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Abstract—Last year, the official BitTorrent client switched to
LEDBAT, a new congestion control algorithm targeting a lower-
than Best Effort transport service. In this paper, we study this
new protocol through packet-level simulations, with a special
focus on a performance comparison with other lower-than Best
Effort protocols such as TCP-LP and TCP-NICE: our aim is
indeed to quantify and relatively weight the level of Low-priority
provided by such protocols.
Our results show that LEDBAT transport generally achieves

the lowest possible level of priority, with the default configura-
tions of TCP-NICE and TCP-LP representing increasing levels
of aggressiveness. In addition, we perform a careful sensitivity
analysis of LEDBAT performance, by tuning its main parameters
in both inter-protocol (against TCP) and intra-protocol (against
LEDBAT itself) scenarios. In the inter-protocol case, although
in case of misconfiguration LEDBAT competes as aggressively
as TCP, however we show that it is not possible to achieve an
arbitrary level of low-priority by merely tuning its parameters.
In the intra-protocol case, we show that coexistence of legacy
flows with slightly dissimilar settings, or experiencing different
network conditions, can result in significant unfairness.

I. INTRODUCTION

BitTorrent, undoubtedly one of the most successful P2P

filesharing applications nowadays, has recently adopted a

new closed-loop congestion control algorithm, namely Low

Extra Delay Background Transport (LEDBAT) [1], which is

implemented at the application-layer and exploits UDP at the

transport layer. The aim of the new protocol is “to not disrupt

Internet connections, while still utilizing the unused bandwidth

fully” [2] or in other words to delivery data with a lower

priority in respect to general Best Effort, and thus TCP, traffic.

Lower than Best-Effort (LBE) priority is achieved in LED-

BAT by reacting earlier than TCP to congestion notification,

and reducing its transmission rate so to avoid harming TCP

traffic: while TCP Reno infers congestion from packet losses,

LEDBAT infers congestion from increasing buffering delay,

hence prior than losses occur.

Thus, a first important observation about LEDBAT is that

it constitutes a relief for operators, as they no longer need

throttling the now gentle P2P traffic [3]. An additional rele-

vant motivation for LEDBAT is that it relieves self-induced

congestion when the bottleneck is placed at the user access

link (e.g., DSL or cable). Self-induced congestion arises when

users run in parallel several applications having different QoS

constraints (e.g., Web browsing, gaming, VoIP, filesharing,

backup): in this case, as the bottleneck is at the access, users

are themselves generating competing traffic, but at the same

time they would likely not want large background transfer

to interfere with foreground interactive applications. In this

context, LBE is a promising end-to-end technique that do not

require coordination among applications, nor complex queuing

policies or IP table rules to be setup by the end-users on their

own PC [4].

However, many other services beside P2P filesharing may

successfully exploit a LBE transport protocol as, e.g., the

class of high volume data exchange, data mirroring and pre-

fetching, network backups, etc. As such, LEDBAT is not the

sole example of LBE transport that has been proposed in

the literature: other notable protocols are for instance TCP-

LP [5], TCP-NICE [6], 4CP [7] and Microsoft BITS [8].

Despite the relevance of the above scenarios, to the best of our

knowledge no comparison attempt has been made yet between

the different low-priority protocols: this situation is unlike the

high-speed data transfer scenario, where several work [9], [10],

[11] that compares different flavors of TCP exists, showing

their relative merits and disadvantages.

In this work, we carry out a comparison of LBE protocols by

means of ns2 simulations, aiming at quantifying and ranking

the relative level of LBE priority. We perform a systematic

evaluation of the fairness and efficiency of three LBE proto-

cols: namely, the new BitTorrent protocol LEDBAT [1], LP [5]

and NICE [6]. Notice that only LP implementation is available

as open source, so we implement both NICE and LEDBAT in

the ns2 simulator, and make our code available at [12]. As a

scenario for the comparison, we consider the typical situation

with many concurrent P2P flows sharing an access bottleneck

link with other higher-priority traffic. Our results show that

(i) LEDBAT transport achieves the lowest possible level of

priority among the considered protocols, while NICE and LP

represent increasing levels of aggressiveness. Moreover, we

find that (ii) the level of low priority in LEDBAT cannot be

easily set by tweaking the protocol parameters, and that (iii)

in case of legacy LEDBAT implementations sharing the same

bottleneck, even small differences in parameter settings (e.g.,

target delay) or network conditions (e.g., RTT delay) can result

in significant unfairness.

II. LOWER THAN BEST EFFORT TRANSPORT PROTOCOLS

This section provides an overview of the relevant related

work. On one hand, we have literature on BitTorrent, that until
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Fig. 1. Low priority at a glance: Inter (top) and Intra (bottom) protocol interaction on a simple bottleneck

very recently [13], [14] has however focused on other aspects

that LEDBAT, such as modeling BitTorrent performance [15],

studying incentive mechanism [16] and locality-aware peer

selection strategies [17], or analyzing torrent popularity [18].

On the other hand, we have studies that focus on congestion

control: as the literature dates back to the late 80s [19] it is

thus very wide. As such, we will especially focus on the LBE

protocols that are considered in this work: namely, LEDBAT,

LP and NICE, providing a detailed introduction that will be

instrumental to the comparison. With this regard, we just point

out that although work exists that, in similar spirit to ours

compares high-speed TCP versions [9], [10], [11], to the best

of our knowledge such a comparison effort has not been done

for lower-than best effort protocols.

To achieve their goals, all LBE protocols need to detect

congestion earlier than standard loss-based TCP. As the latter

detects congestion by inferring that a packet loss occurred

(e.g., by expiration of a timer, or by reception of duplicated

acknowledgement), LBE protocols need to rely on a finer

measure of congestion: typically, they equate increasing delay

with incipient congestion. In other words, LBE protocols

perform some delay measurement D(t), and infer from the

increase of D(t) that congestion is building up, accounting

the delay growth to some amount of queuing in the bottle-

neck link along the path. As we will see, the specific delay

measurement D(t) and the rule to decide that variations in

D(t) are actually due to congestion, vary from protocol to

protocol. Then, once congestion has been (early) detected,

this triggers a congestion-relief reaction, which again differs

across protocols. It is however possible that congestion is not

detected in a timely fashion, causing a packet loss of the LBE

protocol: in this case, the reaction of all protocols falls back

to standard TCP timeout mechanism, i.e. a drastic reduction

of the congestion window cwnd.

In the rest of this section, we provide further details concern-

ing each of the considered LBE protocols. To facilitate their

comparison, we also report simple simulation results in Fig. 1,

so to better visually highlight the relevant characteristics of

each protocol. Top row of Fig. 1 reports the heterogeneous

case where two flows employing different congestion con-

trol protocols are compared; bottom plot Fig. 1 shows time

evolution of two flows employing the same LBE protocol

assuming similar network conditions. More precisely, for each

LBE∈ {LP,NICE,LEDBAT} protocol, Fig. 1 depicts the

temporal evolution of the cwnd of different flows in two

scenarios of a simple bottleneck topology. In the inter-protocol

scenario (top row, labeled as TCP-LBE), low-priority protocols

compete against a standard TCP flow, while in the intra-

protocol case (bottom row, labeled as LBE-LBE) two LBE

flows compete against each other. In the figure, bottleneck

capacity is set to C=10 Mbps, round-trip delay to RTT=50 ms

and the buffer size is B=100 MTU-size packets.

A. TCP-LP

TCP-LP (or LP tout court) measures one-way packet delays

and employs a simple delay threshold-based method for early

inference of congestion. More specifically, LP estimates the

minimum Dmin and maximum one-way delay Dmax, filtering

the instantaneous measure of the delay D(t) by means of an

exponentially weighted moving average D̃(t) with smoothing

parameter α, updated packet-by-packet. The smoothed average

D̃(t) and the condition for early congestion detection are:

D̃(t) = (1− α)D̃(t− 1) + αD(t) (1)

D̃(t) > Dmin + (Dmax −Dmin)δ (2)

where δ ∈ (0, 1) is a custom threshold parameter. Throughout

this paper, we use the values α = 1/8, δ = 0.15 that are

selected in [5] by means of simulation experiments.

In absence of early-congestion indication, LP behaves like

standard TCP Reno, i.e., performing an additive increase of

the congestion window cwnd which can easily be gathered

from Fig. 1-(b) and (f). Whenever an early congestion is

detected, according to the rules outlined above, LP halves

the congestion window and enters an inference phase by

starting an inference timeout timer. During this period, LP only

observes responses from the network and avoids increasing the

congestion window. After this phase, if congestion persists it

reduces the congestion window to zero and restarts the TCP



Reno congestion avoidance scheme. Finally, in case of losses,

LP behaves like TCP Reno.

B. TCP-NICE

TCP-NICE (or NICE tout court) instead maintains a mini-

mum RTTmin and maximum RTTmax estimates of the round

trip delay. Congestion is detected when more than a given

fraction φ of packets during the same RTT experiences a delay

exceeding:

RTT > RTTmin + (RTTmax −RTTmin)δ (3)

where δ and φ are protocol parameters set to δ = 0.2 and

φ = 0.5 as in [6]. Notice that (3) is the same formula of LP

(1), but computed on the RTT variable, and using the fraction-

trick instead of a moving average.

In the absence of congestion, NICE behaves like TCP-

Vegas [20], whose congestion window dynamics are delay-

based (and thus rather different from loss-based dynamics).

Whenever early-congestion is signaled, NICE simply halves

its congestion windows and sending rate, practically reintro-

ducing the multiplicative decrease behavior. Finally, when a

loss is detected it instead reacts like TCP Reno.

The fact that NICE inherits its congestion control behavior

from Vegas [20] rather than from TCP Reno has profound

impact on the cwnd evolution: as can be gathered from Fig. 1-

(c) and (g), NICE shows a much smoother behavior as its

throughput stabilizes around the effective link capacity. We

point out that NICE allows cwnd to be a fraction of 1 by

sending one packet after waiting for the appropriate number

of RTTs: the use of fractional values for cwnd guarantees non-

intrusiveness even in the case of many NICE flows sharing the

same bottleneck.

C. LEDBAT

Finally, LEDBAT maintains a minimum one-way delay

estimation Dmin, which is used as base delay to infer the

amount of delay due to queuing. LEDBAT flows have a target

queuing delay τ , i.e., they aim at introducing a small, fixed,

amount of delay in the queue of the bottleneck buffer. Flows

monitor variations of the queuing delay D(t) − Dmin to

evaluate the distance Δ(t) from the target as in (4):

Δ(t) = τ − (D(t)−Dmin) (4)

cwnd(t + 1) = cwnd(t) + γΔ(t)/cwnd(t) (5)

where τ, γ are protocols parameters that we study later on.

In absence of early-congestion indication, i.e., when the

target τ has not been reached yet, Δ(t) > 0 in (4) and thus

cwnd grows as defined by (5). Notice that when the target is

reached, Δ(t) = 0 thus cwnd settles.

Values of Δ(t) < 0 are perceived as early-congestion

indication (i.e., other traffic is increasing the queuing delay

D(t) − Dmin), to which LEDBAT reacts by reducing cwnd
proportionally to the offset from the target according to (5).

Finally, in case of losses, it behaves like TCP Reno.

Overall, LEDBAT shares similarities with, and exhibit dif-

ferences from, the other LBE protocols: (i) as LP, it does rely

on one-way delay estimates to detect congestion, but unlike

LP it does not employ a smoothing average; (ii) as NICE, its

congestion controller is based on the delay, but unlike NICE

it employs a PID controller in order to reach (or deviate from)

the target delay. As can easily be gathered from Fig. 1, the

behavior of LEDBAT is however closer to NICE than to LP.

III. METHODOLOGY

A. Simulation scenarios

We employ ns2 simulations to address the comparison

of LBE protocols. While TCP Reno and LP protocols are

already implemented, we implement both NICE and LEDBAT

congestion control protocols in the network simulator. Source

code of our LEDBAT implementation can be found at [12].

As reference network scenario, we use a dumbell topology

where the capacity of the bottleneck is fixed to C = 10 Mbps,

the one-way propagation delay equals 25 ms (thus round trip

delay is equal to RTT = 50 ms), and the buffer size is set to

Bmax = 100 packets. We consider backlogged sources1, that

use a fixed packet size equal to S =1500 Bytes. All TCP and

LBE sources start simultaneously, so that we avoid potential

late-comer issues [13], and last for 120 seconds.

In this work we first focus on a sensitivity analysis of

LEDBAT, to assess the impact of parameters τ and γ on

the system performance. We carry on this analysis in both

(i) an inter-protocol case, where a TCP Reno flow and a

LEDBAT flow share the bottleneck and (ii) an intra-protocol

case, where two LEDBAT flows compete against each other.

The aim of (i) is to determine whether τ and γ offer the

chance to tune the level of LBE priority in LEDBAT, while (ii)

aims at verifying whether unfairness may arise among legacy

LEDBAT implementations (e.g., different releases of the same

code, different implementations or parameter settings, etc.).

We then focus on a comparison of TCP and LBE protocols,

again considering two cases: (iii) a single TCP flow shares the

bottleneck with a varying number of homogeneous LBE flows

(i.e., same LBE protocol) and (iv) several heterogeneous LBE

flows compete against each other. In both cases, our aim is to

evaluate the level of low priority of LBE protocols. Finally, we

consider more realistic scenarios in (v) by taking into account

the impact of RTT heterogeneity on LBE performance.

B. Evaluation metrics

Performance evaluation is carried out considering different

metrics, that relate to either network-centric (e.g., efficiency,

average queue size) or user-centric performance (e.g., fairness,

packet loss rate). For the sake of example, Fig. 1-(a) summa-

rizes the performance of flows in corresponding scenarios in

terms of some of these metrics (i.e. efficiency, fairness, and

breakdown).

Bottleneck link efficiency (η) is the primary network-centric

metric, and expresses the link utilization as the ratio between

1As we consider backlogged sources only, dynamics of LEDBAT are well
described by means of (5) only; in case of non-backlogged sources, the
dynamics changes slightly to avoid cwnd increase indefinitely [1]
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Fig. 2. LEDBAT vs TCP Reno: Inter-protocol sensitivity analysis, for varying LEDBAT target T and gain G parameters

the sum of the throughput values xi achieved by all flows over

the available capacity η =
�

i xi/C.

Average queue occupancy index (B) is computed averaging

buffer occupancy during the simulation (measured at each

enqueue event in the buffer), and normalizing the value over

the buffer size B = E[B]/Bmax for convenience.

Whenever the buffer overruns and packets are dropped, all

protocols drastically reduce their sending window: packet loss

probability (Pl) therefore relates to user-performance, and is

computed as the ratio of the dropped packets over the total

number of packets sent on the link.

We further express the system performance using two met-

rics apt at describing how the link resources are shared among

flows. To gauge the impact of LBE on TCP, we define TCP

breakdown (TCP%) as the TCP Reno traffic share percentage

over the total amount of data exchanged on the link, i.e.,

TCP% =
�

j∈TCP xj/
�

i xi.

We further describe the capacity share in terms of Jain

fairness index (F), defined as F = (
�N

i=1 xi)
2/(N ·

�N

i=1 x
2
i )

where N is the number of considered flows and xi is the rate

of the i− th flow. In the best case, when all flows get a fair

share of the resources, F is equal to one, while in the worst

one, namely when a single flow exploits all the link, it is equal

to 1/N .

We compute the fairness index over both the whole flow

duration and over a smaller time scales (considering a temporal

window of 20 RTT, or equivalently 1 s): we refer to long-term

fairness (Flt) in the first case, and to short-term fairness (Fst)

in the latter one. Notice that the ability to achieve short-term

(vs long-term) fairness may have rather different implications,

e.g., if we consider the case of several P2P flows measuring

throughput to perform peer selection (as long-term fairness

may not be sufficient and significantly bias peers decisions).

IV. LEBDAT SENSITIVITY ANALYSIS

A. Inter-protocol: LEDBAT vs TCP

We start our sensitivity analysis by considering two flows, a

standard TCP Reno flow and a LEDBAT one, that start simul-

taneously and vary, one at the time, the values of parameters

τ and γ. Notice that the standardization draft does not specify

any value for the gain parameter γ. Conversely, the draft

specifies a mandatory value for the target parameter equal to

τ = 25 ms. This choice of τ is somewhat arbitrary, and based

on experimental observations (whose results are however un-

reported so far) or motivated by practical constraints (e.g.,

today limits in the precision of the delay measurement, etc.),

rather than being based on concrete foundations. As such, τ is

often referred to as “magic number” with a deprecatory sense

in LEDBAT WG discussion [21]: therefore, we believe that a

thorough exploration of the impact of the above parameters is

necessary, which we carry on by simulation.

For convenience, we re-express the gain parameter γ as

multiples of the target τ , i.e. G = γτ , and explore the range

G ∈ [1, 10]. We also re-express the target delay parameter τ in

terms of buffer percentage as T = τC/(SBmax), and explore

the range T ∈ [2, 150]%, corresponding to τ ∈ [2.4, 180]ms.

For reference purposes, notice that the mandatory draft value

τ = 25 ms correspond to T = 20%, while a full buffer

occupancy T = 100% is attained when τ = 120 ms.

Fig. 2 reports the simulation results for each of the metric

f ∈ {η, TCP%, Fst, Flt, B, Pl} described early in Sec. III-B,

arranged as one per plot. In each plot, we report two curves,

namely f(G) and f(T ). The f(G) curve reports how f(·)
varies as a function of the gain G ∈ [1, 10] (on the bottom



x-axis), when target is fixed to τ = 25 ms. The f(T ) curve

instead reports how f(·) varies as a function of the target

T ∈ [2, 150]% (on the top x-axis), when gain is fixed to G = 1.

From all the subplots we can see that, for all metrics,

the f(G) curve is roughly flat, i.e., the gain parameter only

minimally affects the behaviour of the LEDBAT protocol in

this case. This can be explained with the fact that, as LEDBAT

is designed to yield to TCP, it will yield irrespectively of G.

The gain value thus only affects the speed at which LEDBAT

will yield, which thus quickly happens for any value of G.

Therefore, from now on we restrict our attention the impact

of the target parameter, and analyze the behavior of the f(T )
curves. In Fig. 2-(a) we can see that the efficiency η is only

slightly influenced by the variation of the target and remains

always close to the total link capacity. This is expected, as even

if the target is misconfigured, either LEDBAT or TCP Reno

can take advantage of the unused bandwidth, which result in

an overall efficient use of the link capacity.

Considering instead the TCP% reported in Fig. 2-(b), we

can identify four working regions. When the target is very

small T1 ∈ [2, 18]% the LEDBAT protocol is not always able

to reach the target delay, which leads to shaky TCP% behav-

ior. In a second region T2 ∈ [18, 65]%, LEDBAT completely

yields to the TCP Reno flows, working in low-priority mode

and thus attaining its goal. In a third region T3 ∈ [65, 100]%,

LEDBAT aggressively start to erode bandwidth to the TCP

Reno flow: this causes losses in the TCP Reno flow, which

progressively backoff; as a consequence, the TCP% starts de-

creasing until LEDBAT has the monopoly of the buffer when

T = 100% and TCP Reno starves (TCP% � 0%). Finally,

in the fourth region T4 > 100% the target exceeds the buffer

size: in this case, LEDBAT falls in the TCP Reno-like loss-

based behavior, increasing the sending rate until a loss occurs,

which immediately drop down its rate. As a consequence, the

breakdown is now more similar (TCP% � 50%)

Similar considerations can be gathered by looking at the

long-term Flt or short-term Fst fairness plots shown in Fig. 2-

(c) and Fig. 2-(d) respectively: indeed, to an even breakdown

correspond maximum fairness (Fst � 1) while to an uneven

breakdown, favoring either TCP Reno (TCP% � 100%)

or LEDBAT (TCP% � 0%), always correspond minimum

fairness values (Fst � 1/2). We also notice that, although

as expected short-term fairness is more difficult to achieve

(Fst < Flt), the same qualitative behavior holds for both

fairness timescales.

From Fig. 2-(e) and Fig. 2-(f) we see that, as expected,

increasing target the average buffer occupancy increases be-

sides the occupancy due to TCP Reno. Losses increase as well

reaching a peak for T = 100%, corresponding to LEDBAT

maximum aggressiveness; afterward LEDBAT is in loss-mode,

and the scenario degenerates into two TCP Reno flows sharing

a bottleneck.

Overall, the sensitivity analysis suggests that, although

LEDBAT spans a wide range of low-priority levels (especially

in the third region), its tuning is highly impractical. Indeed,

the support of target values T3 ∈ [65, 100]% is very small,
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meaning that small variation of T lead to completely differ-

ent scenarios, where either LEDBAT or TCP Reno exhibit

starvation. Moreover, the actual values of τ yielding to a

specific level of low-priority depends on network parameter

(e.g., capacity C, buffer size B) and are likely affected

from other factors as well (e.g., number of TCP Reno flows,

heterogeneous RTT, etc.)

B. Intra-protocol: LEDBAT vs LEDBAT

We pursue our sensitivity analysis by considering two

LEDBAT flows with heterogeneous settings sharing the same

bottleneck link. We perform two sets of experiments, varying

either (i) the gain ratio G1/G2 of the two flows when

G2 = 1, τ = 25, or (ii) the target ratio T1/T2 when

T2 = 20%, γ = 1/τ . In both cases, the ratio varies in the

[1, 10] range. Results of the sensitivity analysis are reported

in Fig. 3, that depicts the packet loss rate Pl (right y-axis),

the average buffer size B, the efficiency η and the fairness Flt

(left y-axis) as a function of the T1/T2 target ratio (top plot)

and G1/G2 gain ratio (bottom plot).

As in the previous case, it is easy to gather that impact of

gain is very modest, even in the case of a 10-fold factor. This

phenomenon has an intuitive explanation. Consider indeed,

that flow with the largest gain will start moving faster that

the other flow toward the target. However, after the first flow

increases its window, the convergence speed toward target will

slow down, since the differences between the target and the

measured delay is now smaller for the first flow than for the

second. In other words, the difference in the delay offset in

(5) compensates for differences in the gain factor γ.

Conversely, even slight differences in the target settings may

have strong consequences as can be seen in the top of Fig. 3.

Indeed, as soon as T1/T2 > 1 it can be seen that the fairness

immediately drops to its minimum value Flt = 0.5. This is

due to the fact that flows with higher-target are always more

greedy than their lower-target counterpart. As a matter of fact,

if both flows start at the same time, they both measure the

same base delay, and the higher-target flow converges faster
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Fig. 4. LBE against one TCP flow: Impact of the number LBE flows on the system performance

to its target and stabilizes: as the amount of queuing is now

larger than that of the less aggressive flow, this one back offs

and starves. This hold until T1 + T2 > 100% (which happens

when T1/T2 = 5 given that T2 = 20%), in which case both

LEDBAT flows may experience packet drops: nevertheless,

higher-target flow will always be advantaged prior that losses

occur, and so the unfairness persists.

Overall, we see that gain and target parameters have rather

different effects: on the one hand, provided that LEDBAT

flows have the same target, differences in gain do not entail

any unfairness among flows. On the other hand, even small

difference in targets yield to extremely unfair situation: this is

a delicate point, which we believe deserves further attention.

V. LBE PROTOCOLS COMPARISON

A. LBE against TCP

We now fix LEDBAT parameters and consider a larger set

of LBE protocols in the comparison. Following our sensitivity

analysis, we know that γ selection is less critical than τ one:

we set γ = 1/τ , and use the mandatory value τ = 25 ms

which we verified to be a robust choice.

We consider a typical scenario where N , (N ∈ [1, 10]) low-

priority flows (e.g., due to P2P or other service) share the same

bottleneck with a single TCP Reno connection, (representative

of a generic high-priority service), for a total of N + 1 flows.

We perform several set of simulations separately, considering

each time a different LBE protocol. For reference purpose, we

also simulate the case where N +1 TCP Reno flows share the

same bottleneck.

Results for the common set of metrics are reported in Fig. 4.

Considering efficiency η in Fig. 4-(a), we see that delay-

based NICE and LEDBAT are able to fully utilize the spare

bandwidth left by TCP Reno. Conversely, in the LP or TCP

Reno cases, losses entail an efficiency reduction (especially

for large N ).

Breakdown TCP% reported in Fig. 4-(b), states that e.g.,

in the N = 10 LEDBAT case, TCP Reno consumes about

90% of the link capacity (since η � 1), leaving thus the

N = 10 LEDBAT flows a mere 1% of the capacity each.

Comparing this result with NICE (about 3% each) or LP

(about 5% each) under the same N = 10 settings, we gather

that LEDBAT achieves the lowest priority, closely followed by

NICE. This is further exacerbated from the long-term fairness

plot of Fig. 4-(c), showing that in the LEDBAT and NICE

cases fairness approaches the minimum possible value (i.e.,

the shaded region indicates values that fairness cannot achieve

since they are smaller than the lower bound 1
N+1

for the

fairness index).

The plot in Fig. 4-(d) depicts instead the long-term fairness

Flt evaluated over the N LBE flows only. It can be seen

that fairness is always high, meaning that generally the excess

that remains after the TCP breakdown of Fig. 4-(b), is evenly

shared among LBE flows. Notice that fairness among LBE

flows is however lower in the case of NICE, where apparently

some LBE flow opportunistically take advantage of the others.

Finally, average occupancy index B and packet loss Pl are

reported in Fig. 4-(e) and (f) respectively. Again, delay-based

versus loss-based congestion control principles are remarkably

different, which is especially true in case of the loss curve:

interestingly, despite its low priority aim, the amount of loss

induced by LP is strikingly similar to that of classic TCP

Reno. Delay-based versus loss-based difference, although less
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Fig. 5. LBE against LBE: LP, LEDBAT and NICE competing for the same bottleneck, compared with the same number of TCP Reno only flows.

evident, also reflects on the queue size: indeed, TCP Reno and

LP average queue size decrease when losses increase along

with the number of flows; conversely, queue occupancy in the

NICE case slowly arises for increasing N , and is practically

unaffected by N in the LEDBAT case.

B. LBE against LBE

In order to investigate the mutual interaction of the different

lower-priority protocols, we define an heterogeneous scenario

in which several LEDBAT, LP and NICE flows contend the

same bottleneck link. We perform different tests in which an

increasing number of flows is considered, from 1 to 5 for

each flavor (which corresponds to a total of 3 to 15 flows).

As reference, we perform also the corresponding experiment

with the same number of TCP Reno flows only (i.e., 3 to 15

TCP Reno flows). We choose for all the LEDBAT flows, the

standard parameters values, namely τ = 25ms and γ = 1. We

point out that qualitatively similar results can be gathered using

different parameter settings, which we are however unable to

report for lack of space.

Let us start by examining the efficiency η and average

normalized buffer length B, which are reported in Fig. 5-

(a). Looking at the efficiency metric, we can see that in the

heterogeneous LBE scenario, flows are able to utilize the

available resource fully, with η always close to its maximum.

On the contrary, the efficiency in the case of all TCP Reno

flows progressively decrease as long the number of competing

flow increase, due to the typical synchronization behavior of

the protocol after loss. Looking at the normalized average

queue size we can notice that the average B � 2/3 is not

affected by the number of flows in the TCP Reno case. In

the LBE case instead, average queue size approaches that of

TCP Reno only when at least two flows per protocol insist

on the bottleneck. When only a total of three LBE flows are

competing for the resource, a rather unexpected phenomenon

arises: in this case, LEDBAT often forces LP in low-priority

mode and is thus able to exploit a significant part of the

resource. As a consequence, the average queue size B reflects

the LEDBAT target τ , plus the contributions due to LP and

NICE. When more than two LP flows are instead present on

the bottleneck, their behavior synchronize and is perceived as

more aggressive by LEDBAT: in this case, it is more rare that

both LP flows goes into inference mode at exactly the same

time, thus LEDBAT has fewer opportunities to profit of the

resource.

Packet loss probability Pl and long-term fairness Flt are

instead reported in Fig. 5-(b). Concerning packet loss, since

2/3 of the total flow number consists of delay-based protocols,

the loss rate is clearly lower than the TCP Reno reference

case. Long-term fairness performance shown in Fig. 5-(b) is

instead better understood by considering also the throughput

breakdown reported in Fig. 5-(c), in which each bar represents

the percentage of traffic due to a particular LBE protocol.

As expected, fairness between heterogeneous LBE flows is

lower than that of homogeneous TCP Reno connections, but

is however higher than the LBE-TCP Reno performance early

reported in Fig. 4-(c). In particular, maximum LBE fairness

is achieved when only one flow per each LBE flavor is

considered: from Fig. 5-(c) we see that LP and LEDBAT

performance are very close in this case, which raises the

fairness metric. When the number of considered low-priority

flow increases, the fairness instead decreases due to a higher

aggressiveness of the LP protocol.

C. Impact of the RTT heterogeneity

Finally, we report on the impact of RTT heterogeneity in

Fig. 6. We consider two flows, of the same protocol type (LBE

or TCP) sharing the same bottleneck, that have a different

round trip delay expressed by the RTT1/RTT2 ratio. We

perform simulations separately for each protocol, exploring the

RTT1/RTT2 ∈ [1, 10] range; RTT1 is increased by adding

propagation delay to the return path, so that one-way delay

estimation on the forward path are not affected. Top plot of

Fig. 6 reports the long term fairness Flt, while bottom plot

reports the efficiency η as a function of the RTT ratio.

Interesting remarks can be gathered from the plots. Concern-

ing the fairness metric, it can be seen that only NICE, by virtue

of its inheritance of Vegas [20] congestion control, provides

fairness in case of heterogeneous RTT settings. However, this

comes at the price of a reduced efficiency, since in order to

be fair, the more aggressive small-RTT flow has to slow down

its rate to match that of the large-RTT flow. Efficiency loss

happens also in the case of LP and TCP Reno, despite they

are unable to offer fairness either. Finally, LEDBAT realized
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Fig. 6. Impact of the RTT heterogeneity

a perfectly efficient system, which comes at the price of an

unfair share of the resources: although the congestion control

works only on the forward path, due to the fastest feedback,

the small-RTT flow is able to reach its target first, whereas

the second flow will see that a queuing delay (due to the

small-RTT flow) equals to its target, and will thus settle in

a starvation state.

VI. CONCLUSION

This paper analyzed different Lower-than Best Effort (LBE)

transport protocols behavior: by means of simulation, we

carried on a thorough comparison of LEDBAT, LP and NICE,

studying the impact they have on TCP Reno traffic, as well as

their mutual impact. From our sensitivity analysis of LEDBAT

we gather that it is hard to tune its behavior, and especially

its level of priority with respect to TCP Reno by means of

a simple adjustment of its gain γ and target τ parameters.

Indeed, the gain has practically no influence, while the impact

of target can not be controlled, as changes in the system

performance are too steep. Also, we see that gain and target

parameters have rather different effects if we consider the

coexistence of legacy LEDBAT flows with heterogeneous

settings: on one hand, provided that LEDBAT flows have the

same target, differences in gain do not entail any unfairness

among flows; on the other hand, even small target difference

yield to extremely unfair situation. From this part of the

analysis we conclude that tuning LEDBAT is thus a delicate

point, which deserves further attention in the future, which

holds true even when heterogeneous network settings (e.g.,

RTT) are considered.

From our comparison study, we gather that LEDBAT

achieves the lowest possible priority with respect to NICE and

LP. Moreover, we find that LP inherits from its loss-based

design a higher aggressiveness than the delay-based NICE

whose degree of low-priority sits thus in between LEDBAT

and LP. Interestingly, we point out that there are also limit

cases (e.g., only an LP, LEDBAT and NICE flows sharing

the same bottleneck) in which the low-priority degree can

exhibit unexpected behavior (i.e., as LEDBAT is in this case

as aggressive as LP).

We believe this work makes a first important step in under-

standing, comparing and ranking several LBE protocols. At the

same time, an important question remains open: namely, how

a different degree of low-priority can be achieved in a robust,

tunable fashion, which our future research aims at answering.
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