [16] (i.e.,data-orientedusage), where an end
user cares about contents1 but is oblivious to or less aware of
the host (or its location) [16]. For example, (i) many people
often use search engines like Google from which they jump to
the data or service page irrespective of the location in which
the desired data/service resides, (ii) web intermediaries such
as web caches and content delivery networks (CDNs) [18]
transparently redirect web clients to a nearby copy of the
requested data without contacting the original Web server, and
(iii) peer-to-peer (P2P) applications enable users to search and

1In this paper, we use “data” and “contents” almost interchangeably. In the
literature, “contents” often have more semantics than “data”.

retrieve the data without making them know the location or
identity of the host.

The common viable contribution of search engines, web
caching, CDNs, and P2P applications is that they all seek
to support data-oriented applications. They improve the data
availability, ease-of-use, performance, and scalability of ap-
plications by overcoming the limitations of the host-oriented
principles of the legacy Internet by manipulating DNS naming
and/or name resolution. In other words, they decouple content
files from their locations (or hosts) using various techniques
such as caching, replication with transparent request redirec-
tion, maintenance of a searching infrastructure, etc. [16].

Recently, lessons from these several application/service-
dependent ad-hoc solutions, have motivated “clean-slate” ef-
forts [1], [16], [10], termed data-oriented or content-centric
networking, which strive to redesign the host-oriented Internet
to accommodate more and more dominant data-oriented Inter-
net usage at the architectural level. The essence of content-
oriented networking lies in decoupling contents from the
service host/location not at application levels, but at net-
working levels. That is, content-oriented networking shifts
the focus from transmitting data between two hosts (or their
locations) to delivering data via a content identifier2. The
content-oriented networking architecture is expected to (i) free
application/service developers from re-inventing the necessary
mechanisms, and (ii) provide scalable and efficient delivery
of the requested contents. However, there have been few stud-
ies that how to substantiate the content-oriented networking
infrastructure in terms of performance metrics.

In order to address the operational issues that are missing
in the recent architectural studies on content-oriented net-
working in the literature, this paper explores two alternatives
for content-oriented network infrastructures: a hierarchical
tree and a flat distributed hash table (DHT). Whether we
choose a tree or a DHT for the infrastructure affects almost
every aspect of network operations: name resolution, content
delivery, caching, and so on. We will compare these two
alternatives in terms of scalability, robustness, transfer latency
thoroughly.

2As an example, the Data-Oriented Network Architecture (DONA) [16]
replaces endpoint-based DNS by a new name resolution mechanism using
flat, certifying names and name-based anycast primitives above the IP layer.
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Fig. 1. An illustration of a content-oriented network

The remainder of this paper is organized as follows. Sec-
tion II introduces content-oriented networking as well as
its architectural design criteria and alternatives. Section III
presents our experimental settings followed by the simulation
results. We discuss related work in Section IV. Section V
gives concluding remarks.

II. CONTENT-ORIENTED NETWORKING

The content-oriented networkis a network which operates
under the data-oriented paradigm3. As mentioned before,
the host-oriented naming in the legacy internet is shifted
to the data-oriented one in content-oriented network. Thus,
the content-oriented networking framework should have four
building blocks: (i) how to identify the contents “in” the
network (which is naming), (ii) how to locate contents (which
is name resolution), (iii) how to deliver the contents, and (iv)
how to cache contents. In this paper, we mainly focus on the
last three issues.

The content-oriented networking framework necessitates
a new naming scheme for contents. We assume the each
content file has its own uniqueContent Identifier(CID). As
discussed in [16], [1], once decided, the CID should not be
changed (which is persistence), and the CID should be able
to authenticate the content publisher (which is authenticity)
for the content-oriented network. For our evaluation, we use
a flat CID (same as DONA) in order to concentrate on the
performance of content-oriented networking alternatives. To
simplify the CON architecture to be evaluated, we assume
that a CID management system (e.g. [25], [12]) has already
been established to assign or to find out CIDs for content files.

Figure 1 illustrates a content-oriented network (CON),
which consists of three kinds of entities: (i) aCON node4,
(ii) a caching server5, and (iii) an end host which publishes

3Many studies (e.g. [16], [1], [7]) have used their own terminology to
represent this paradigm such asdata-oriented, content-based, and content-
centric. In this paper, these terms are used interchangeably, but we mostly
use a termcontent-oriented.

4A CON nodeis shortly called anode in this paper.
5A CON node may or may not have its caching server. In the evaluation

section, we assume that every CON node is associated with its own caching
server.

or subscribes contents.CON nodes(or shortly, nodes) form
an overlay network6 for end hosts. Acaching serverselec-
tively (and often temporarily) stores content files which are
forwarded via its associated CON node. If a cache hit happens,
the associated CON node directly forwards the content file on
behalf of the publisher.

End hosts perform two kinds of functions:publishingand
subscribing. A publisherhas contents to be distributed, and a
subscriber retrieves contents from the content-oriented net-
work. We denote a CON node which serves an end-host
directly by anedge node. For instance, in Figure 1, nodeA is
the edge node of publisherP . An end-host knows the location
of its edge node by some measures as similar to local DNS
server configuration. If in-network caching is enabled, not only
the publisher, but also a caching server can store contents. We
collectively call themdata holders.

A. Name Resolution

There are mainly two name resolution mechanisms in the
context of content-oriented networking:lookup-by-nameand
route-by-name. When the CID is given, “lookup-by-name”
refers to a process to find out an IP address of the publisher
(which is similar to DNS in the host-oriented Internet). Mean-
while, “route-by-name” means how to locate a corresponding
content file when the CID is given (e.g. [16], [13]). We will
now elaborate on the latter, which is appropriate in content-
oriented networking since it decouples the content and its
location of the content. For example, the decoupled principle
naturally supports anycasting from a subscriber to one of data
holders.

Due to the proliferation of large scale distributed sys-
tems, there are a number of studies on the publish/subscribe
communication paradigm (e.g. [11] contains a good survey.).
The asynchronous and location-oblivious nature of the pub-
lish/subscribe models is suitable for content-oriented network-
ing. That is, we can remove the spatial and temporal restric-
tions of the current Internet [11], [10]. There are two primitives
in the publish/subscribe models:publishandsubscribe. Other
content-oriented networking proposals (e.g. P2P applications)
use the same primitives. For example, DONA usesREGISTER
andFIND primitives for name resolution, which are equivalent
to publishandsubscribeprimitives, respectively.

In substantiating these two primitives, there are two major
alternatives in choosing the underlying infrastructure: a tree
and a DHT. In DONA, resolution handlers (RHs)7 form a
tree for the name resolution structure. Even though the tree
topology can resemble the relationship between autonomous
systems (e.g. provider/customer/peer), it may have problems as
follows. The root RH should maintain the location information
for every content in the system, but the names (or CIDs) in
general cannot be aggregated due to flat CID namespace, i.e.
the routing scalabilityproblem. Moreover, if we ignore peer
links, every link or node in the overlay tree is the single point

6Considering incremental deployment, CON nodes should have overlay
connections among one another on top of the current IP-based network.

7Resolution handlers in DONA correspond to CON nodes in the paper.
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Fig. 2. Resolution architecture based on Chord whose namespace size is 8

of failure. If an RH fails (e.g. due to system failure or DoS
attack), the tree is partitioned, which implies therobustness
problem.

Another alternative that can be used in the name resolution
structure is a flat distributed hash table (DHT). First of all, the
DHT-based approach lessens the routing scalability problem
because of its flatness. For example, assuming Chord [24]
is the underlying publish/subscribe model, every CON node
needs to know only a small number of nodes (which is the
size of the finger table8). As for the robustness problem, unlike
the tree, each node in the DHT has as many links as the finger
table size [19].

The major difference between tree-based and DHT-based
resolution infrastructures is how to forward a publish/subscribe
message. When an end host publishes a content file in a tree,
the publish message is propagated from the host’s associated
node (or edge node) to the root node. During this propagation,
each node creates a routing table entry that maps a CID to
its next-hop node towards the edge node. When an end host
subscribes to a content file, the subscribe message will be
forwarded from its associated edge node to the root node
if no nodes along the path has the corresponding entry. The
root who has routing information of all contents will forward
the subscribe message to the edge node of the publisher.
On the other hand, each node in a DHT node forwards the
publish or subscribe message to the node whose position in
the namespace is the closest predecessor of the hashed value
of the CID, which is iterated until the edge node is located.
Figure 2 illustrates how a subscribe message for content whose
CID is A is processed. Here,S is the subscriber that wishes
to retrieve the content file of CIDA, P is the publisher, and
node7 holds the location of the edge node (which is node3)
of P .

B. In-Network Caching

By default, we assume that caching is enabled in each
CON node, even though non-caching is a possible option.
With caching, we can improve the performance of the content
delivery by placing the contents closer to subscribers, which
comes from the same rationale behind CDNs (e.g. [18], [5]).
The usefulness of caching is proven by the success of CDNs

8In Chord [24], the authors present that the size of finger table islog2N ,
whereN is the namespace size in the system.

in the internet industry. As mentioned in [19], [15], caching
is the key factor on the performance of resolution system.
Hence, we employ in-network caching as a basic component
of content-oriented networking9.

In our evaluation, each caching server maintains its cache
based on the Least Recently/Frequently Used (LRFU) pol-
icy [17], which combines the Least Recently Used policy with
the Least Frequently Used. The caching mechanism fills the
cache starting from the contents with the highest popularity
values:

Fi =
Ni

2
Ti

Tinterval

(1)

whereFi is the popularity value for content filei, Ni is the
number of accesses for contenti, Ti is the elapsed time since
content file i is cached, andTinterval halves the popularity
value in order to reflect the pass of time. Everytime a caching
server is requested from a CON node to cache a content file
and the storage is exceeded, it replaces the contents with the
lowest popularity value(s). Equation (1) shows the popularity
estimate function, which is a simplified version of LRFU [17].
Sometimes, when caching requests from the node becomes
frequent, recently stored content files may not have enough
time to increase its access count. To prevent this, we introduce
a guard time; a content filei whoseTi value is less thanTguard

will not be replaced.

C. Delivery Modes

How to deliver contents from a publisher to a subscriber
also influences on the overall performance of the content-
oriented networking. There are three deliver modes:end-to-
end, first-and-last, and hop-by-hop. End-to-end mode refers
to the direct delivery from a publisher to a subscriber. In
end-to-end mode, a content file is delivered faster than other
modes since no other nodes intervene or cache the content
file, if not considering the cache effect. In hop-by-hop mode,
a content file is relayed by all the CON nodes that have
participated in the name resolution process. Note that the
content file is passed in the opposite direction along the path
over which the subscribe message travels. Therefore, it takes
the longest time to deliver the content file; however, the file
can be cached in some intermediate nodes (more precisely,
the associated caching servers) along the path. The first-and-
last mode compromises these two approaches by making only
the edge nodes of the publisher and the subscriber relay the
contents.

III. E VALUATION

We first describe how we configure simulation experiments.
Then we compare the performance of two network infrastruc-
tures (i.e., the tree and the DHT). We also investigate the
impact of caching on the overall performance. There are three

9Obviously, when an autonomous system has multiple caching servers, we
can think of coordinated control of caching among them instead of local
caching policy. However, in this paper, we assume that each caching server
has its own caching policy.



4

TABLE I
SYSTEM PARAMETERS OF EXPERIMENTS

Common settings

Number of IP routers 330

Number of nodes 100

Number of published contents 4000

Subscription arrival rate (1/s) 0.5

Cache size of a node 5Gbytes

Tinterval of cache 3600s

Tguard of cache 1800s

Tree-specific settings

Number of children of a node 4

DHT-specific settings

Size of namespace 4096

Size of DHT finger table 12

modes in content delivery from a publisher to a subscriber.
Last but not the least, we explore the performance differences
among three delivery modes.

A. Experiment setup

We use ns-2 to evaluate two networking alternatives: a
hierarchical tree and a flat DHT. For the purposes of fair
comparison, we use the same seed for pseudo random number
generation. That is, both the tree and the DHT are tested
with the same dataset; i.e., the same CON node subscribes to
the same content at the same instance. The end-hosts, which
actually publishes or subscribes content files, are assumed to
be collocated with CON nodes for simplification. In other
words, we assume that the delay between an end-host and
its collocated CON node is negligible. There are two options
in simulation experiments: caching and non-caching. Caching
is enabled by default; we assume that each CON node is
collocated with its caching server. Also, there are a few options
in content delivery modes as mentioned earlier. When a located
file is delivered to the subscriber, we take the hop-by-hop
delivery mode by default. Thus, unless otherwise stated, every
scenario is tested with caching and in hop-by-hop mode.

In every simulation run for the tree or the DHT, there is
an initialization phase. In the initialization phase, each CON
node sets up connections with one another. For instance, a
parent should have links to its child nodes in the tree, and
a node in the DHT should first have links to its successor
and predecessor and then populate its finger table entries.
After the overlay network setup, we register or publish all the
contents to the network. Performance metrics are measured
only after the initialization phase; the initialization phase is
over at simulation time 36,000 seconds. The overlay network
is set up on top of a physical network topology, which emulates
the real network topology.

We use the TCP protocol in transmitting content files
between CON nodes. Most of TCP parameters in ns-2 are left
unchanged, except that the maximum congestion window size
is set to 3 MBytes. This may be deemed impractical at this
moment. However, considering the ever increasing speed of

TABLE II
CONTENT TYPES AND SUBTYPES IN PUBLICATION

Content Type Sub-type Size (MB) Portion (%)

VIDEO Movie 690 3.80%

TV 92 9.31%

Animation 71 0.27%

Porno 72 11.63%

AUDIO Music 59 23.96%

Audio book 71 1.04%

SOFTWARE Application 196 6.55%

Game 668 6.48%

Unknown 56 11.97%

WEB HTTP 3.29 25.00%

wired networks, we believe this is a feasible value in the near
future. The default system parameters used to our experiments
are given in Table I. By default, the results in this section are
obtained after 500,000 seconds in simulation time.

1) Traffic Generation: In order to generate the realistic
traffic, we first study the recent measurement reports on the
real internet traffic. There are four issues in simulating diverse
internet contents: types of contents, file size per content type,
number of files per content type, and popularity distribution
of files per content type. We generate the traffic according
to the real traffic measurements in Ipoque [23] with some
simplifications. Note that we use slightly different tactics
between publishing contents and subscribing contents.

In contents publication, we classify the contents into four
types, and each type is subclassified into subtypes as shown in
Table II, which is based on Ipoque reports in 2006 and 200710.
We consider these four types of contents: video, web, audio,
and software. Except for the web traffic, we use the fixed file
size for four types and their subtypes from the Ipoque reports.
As for the web contents, we analyze a campus network traffic
and obtain the size distribution of web content files, which
is used in our simulation. We publish a sufficient number of
contents for each type, 1000 contents, to prevent the simulation
from generating biased results. The portion field in Table II is
the ratio of the number of files of a particular content subtype
to the whole number of contents.

In contents subscription, we again consider the four content
types from Ipoque reports; the volume ratio among video,
audio, software, and web contents are 68%, 9%, 9%, and
14%, respectively. As the traffic volume of each content type
is approximated by multiplying the number of subscription
requests and the average file size, we can calculate the ratio
of the number of subscription requests among the four content
types. In each content type, the popularity of a particular
content file is determined by the widely accepted the Zipf
distribution [26]. The parameter of the Zipf distribution is set
to 1.0 considering [21].

2) Network Topology:Heckman et al. proposed a method to
emulate the existing network topologies of DFN and AT&T by

10The reports are available at http://www.ipoque.com/.
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Fig. 3. DFN-like topology with 330 routers

the GT-ITM [2] topology generator [14]. Each generated topol-
ogy consists of transit networks and stub networks mostly.
Based on their study, we generate the physical transit-stub
topology that emulates the real network, DFN11. Each link has
10Gbps bandwidth capacity. Our physical network topology,
which consists of 330 IP routers, is depicted in Figure 3.
Among those 330 routers, we randomly select 100 CON nodes
from the stub network routers to form the content overlay
network in both a tree and a DHT. The reason we exclude
the routers in transit networks in selecting CON nodes is that
a transit network router typically should forward much more
data than a stub network one. Thus, we assume stub network
routers are more eligible to be CON nodes, which should
perform name resolution and caching as well.

Once the overlay nodes are chosen, the DHT is formed
from the overlay nodes by the construction mechanism of
Chord [24]. In the case of the tree, we first select the root
node and then its child nodes randomly from candidate nodes
and so on in a top-down manner. However, in tree formation,
we have to consider the maximum number of children of each
node. To fairly compare the tree with the DHT, we make the
worst-case overlay hop count of the tree to be equivalent to
that of DHT. The worst-case overlay hop count of the DHT
is 8 due to 4000 content files and 100 CON nodes. That is,
the whole namespace is212 to contain 4000 contents and each
node covers212/100 namespace on the average. So, a node
needs to travel 7 overlay hops to go to the node that keeps
the location of the edge node of the target contents. We add
one overlay hop to go to the edge node that actually holds
the location of the publisher on the DHT. Thus, the maximum
depth of the tree should be four when we consider a case in
which a leaf node in the left subtree of the root subscribes
to a file in another leaf node in the right subtree of the root.
To make a balanced tree, the maximum child nodes of each
node in a tree is to be four. Note that a destination node of a
subscribe message in the tree is the edge node that holds the
location of the publisher; we do not need to add one overlay

11We evaluated the performance of content oriented networking alternatives
with both of DFN and AT&T topologies, but there was no notable difference.
Hence we plot only DFN cases.

hop.

B. Network infrastructures

In this section we evaluate the performance of two net-
working infrastructures in terms of transfer latency, routing
scalability, and robustness.
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1) Transfer latency:Figure 4 plots the average latency to
transfer contents in the two infrastructures as simulation time
goes by. Recall that the evaluation of performance metrics
starts at simulation time 36,000 seconds. The latency peaks
around simulation time 45,641 seconds and then gradually
decreases since in-network caching becomes more and more
effective in both infrastructures. Surprisingly, the latency of
the tree is substantially higher than that of the DHT. Note
that, however, each parent-child link in the tree topology is
randomly selected among 100 nodes in the evaluation. We
also plot the average hop counts of both overlay and physical
paths between the data holder and the subscriber in the tree and
the DHT as shown in Figure 5. For both physical and overlay
paths, the average hop count in the DHT is shorter than that of
the tree. In general, the physical path is proportional to overlay
path since every overlay link is randomly selected between two
CON nodes. Also, when we analyze the average hop count
between an arbitrary pair of nodes in both infrastructures,
the tree suffers from longer (overlay) paths since it has more
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nodes as the depth (or the distance from the root) increases.
That is, for each subscription, a data holder is more likely
to be located at lower depth. As time goes on, the latency
difference diminishes due to in-network caching. Note that
the average hop counts of the overlay paths goes below one
since subscribers may be able to fetch the cached contents
from their associated edge nodes.
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Fig. 6. Transfer latency based on different tree constructions

From Figures 4 and 5, we reach the conclusion that the
DHT infrastructure is better than the tree. However, if the tree
topology is constructed with the information about the under-
lying physical network (i.e., a parent node chooses a child node
from nearby candidate nodes), the tree outperforms the DHT.
Figure 6 shows the transfer latency of the tree with physical
network information (labeled “TREE-INFO”) is significantly
lower than those of the DHT and the tree constructed in a
random fashion. We believe a DHT with the physical network
information will exhibit better performance, too. Throughout
this paper, we evaluate the topology constructed randomly (i.e.,
both the tree and the DHT) to remove the optimization effect
of the information about the physical network.

2) Routing scalability:To investigate the routing scalability
of the two structures, we analyze the size of each node’s
routing table. In the tree, the root should have as many table
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Fig. 7. The average routing table of a tree node increases linearly as the
number of contents increases. The routing table (or finger table) size of every
DHT node is identical and increases logarithmically.

entries as the number of content files. Thus, its routing table
size is the same as the number of contents. When we calculate
the average table size of all the tree nodes (i.e. 100 nodes
comprise a balanced tree with depth 4), it is proportional to the
number of contents. In the DHT, the finger table is the routing
table, and its size is determined by the size of namespace,
which is assumed to be the number of contents here. It is
well known that the finger table increases logarithmically
as the namespace increases. Figure 7 shows the results of
routing table size of the two infrastructures. Note that the DHT
infrastructure scales well with the number of contents.

3) Robustness:In this section, we investigate how much
resilient each infrastructure is despite node failures. We as-
sume that CON nodes fail randomly. A crashed node becomes
available again after a fixed interval, which is set to one hour
in our simulation experiments. One hour downtime simulates
the failure of server systems like web servers and application
servers as collected in [20]. In simulating the node failures,
r is set to a value such that each node is going to fail once
during a simulation run on average. Each run is simulated
for 300,000 seconds in evaluating robustness. We vary the
failure rate from0.1r to 10r, to compare the resilience of
the tree with that of the DHT. When a tree node fails, the
tree is partitioned; no subscribe message can go across the
failed node. Likewise, when a finger table entry in the DHT
relays a subscribe message to a failed node, the corresponding
subscription is deemed as a failure. Furthermore, no Chord
stabilization is performed in the DHT in the experiments for
fair comparison.
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Fig. 8. Robustness of the two infrastructures with caching

Figure 8 shows the success ratio of the subscription requests
in the two infrastructures with caching as the node failure
rate increases. The DHT’s performance gain over the tree is
widened as the failure rate increases. Each DHT node has 12
finger table entries (or links to other nodes) and hence it is less
vulnerable to node failures. On the contrary, as every tree link
is the single point of failure, the tree is much more susceptible
to node crashes. Note that the overall success rate is almost
above 80% due to caching.

Figure 9 plots the success ratio of the two infrastructures
without caching as the node failure rate increases. As there
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Fig. 9. Robustness of the two infrastructures without caching

is no caching, the overall success ratio goes even below 40%
with the high failure rate. On the average, a subscribe message
will go much farther to reach the publisher in this case since
intermediate nodes do not cache contents at all. Hence, a
subscription request is more likely to fail.

C. In-network caching

In this section, we investigate the cache effect in two
scenarios: (i) cache size variation, and (ii) the traffic load (or
the subscription request arrival rate). In addition to the transfer
latency, we use two more performance metrics: cache utility
and cache hit ratio. The cache utility represents how much
of the cache storage is occupied with the cached contents;
for instance, if a caching server whose storage is 5Gbytes
stores 4Gbytes contents at a given instance, the cache utility
of the node is 80%. The hit ratio is the ratio of the subscribe
messages which incur cache hits to all the subscribe messages
generated during an interval. Note that a cache hit happens
when any intermediate node in the tree or the DHT has the
contents to be requested.
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Fig. 10. Cache utility of caching under various storage size

The cache utility and the hit ratio of the two infrastructures
are shown in Figures 10 and 11, respectively. Due to the Zipf
distribution, the popular contents are more frequently retrieved
and cached. Thus, as the cache size increases, it takes more
time to “fill” the cache storage with the contents. The cache
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Fig. 11. Cache hit ratio of caching under various storage size

hit ratio is turned out to be almost independent of both the
cache size and the network infrastructure.
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Fig. 12. Delivery latency of caching under various storage size

Obviously, as the cache size increases, the transfer latency
becomes reduced as shown in Figure 12. Note that the latency
without caching (labeled as “e2e”) is measured in end-to-end
delivery mode since only end-to-end mode is meaningful when
caching is disabled; others are measured in hop-by-hop mode.
Caching is should be enabled for performance; the latency
without caching is more than twice as high as the one with
caching. Also, when the cache storage exceeds 5Gbytes, the
performance gain is marginal observing the latency of the
10Gbytes case. Actually the total volume of all the published
contents in the network is around 480Gbytes. So, the cache
storage in each node is recommended to be around 1% of the
total volume to balance between the cache storage cost and
the transfer latency.

We vary the arrival rate of subscription requests in order
to investigate the impact of the traffic load. Figure 13 shows
that the average transfer latency decreases as the traffic load
increases. The reason is two-fold: (i) the content overlay
network is not overloaded in the tested loads, and (ii) as the
traffic load increases, the cache utility increases faster, so that
the overall latency is decreased. Figure 14 verifies the second
point.

We plot the average latency of four major subtypes (which
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Fig. 13. Average latency of the two infrastructures with caching as traffic
load increases.
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Fig. 14. Cache utility of the two infrastructures with caching as traffic load
increases.
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Fig. 15. Average latency of contents is shown; only major subtypes are
plotted.

are movie, music, application, and HTTP from Table II) as a
bar graph in Figure 15. Note that y axis is drawn in log scale.
The latency differences of large contents (movie and applica-
tion subtypes) between the two infrastructures are wider than
those of small contents. Note that the average latency of appli-
cation contents is higher than that of movie contents despite its
smaller size. As the popularity of application subtype contents
is much lower than others, its cache effect is trivial. The line
graph represents the number of subscribe messages for each

subtype. This reaffirms the importance of in-network caching
in content-oriented networking infrastructures.

D. Delivery modes
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Fig. 16. Average latency in three delivery modes

We compare the performance of three delivery modes: end-
to-end, first-and-last, and hop-by-hop. Figure 16 shows the
average latency to deliver contents in three modes. Note that
the the average latency of the two infrastructures is the same
in both end-to-end and first-and-last modes. The reason is
that content files in end-to-end and first-and-last modes are
delivered over the same physical path. Obviously, the average
latency of end-to-end mode is the highest among three modes
due to no caching. The average latency of hop-by-hop mode is
higher than that of first-and-last mode in both infrastructures
since contents will be relayed faster in first-and-last mode.

IV. RELATED WORK

Solutions that have the flavor of content-oriented networking
but comply with the current Internet have been or used to be
popular. For example, web caching technologies used to pro-
vide transparent web services to the end users by processing
the requests by looking up local copies [4]. More recently,
CDNs [18] manipulate the DNS system to forward the content
requests to a close server that has the web contents. They seem
to be similar to content-oriented networking in the sense that
they improves the system performance by placing the contents
closer to end users. However, while the CDN technologies are
host-oriented and hence cannot decouple the location of the
contents and the contents itself.

One of the recently prevalent applications in the Internet
is P2P applications such as BitTorrent [8]. P2P applications
provide the content-oriented service; we can retrieve the con-
tents from P2P without any information of hosts that hold the
contents. Unfortunately, however, since the P2P applications
do not substantiate content-oriented networking at the architec-
tural level. They provide no cross-application abstraction for
the content-oriented networking; each P2P application should
have its own identifier space, its own service primitives, and
its own networking structure, which cannot be shared by other
P2P applications.
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Carzaniga et al. propose a routing scheme for content-
based networking (CBCB) [7]. With adoption of the semantic-
aware naming, the CBCB routing mechanism determines the
destination of a message not by host-oriented addresses, but by
predicates. The nodes in CBCB usepredicates, each of which
has the form of an attribute-value pair to represent contents
to subscribe. By comparison, DONA [16] proposes a flat (i.e.,
semantic-less) name for contents, which provides persistence
and authenticity. Also it is based on a tree topology and hence
performs name resolution in a hierarchical manner. Similarly,
Jacobson et al. suggestcontent-centric networking[1] with
two claims: (i) the security/authentication should be performed
only with data itself, and (ii) the data should be delivered by
dissemination, not by endpoint-oriented transport.

In the DNS area, many studies have been performed to
compare a hierarchical tree structure with a flat DHT structure,
to name a few [9], [19], [22]. They concentrate only on
the performance of lookup-by-name resolution system, i.e.
DNS, which maps the name to the location of service host.
However, for the content-oriented network, the route-by-name
paradigm is more appropriate than the lookup-by-name [16],
[13]. To the best of our knowledge, this paper is the first
comprehensive study to compare the hierarchical networking
infrastructure with the flat one under route-by-name resolution
environments.

V. CONCLUSIONS

Recently, the content-oriented usage such as web, P2P, and
multimedia applications becomes more and more proliferated
in the Internet. However, the host-oriented original Internet
design hinders the proliferation of content-oriented networking
applications and services, which motivates new architectural
trials such as DONA [16] and content-centric networking [1].
However, the operational issues of a new content-oriented
networking framework have not been thoroughly investigated
in the literature. We focus on how to substantiate the building
blocks of the new networking framework: (i) how to locate
contents, (ii) how to deliver contents, and (iii) how to cache
contents. There are two major alternatives in choosing the net-
working infrastructure: a hierarchical tree and a flat distributed
hash table (DHT). We carry out comprehensive simulation
experiments to compare these alternatives. The DHT achieves
the lower latency and better resilience than the tree when the
topologies of the infrastructures are randomly built. Caching is
crucial in enhancing the performance of both infrastructures.
We will investigate how the information about the underlying
physical network can optimize the infrastructure construction.
Also, the coordination among caching servers will be an
interesting issue to reduce the transfer latency.
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