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Abstract-Cognitive Radio (CR) is a next-generation wireless 
communication system that enables unlicensed users to exploit 
underutilized licensed spectrum to optimize the utilization of 
the  overall  radio  spectrum.  A  Distributed  Cognitive  Radio 
Network (DCRN) is a distributed wireless network established 
by  a  number  of  unlicensed  users  in  the  absence  of  fixed 
network infrastructure. Context awareness and intelligence are 
the capabilities to enable each unlicensed user to observe and 
carry  out  its  own  action  as  part  of  the  joint  action  on  its 
operating  environment  for  network-wide  performance 
enhancement.  These  capabilities  can  be  applied  in  various 
application schemes in CR networks such as Dynamic Channel 
Selection  (DCS),  congestion  control,  and  scheduling.  In  this 
paper,  we  apply  Reinforcement  Learning  (RL),  including 
single-agent  and  multi-agent  approaches,  to  achieve  context 
awareness  and  intelligence.  Firstly,  we  show  that  the  RL 
achieves  a  joint  action  that  provides  better  network-wide 
performance in respect to DCS in DCRNs. Secondly, we show 
that RL achieves high level of fairness. Thirdly, we show the 
effects of network density and various essential parameters in 
RL on the network-wide performance. 

I. INTRODUCTION

Cognitive  Radio  (CR)  [1]  enables  unlicensed  spectrum 
users or Secondary Users (SU)s to use, in an opportunistic 
manner, the unused licensed users' or Primary Users' (PU)s' 
spectrum  (called  white  space)  conditional  on  the 
interference  to  them  being  below  an  acceptable  level.  A 
Distributed  Cognitive  Radio  Network  (DCRN)  is  a 
distributed wireless network comprised of a number of SUs 
that  interact  with  each  other  in  a  common  operating 
environment in the absence of fixed network infrastructure 
such as a base station. Context awareness and intelligence 
are key characteristics  of  CR networks to  achieve  a  joint 
action, which is the actions taken by all the SUs throughout 
the entire DCRN, that provides network-wide performance 
enhancement. Through context awareness,  an SU is aware 
of its  operating environment;  and through intelligence,  an 
SU utilizes the sensed and  high quality white space in an 
efficient  manner without following a strict  and static pre-
defined policy. We apply Reinforcement Learning (RL) to 

achieve context awareness and intelligence with respect to 
Dynamic Channel Selection (DCS) in this paper, though it 
can  be  applied  in  most  application  schemes  that  require 
context awareness and intelligence such as scheduling and 
congestion control. 

There  are  two types  of  RL approaches,  namely Single-
Agent Reinforcement Learning (SARL) [2] and Multi-Agent 
Reinforcement Learning (MARL) [3]. Traditionally, SARL 
has  been  applied  in  operating  environment  with  a  single 
agent  (or  decision  maker),  such  as  the  base  station  in  a 
centralized network, so that it  learns and takes action that 
maximizes its own network performance; while MARL has 
been applied in operating environment with multiple agents, 
such as all the SUs in a DCRN, so that they learn and take 
their own respective action, in a cooperative and distributed 
manner, as part of the joint action that maximizes the overall 
network  performance.  The  SARL has  been  called  RL in 
most literatures, however, in this paper, we refer to SARL as 
the single-agent approach and RL as the general approach 
comprised  of  SARL  and  MARL  henceforth  to  avoid 
confusion.

In [4], a RL approach, or specifically, multi-armed bandit 
is investigated with respect to DCS. In [5], RL is applied to 
enable each SU to detect PU signal that may have deviated 
from its known signature. The investigation in [4] and [5] 
use  machine  learning  performance  metrics  such  as  regret 
and  fitness  value,  while  this  paper  uses  network 
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Figure 1. Agents (or SU communication pairs) and their environment. 



performance  metrics  such  as  throughput  and  number  of 
channel  switchings.  In  [6],  RL  is  applied  in  DCS  in 
distributed CR networks in order to reduce call blocking and 
dropping probability, and the effects of RL parameters on 
network performance are investigated. In [7], RL is applied 
in DCS among the base stations in order to enable each of 
them to cover a minimum percentage of service area with 
the highest SINR so as to reduce call blocking and dropping 
probability. In [8], RL is applied to identify channels with 
the  most  available  white  spaces  at  the  base  station  in 
centralized  networks.  In  [9],  RL  is  applied  in  spectrum 
assignment  strategy  in  OFDMA  networks  in  order  to 
improve  the  PU’s  performance  metrics  including  spectral 
efficiency,  users’  quality  of  service  satisfaction,  and  the 
amount of licensed spectrum to be released to SUs. As a 
complement to [4]-[9]  which investigate into SARL only, 
this paper investigates both SARL and MARL approaches.

The DCS provides strategy for the SUs to select a channel 
respectively from the available licensed  channels  for  data 
packet  transmission given that the objective is to increase 
network-wide throughput and to reduce number of channel 
switchings  in  order  to  decrease  data  packet  transmission 
delay. We model each SU communication pair as a learning 
agent,  as  shown  in  Figure  1  because  the  transmitter  and 
receiver  share  a  single  set  of  learned  outcomes  or 
knowledge. At a particular time instant, the agent observes 
only its own local operating environment due to its limited 
sensing capability. The learning engine provides knowledge 
on the operating environment comprised of multiple agents 
through observing the consequences of its prior action [3] in 
the form of  local  reward.  The  agent  improves  the  global 
reward in the next time instant through carrying out a proper 
action. The global reward is a linear combination of all the 
local rewards at each agent. The difference between SARL 
and  MARL  is  the  additional  feature  in  MARL,  namely 
Payoff Message Exchange (PME). The PME mechanism is 
a  payoff,  which  is  computed  using  the  local  rewards, 
message  exchange  mechanism  that  helps  each  agent  to 
communicate and compute its own action as part of the joint 
action. In other words, PME is a means of communication 
for the learning engine embedded in each agent. Note that 
SARL does not implement PME because it is a single-agent 
approach. As time progresses, the agents learn to carry out 
the  proper  action  to  maximize  global  reward.  As  an 
example,  the learning engine is  used to learn the channel 
conditions such as PU Utilization Level (PUL) and channel 
Packet  Error  Rate (PER).  Higher  levels  of  PUL indicates 
higher levels of PU activity, and hence smaller amount of 
white spaces. Higher levels of PER indicates higher levels 
of  packet  drop  rate  due  to  interference,  channel  selective 
fading,  path loss,  and other factors.  SARL maximizes the 
local rewards;  while MARL maximizes the global reward. 
Based  on  the  application  scheme,  the  reward  indicates 
distinctive  performance  metrics  such  as  throughput  and 
successful data packet transmission rate. Thus, maximizing 
the  local  and  global  rewards  provides  network-wide 
performance enhancement.

We  have  successfully  applied  SARL  in  DCS  for 
centralized CR networks in [9] where SARL is embedded in 
the BS. Although SARL is a single-agent approach, we have 
successfully  applied it  in  DCS for  DCRNs in [10]  where 
SARL is embedded in each SU. In [11], we applied a PME 
approach  called  Payoff  Propagation  (PP)  and  it  has  been 
shown  to  converge  to  a  joint  action  that  provides  better 
network-wide  performance  including  DCRNs  with  cyclic 
topology; and fast convergence is possible. In this paper, we 
newly implement MARL, which is a combination of both 
SARL  and  PME,  to  further  enhance  network-wide 
performance.  The MARL approach  also addresses  several 
drawbacks of game theory [11], which is a prominent tool to 
achieve context awareness and intelligence in CR networks. 
There are two major contributions in this paper. Firstly, we 
show  that  SARL and  MARL  achieve  a  joint  action  that 
provides  better  network-wide  performance  in  DCS  for 
DCRNs. Secondly, we show the effects of network density 
and various essential  parameters  in SARL and MARL on 
network-wide performance. The remainder of this paper is 
organized as follows. Section II discusses the characteristics 
of  DCRNs. Sections III  presents  SARL, MARL and their 
RL model  for  DCS.  Section IV presents  Medium Access 
Control  (MAC)  protocols  with  DCS  implementation  for 
DCRN. Section V presents simulation experiments, results 
and discussions. Section VI presents our conclusions.

II. CHARACTERISTICS OF DCRNS

We  refer  to  a  single  node  as  an  SU;  and  an  SU 
communication pair as an agent henceforth. The single-hop 
DCRN, as illustrated in Figure 2, is comprised of  V  SUs. 
T i  is the transmitter and Ri  is the receiver of an agent i . 

There are  U=V /2  agents. Each agent maintains a single 
set of knowledge because the transmitter and receiver must 
choose  a  common  channel  for  data  transmission.  We 
consider a common assumption of a single collision domain; 
hence, all the agents can hear each other. There are K  PUs, 
PU=[PU 1 , , PU K ]  and each of them uses one of the K  

distinctive  channels  of  frequency  F=[F1 , , F K ] .  We 
consider  KU ,  so  the  agents  are  competing  to  use  the 
channels. Each channel is characterized by various levels of 
PUL, L=[L1 , , LK ] . Each agent i  experiences different 
levels of PER,  P i=[P i ,1 , , P i , K ]  for each channel; thus, 
we  consider  heterogeneous  channels.  However,  most 
schemes  including  our  previous  work  [10]  assume  the 
similar levels of PERs are observed for various channels for 
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Figure 2. Graphical representation of the DCS scheme. Bold link 

indicates data transmission over a chosen channel. 



all agents such that the PER is P=[P1 , , P K ] . Each agent 
infers the PUL, PER and contention level in each channel, 
and  selects  in  a  distributed  manner  a  channel  for  data 
transmission.  A channel  with  low PUL does  not  imply a 
good channel if it has a high level of contention or PER at 
the  agent.  Figure   2  illustrates  the  concept  of  the  DCS. 
Suppose, agent 1 or T 1−R1  chooses channel 1; while agent 
2 or T 2−R2  chooses channel 2. Channel K  is not chosen 
because, say, it has high PUL and PER at all agents. Agent 
u  chooses channel 1 because the channel has lower PUL 

and  PER compared  to  channel  2.  This  channel  selection 
provides better network-wide performance.

III. SARL-BASED AND MARL-BASED DCS

In this section, we present  SARL and MARL based on 
our  application context.  Next,  we present  RL-based  DCS 
that details the RL model for SACC and MACC.

A. SARL 

Q-learning [2] is an on-line algorithm that determines an 
optimal policy without detailed modeling of the operating 
environment. Denote decision epochs by t∈T={1,2,} , a 
constant  epoch  duration  by  tD ,  actions  by  a∈A ,  and 
delayed rewards by r t1at . Each agent i  maintains a Q-
table with ∣A∣  entries to keep track of learnt action value or 
Q-value,  Qt a   within an interval of  [0,Qmax ]  for all its 
possible  actions.  The Q-value estimates  the level  of  local 
reward for an action a ; hence changes in the Q-value will 
lead to changes in an agent's action. At each decision epoch 
t ,  agent  i  chooses  an  action  at  and  receives  a  local 

reward r t1at  at time t1 . The agent i  updates the Q-
value of action at  at time t1  as follows:

where  01  is  learning  rate.  Higher  value  of    
indicates  greater  reliance  on  the  recent  local  reward 
compared to the past knowledge. As this procedure evolves 
through time, agent  i  receives a sequence of rewards. An 
optimal policy is being searched for that maximizes value 
function V   as shown below:

As  an  example,  in  DCS,  the  Q-value  represents  the 
throughput and it is dependent on the local PUL, PER and 
the joint action that represents the channel selection made 
by all the agents. The joint action affects the Q-value due to 
the dependency of actions among the agents; for example, 
two neighbour agents that choose a particular channel may 
increase  their  contention  level,  and  hence  reduces  their 
respective Q-values for the action.

B. MARL 

The  MARL  is  a  combination  of  both  SARL  and  PP 
mechanism.  The  SARL,  which  is  the  learning  engine 
embedded in each agent,  provides the local reward,  while 
the PP mechanism provides a means of communication for 
the learning engine. 

Each agent i  maintains a Q-table with ∣A∣  entries; and a 
 -table with size  ∣i∣×∣A∣  to keep track of the payoff 

messages. The i   represents all the neighbours of agent 
i . The agent computes its respective action at

i ,*
∈A  as part 

of the optimal joint action  a t
*  using its own local Q-value 

from its Q-table,  Qt
i
at

i
  and its neighbours' local Q-value 

from its  -table, Qt
j∈i

at
j
  to achieve the optimal global 

Q-value Qt at
*
 .

Each agent i  constantly sends payoff message i*at
*
 , 

which is the local Q-value of its own current action, to its 
neighbour agents j∈i   as follows:

The  payoff  messages  are  exchanged  among  the  agents 
until a fixed optimal point is reached. Before convergence, 
the messages are an estimation of the fixed optimal point as 
all incoming messages are yet to converge. As an example, 
when agent j  receives the i*at

*
  while it is taking action 

at
j , i*at

*
=ij at

j
  indicates the local rewards of agent i  

while agent j  is taking action at
j .

Each agent selects its own optimal action to maximize the 
local payoff as follows:

Each agent i  determines its optimal action as follows: 

The  global  payoff  g tat  at  time  t  is  a  linear 
combination of all the local payoffs generated by each SU: 

The MARL is executed until  the agent converges to an 
optimal local action where the changes of its local Q-values 
and local payoff values between iterations are insignificant. 
However,  due to dynamic operating environment, learning 
must  be carried  out  constantly as the optimal joint  action 
changes with time. In [11], the PP mechanism is shown to 
converge to a joint action that provides better network-wide 
performance in a distributed manner including a DCRN with 
cyclic  topology,  and  fast  convergence  is  possible. 
Additionally, if entries in the Q-table and   -table at each 
agent are stable and fixed, PP will converge to a joint action 
that provides better network-wide performance.

C. Other Mechanisms in SARL and MARL

The update of the Q-value in (1) does not cater for the 
actions that are never chosen. Exploitation chooses the best 
known  action,  or  the  greedy  action,  at  all  times  for 
performance  enhancement.  Exploration  chooses  the  other 
non-optimal  actions  once  in  a  while  to  improve  the 
estimates  of  all  the  Q-values  in  order  to  discover  better 
actions.  In the   -greedy approach  [2],  an agent  explores 
with a small probability  , and exploits with 1− . 

The global Q-value at time t  is a linear combination of 
all the local Q-values at each agent as follows:
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Qt1
i

at
i
1−Qt

i
at

i
 r t1

i
at

i


V 
=max

a∈A
Q t

i
a

(1)

(2)

i*at
*
=[Qt

i
at

i
] (3)

g t
i
at

i
=max

a∈A
[Qt

i
a ∑

j∈ i 

 jia]

at
i ,*
=arg max

a∈A
gt

i
a 

g tat=∑
i=1

u

[Q t
i at

i ∑
j∈i

 ji at
i]

(4)

(5)

(6)

Qt a t=∑
i=1

u

Qt
i at

i (7)



Note that equation (7) is not a utility function, which is 
not  defined in  the MARL [3].  Equation (7)  shows that  a 
global  reward  can  be  optimized  through  maximizing  the 
local  rewards,  thus  simplifying  the  complexity  of 
maximizing the global reward.

Note the difference between the global Q-value, ∑i Qt
i  in 

(7) and the global payoff, ∑i Qt
i ji  in (6). The global Q-

value is the total local rewards received by all the agents in 
the  network;  while  the  global  payoff  is  the  total  local 
rewards received by all the agents in the network and total 
payoff value exchanged among the agents. Global Q-value 
is  a  performance  metrics  for  MARL  and  SARL;  while 
global  payoff  has  been  shown to converge  to  an  optimal 
joint action [11].

D. RL-based DCS

The RL-based DCS (RL-DCS) enables each SU agent to 
select an available channel among the licensed channels for 
data transmission given that  the objective  is  to  maximize 
overall  throughput  and  to  minimize  number  of  channel 
switchings  in  the  presence  of  channel  heterogeneity 
characteristics  including  PUL  and  PER,  which  is  agent 
dependent, as well as the channel contention level. 

The  RL  model  for  each  agent  in  the  DCS  scheme  is 
shown in Table I. The action A  is to choose one of the K  
available  licensed  channels  for  data  transmission.  The 
reward  r t1at=N D / tD  is  the  amount  of  throughput 
obtained  within  the  recent  epoch  t ,  where  N D  is  the 
number  of  packets  successfully  transmitted  by  the 
transmitter  T i  within the epoch. Data packet transmission 
is considered successful when a link layer acknowledgment 
is  received  for  the  data  packet  sent.  In  addition,  a 
transmission is considered unsuccessful if a chosen channel 
is reoccupied by the PU immediately prior to transmission.

TABLE I

RL Model for Each Agent in DCS

DCS Model

Description Representation

Action Available  channels  for  data 
transmission.

A=F={a=1,2, , K }

Reward Throughput within tD . r t1a t=N D / tD

The RL approach helps an agent to adapt to its dynamic 
and uncertain  operating  environment.  In  reality,  the radio 
resources,  channel  heterogeneity  characteristics  and  other 
factors affect an agent's performance in a complex manner. 
Rather than addressing a single factor at a time, an agent 
observes all the factors  and optimizes a general  goal as a 
whole,  such  as  throughput.  The  RL also  adopts  a  simple 
modeling  approach.  Thus,  the  complexity  involved  in 
modeling the environment and channel heterogeneity can be 
minimized.  For  instance,  an  agent  does  not  model  the 
channel behavior characterized by channel selective fading, 
path loss and PU interference. 

IV. COGNITIVE MAC PROTOCOL WITH DCS IMPLEMENTATION

Each  SU  is  equipped  with  two  transceivers,  namely  a 
control transceiver and a data transceiver, thus it is capable 
of  accessing  two  different  channels  simultaneously.  The 
control transceiver is tuned to a common channel for control 
message exchange; while the data transceiver is tuned to one 
of the available data channels in the licensed bands for data 
packet  transmission.  The  PU  activities  exist  in  the  data 
channels only. We apply a Carrier  Sense Multiple Access 
(CSMA)-based cognitive MAC and the reader is referred to 
[10] for its details. In the next few subsections, we present 
for later comparison three types of cognitive MAC based on 
different methods of DCS, namely Random MAC (RMAC), 
SARL-based  MAC  (SMAC),  and  MARL-based  MAC 
(MMAC). For each subsection, the mechanism of channel 
switching, DCS, as well as the operation of the control and 
data transceiver are described.

A. RMAC

In R-MAC, the DCS chooses a data channel randomly. 
There are two conditions that trigger channel switching at 
agent i . Firstly, an unsuccessful data packet transmission at 
the data interface when a T i  fails to receive an ACK after a 
data packet  transmission. Secondly,  an agent must change 
its channel at least once every second. This avoids all the 
agents choosing a particular channel with low PUL and PER 
that  provides  higher  occurence  of  successful  data  packet 
transmission at  the expense of  lower throughput due to a 
high  level  of  contention.  In  addition,  an  agent  does  not 
switch channel within a duration of two data transmission 
cycles right after a channel switching.

B. SMAC

In SMAC, the DCS applies the SARL approach to choose 
a  data  channel.  Each  agent  divides  the  time horizon  into 
epochs and keeps track of the number  N D  of successful 
data  packet  transmissions  in  the  past  epoch.  No 
synchronisation  is  required  among  the  agents.  At  the 
beginning of each epoch, an agent uses N D  to update its Q-
value using (1) and chooses its channel in the next epoch 
using  (2)  with  probability  1− .  During  exploitation,  in 
order  to  improve  stability,  an  agent  does  not  switch  its 
channel if the difference between the Q-value of its previous 
exploitation channel and the current optimal channel using 
(2)  is  less  than  a  small  threshold  value  of   .  For 
exploration,  an  agent  is  not  allowed  to  explore  for  two 
consecutive  epochs.  Although  an  agent  has  decided  to 
switch its channel at the beginning of an epoch, it is only 
carried  out  in the midst  of  an epoch when a new control 
transmission  cycle  starts,  which  is  subject  to  contention 
among the agents.  Hence,  immediately prior to a channel 
switching,  the  T i  must  update  the  Q-value  of  its  initial 
channel which has been learned. Upon channel switching, it 
sets N D=0  and continues to operate in the epoch.
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C. MMAC

According to [3], using SARL would result in instability 
or oscillations in the presence of multiple agents because an 
agent switches channel from time to time. MMAC addresses 
two drawbacks in SMAC that contribute to the instability. 
The next two subsections present improvement on stability 
and the PME mechanism, which is the payoff mechanism.

1)  Improving  Stability  in  SMAC: Firstly,  when  several 
agents undertake exploration at the same time, the Q-values 
(or the throughput performance) become unstable and they 
do not portray the exact level of PUL, PER and contention 
of the channels.  For  instance,  when two agents explore a 
particular channel, the Q-value for the channel reduces for 
all agents and does not portray the exact level of contention. 
Secondly, an agent that explores a particular channel,  and 
then exploits the other one in the following epoch causes the 
Q-values of both channels in itself and its neighbour agents 
to fluctuate. 

One of the purpose of MMAC is to provide stability to the 
existing Q-learning approach.  The instability is caused by 
the  exploration.  To  tackle  the  first  drawback,  an  agent 
would only explore if its neighbour agents are not exploring, 
and it  must  announce  to  its  neighbour agents  in  a  CTRL 
packet when it starts and terminates its exploration. This is 
to  ensure  that  there  is  only  a  single  agent  undergoing 
exploration within a neighbourhood. To tackle the second 
drawback, the exploring agent and its neighbour agents must 
update  and  store  the  Q-tables  and  set  N D=0  during 
channel  switching  in  order  to  learn  a  new  environment 
whenever  the  exploration  begins.  At  the  end  of  the 
exploration,  using  (5),  the  exploring  agent  chooses  to 
exploit  the channel being explored or to exploit the other 
channel. The agent would have to retrieve its stored Q-table 
and set  N D=0  if it chooses to exploit the other channel, 
otherwise  it  would  maintain  its  Q-table.  The  decision  is 
broadcast to the neighbour agents using CTRL so that the 
neighbour agents follow suit to retrieve or maintain their Q-
tables, and to set N D=0 .

2) PME Mechanism:  Each agent divides the time horizon 
into epochs  comprised  of  t D  and  t C .  Each  agent  keeps 
track  of  the  number  N D  of  successful  data  packet 
transmissions within  t D ,  and exchanges  payoff  messages 
(3)  during  t C .  The  Q-values  in  the  payoff  message 
indicates the performance of each agent during exploitation 
or the recent exploration if any of the agents is undergoing 
exploration.  No  synchronisation  is  required  among  the 
agents  although  the  neighbour  agents  send  at  least  one 
payoff  message  to  inform  the  exploring  agent  of  their 
respective  Q-value  if  any  of  the  agents  is  undergoing 
exploration. At the beginning of each epoch, which is the 
end  of  t C  and  the  beginning  of  the  next  t D ,  an  agent 
updates  its  Q-values  using  N D  and  payoff  messages 
received from its neighbours. Equation (1) is used to update 
the Q-values, and the payoff message is used to update the 
stored   -values. During exploitation, the optimal channel 
is chosen using (5). 

V. SIMULATION EXPERIMENTS, RESULTS, AND DISCUSSIONS

A. Simulation Model, Assumptions and Parameters

We  have  implemented  a  CR-enabled  environment  in 
OMNeT++  [12].  The  simulation  scenario  is  shown  in 
Section II. Due to the limited sensing capability at each SU 
node, the number of available data channels is set to  K . 
Simulation parameters are shown in Table II.

TABLE II

NOTATIONS AND DEFAULT PARAMETER SETTINGS IN SIMULATION

Category Symbol Details Values

Initializat
ion

U Number of agents {3,6,12}

K Number of available channels 3

L PUL  of  each  available 
channel 

[0, 0.9]
Default = 0.5

Pi PER  of  each  available 
channel at agent i

[0, 0.3]
Default = 0.15

T Total simulation time 100s

SU t DATA , SU Data packet duration 5.44ms

tCTRL ,SU CTRL packet duration 272μs

T CSD Channel switching delay and 
initial channel sensing

2ms 

PU t DATA , PU Data packet duration 5.44ms

Maximum queue size 5

RL tD Epoch duration 187.14ms

 Learning rate {0.05,0.1,0.2,0.4} 
Default: 0.2

 Exploration probability {0.05,0.1,0.2,0.4} 
Default: 0.2

 Q-value threshold value 1

Initial Q-value 1

Qmax Maximum Q-value 20

Three  levels  of  network  densities  are  simulated  with 
d=U /K={1,2,4} .  For  SU,  the  CTRL is  a  small  packet 

with  t CTRL, SU  duration and it  contains  information related 
channel  switching  and  payoff  message.  The  PU  traffic 
model follows a Possion distribution with the mean arrival 
rate determined according to PUL, and it is independent and 
identically distributed (i.i.d.) across the available channels; 
while the SU T i  is always backlogged. The PUs broadcast 
data packets throughout the entire simulation area whenever 
they  have  packets.  The  PUs  do  not  use  four-way 
handshaking.  An  epoch  duration  is  30  data  transmission 
cycles,  or  tD=30×tRTStCTStDATA ,SUt ACK3×t SIFS  . 
In MMAC, the PME duration is tC=1.2×∣ i∣×t CTRL,SU  . 
Each agent observes different levels of PER across different 
channels with the default average value of PER across the 
K  channels  being 0.15. Upon receiving a packet,  an SU 

discards the packet with the PER probability.

B. Performance Metrics

Our goal is to maximize overall throughput over different 
heterogeneous  channels  with  different  levels  of  PUL,  as 
well  as  PER  at  different  agents.  The  mean  amount  of 
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throughput  per  agent  of  RMAC,  SMAC and  MMAC are 
compared.  The  number  of  channel  switchings  of 
exploitation channel is measured for SMAC and MMAC to 
show the level of stability. Note that channel switching for 
exploration purpose is not counted. Jain's fairness index is 
applied  to  evaluate  the  fairness  among  the  throughput 
achieved by each agent in the entire network. Denote the 
throughput achieved by agent  i  by  x i , the Jain's fairness 
index [13] is as follows: 

where  0 f  x1, x2, , xu1 ,  and  f  x1, x2, , xu=1  
when  all  agents  achieve  the  same  level  of  throughput. 
Graphs are presented with PUL and PER as ordinate.  For 
each value of PUL and PER, the corresponding throughput 
or number of channel switchings is the average value of 50 
runs  using different  levels  of  PULs and  PERs across  the 
K=3  channels.  For  instance,  a  PUL  level  of  0.2  may 

indicate  the  PUL  of  [0.025,0.248,0.327]  or 
[0.163,0.402,0.035] in the channels. 

C. Simulation Results

Simulation results are presented in four subsections.
1)  Stabilization  of  Global  Q-value  and  payoff  value:  

Figure 3 shows that the instantaneous global Q-value for the 
exploitation channel  for  SMAC and MMAC increase  and 
become stable as time goes by in a medium density network. 
In other words, the agents attain a better joint action. The 
PUL is  L=0.5  with [0.5,0.5,0.5] across  K=3  channels, 
and mean PER at agent i  is P i=0.15  every channel. The 
Q-learning  parameters  are  =0.2  and  =0.2 .  With 
U=6  and Qmax=20 , the maximum global Q-value is 120. 

Although L=0.5  for all data channels, due to the Poisson 
traffic model, the channels have different levels of PUL at a 
particular  time.  Although  the  MMAC  aims  to  increase 
global  Q-value;  while  SMAC  aims  to  increase  local  Q-
value,  SMAC  achieves  slightly  higher  global  Q-value 
compared to MMAC. This is  because SMAC can explore 
the channels at any time to discover a better channel; while 

in  MMAC,  an  agent  can  only  explore  if  none  of  its 
neighbour agents is doing so.

2) Effects of Network Density on Network Performance:  
Figure 4 shows the mean throughput for each agent against 
various  levels  of  mean  PUL  for  MMAC,  SMAC,  and 
RMAC in low, medium, and high density networks. Mean 
PER at agent i  is P i=0.15  every channel. The Q-learning 
parameters  are  =0.2  and  =0.2 .  The  MMAC  and 
SMAC achieves approximately similar throughput, followed 
by  RMAC  in  all  types  of  network  densities;  and  the 
throughput enhancement offered by the MMAC and SMAC 
reduce as the network density increases. At PUL  L=0.5 , 
the  MMAC  outperforms  the  RMAC  by  1.77  times,  1.5 
times,  and  1.2  times  in  low,  medium  and  high  density 
networks respectively. Figure 5 shows the equivalent graph 
with PER as ordinate and PUL is L=0.5  with [0.5,0.5,0.5], 
and  similar  trend  is  observed.  In  short,  in  a  high density 
network or  d ∞ ,  the throughput enhancement  achieved 
by MMAC and SMAC approaches 0. We believe that this 
happens  in  most  intelligence  methods  due  to  the  high 
contention level.

Figure 6 shows the mean number of channel switchings of 
exploitation channel for each agent against various levels of 
mean PUL for  MMAC and SMAC in low,  medium,  and 
high density networks. Mean PER at agent  i  is  P i=0.15  
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Figure 4. The mean throughput for each agent against mean of PUL for 
MMAC, SMAC, and RMAC in low, medium and high density networks.

Figure 5. The mean throughput for each agent against mean of PER 
for MMAC, SMAC, and RMAC in low, medium and high density 

networks. See legend in Figure 4.

f  x1, x2, , xu=

∑
i=1

u

x i
2

u∑
i=1

u

xi
2

(8)

Figure 3. Global Q-value for the exploitation channel for SMAC and 
MMAC in a medium density network.



every channel. The Q-learning parameters are  =0.2  and 
=0.2 . The MMAC achieves significantly lower number 

of channel switchings, hence it provides higher stability. At 
PUL L=0.5 , the number of channel switchings in SMAC 
is 10 times, 3.58 times and 2 times of that in MMAC in low, 
medium and high density  network  respectively.  Generally 
speaking, an agent switches its exploitation channel because 
the difference between the Q-values among the channels is 
greater than the threshold  =1 , and the agent exploits a 
better  channel.  There  are  two  reasons  an  agent  does  not 
switch channel. Firstly, all the channels provide equal level 
of performance, hence an agent exploits the same channel. 
Secondly, all the channels provide very good or very poor 
performance,  and  hence  the  Q-values  approach  the  Q-
value's limit, specifically,  Qt a 0  or  Qt aQmax  for 
∀ a∈A .  For  instance,  MMAC  and  SMAC  have  lower 

number of channel switchings as the PUL increases because 
Qt a 0  for  all  channels.  The  MMAC  also  increases 

network  stability  [3]  through  reducing  the  number  of 
channel switching. Figure 7 shows the equivalent graph with 
PER as ordinate and PUL [0.5,0.5,0.5].

3) Fairness Index of MMAC and SMAC: With respect to 
PUL in Figure 8 and PER in 9, RMAC achieves the highest 
fairness, while MMAC and SMAC achieves approximately 

similar high levels of fairness. In RMAC, all agents choose 
channel  randomly,  hence  the  Jain's  fairness  index 
approaches  to  nearly  1.  For  MMAC  and  SMAC,  some 
agents  may  choose  better  channels  compared  to  others, 
hence the Jain's fairness index is lower than that in RMAC. 

4) Effects of    and    on Network Performance: The 
effect of    and    on throughput is insignificant in most 
cases,  and its  graph is not  provided. Figure 10 shows the 
effect of    on the mean number of channel switchings of 
the  exploitation  channel  for  each  agent  against  various 
levels of mean PUL for MMAC and SMAC in a medium 
density network. Mean PER at agent  i  is  P i=0.15  every 
channel. The number of channel switchings increases with 
  for all cases. In short, lower value of   provides higher 

stability. Figure 11 shows the equivalent graph with PER as 
ordinate  and  PUL  L=0.5  with  [0.5,0.5,0.5].  A  similar 
experiment is performed to investigate the effects of   on 
the mean number of channel switchings, with results shown 
in Figures 12 and 13, which share similar trends to Figure 
10 and 11 respectively.

CONCLUSIONS

In  this  paper,  we  achieve  context  awareness  and 
intelligence  in  Distributed  Cognitive  Radio  Networks 
(DCRNs) using Reinforcement Learning (RL). Both single-
agent-based  approach  (SMAC)  and  multi-agent-based 
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Figure 7. The mean number of channel switchings of exploitation 
channel for each agent against mean of PER for MMAC and SMAC 

in low, medium and high density networks.

Figure 8. The mean Jain's Fairness Index against mean of PUL for 
MMAC, SMAC, and RMAC in low, medium and high density networks.

Figure 9. The mean Jain's Fairness Index against mean of PER for 
MMAC, SMAC, and RMAC in low, medium and high density networks.

Figure 6. The mean number of channel switchings of exploitation 
channel for each agent against mean of PUL for MMAC and SMAC 

in low, medium and high density networks.



approach  (MMAC) are  investigated.  RL is  suitable  to  be 
applied in most application schemes, and we investigate its 
performance  in  respect  to  Dynamic  Channel  Selection 
(DCS). The MMAC and SMAC approaches achieve stable 
joint actions as the global learned value or Q-value increases 
and  becomes  stable.  Both  MMAC  and  SMAC  provide 
network-wide  performance  enhancement:  approximately 
similar level of throughput, and MMAC is more stable with 
significant  reduced  number  of  channel  switchings.  The 
performance  enhancement  reduces  as  network  density 
increases. Both MMAC and SMAC achieve approximately 
similar  high  level  of  Jain's  fairness  index.  The  essential 
parameters  including  learning  rate    and  exploration 
probability    in RL are investigated.  Lower value of    
and   provides better throughput and stability. 
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Figure 11. The mean number of channel switchings of exploitation 
channel for each agent against mean of PER for MMAC and SMAC 

with different α in a medium density network.

Figure 12. The mean number of channel switchings of exploitation 
channel for each agent against mean of PUL for MMAC and SMAC 

with different ε in a medium density network.

Figure 13. The mean number of channel switchings of exploitation 
channel for each agent against mean of PER for MMAC and SMAC 

with different ε in a medium density network.

Figure 10. The mean number of channel switchings of exploitation 
channel for each agent against mean of PUL for MMAC and SMAC 

with different α in a medium density network.
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