
Technical Report No. KN–2011–DiSy–02

NAT Hole Punching Revisited

Daniel Maier Oliver Haase Jürgen Wäsch
Konstanz University of Applied Sciences

Marcel Waldvogel
University of Konstanz

http://nbn-resolving.de/urn:nbn:de:bsz:352-142409

NAT Hole Punching Revisited
Daniel Maier Oliver Haase Jürgen Wäsch

Konstanz University of Applied Sciences
Konstanz, Germany

[dmaier|haase|waesch]@htwg-konstanz.de

Marcel Waldvogel
University of Konstanz

Konstanz, Germany
marcel.waldvogel@uni-konstanz.de

Abstract—Setting up connections to hosts behind Network
Address Translation (NAT) equipment has last been the subject
of research debates half a decade ago when NAT technology
was still immature. This paper fills this gap and provides solid,
comparative insights into the current state of technology. The
result is threefold: (1) understanding the NAT and operating
system issues involved in hole punching, (2) overview over the
main hole punching technologies, (3) a comparison of these
technologies. The comparison features current conditions and
thoroughly compares setup delay, implementation complexity,
resource usage, and effectuality of the two main approaches.
The result is a list of recommendations and a portable, effectual,
and open-source Java implementation.

I. INTRODUCTION

IPv4’s address space is getting exhausted any day now, as
addresses only consist of 32 bits. The success of the Internet
made it clear already in 1994 that this address space would not
last. However, IPv6 is still only scarcely supported. Instead,
the use of Network Address Translation (NAT) boxes to hide
entire networks behind a single IPv4 address is the dominant
solution. Sometimes, this is even done multiple times, e.g.,
most mobile network operators use NAT for their entire set of
mobile devices, which in turn may offer a bluetooth or wireless
local area network for ‘tethering’ support, hiding again behind
the single NATted address of the smartphone.

This works great as long as the machines behind the NAT
box only initiate outgoing connections and do not have to
accept incoming requests. However, increasingly interactive
Internet applications prefer direct contacts, where a central
server would only increase latency, limit throughput, or be-
come a single point of failure. Direct connections are essential
to such distinct applications ranging from interactive games
and general peer-to-peer applications to VoIP and file transfers
among instant messaging partners. Other reasons to contact
machines behind NAT include the wish to access data on your
home machine or providing screen sharing for collaboration
or support.

NAT hole punching is one technique to traverse NAT boxes.
It has the advantage of not requiring any user configuration,
and establishes direct connections between two peers without
the need for additional relay servers. Hole punching is suitable
for UDP and TCP. For TCP, two main options exist, namely
sequential and parallel hole punching. These are the main
targets of our analysis. We compare them according to various
criteria in different scenarios.

Even when IPv6 should ever become wide-spread, NAT and
thus hole punching will not become obsolete. NAT will be
one of the main techniques for IPv6↔IPv4 translation [8],
despite the declarations of the IETF to the contrary [1]. It
can also be assumed that some people and organizations will
continue to use IPv6↔IPv6 NAT for the believed security and
privacy benefit, despite the fact that NAT does not replace a
real firewall and the availability of special privacy mechanisms
in IPv6 [6].

The rest of this paper is structured as follows: In section
II, we recap sequential and parallel hole punching, as these
two techniques form the basis of all further considerations.
Section III discusses the requirements on binding multiple
sockets to the same port, a feature that is needed for parallel
hole punching. In section IV we describe the test setting for the
evaluation of our two hole punching implementations, while in
section V we discuss the evaluation results. Section VI finally
concludes the paper.

II. NAT TRAVERSAL

Several techniques have been invented to establish connec-
tions to machines behind NAT boxes. Many of them require
some control data being exchanged with a machine on a
globally reachable address. This machine, commonly called
Mediator, keeps a directory of the machines behind NAT and
is the endpoint of a persistently open control connection to
these NATed machines.

A simple scenario is when only one machine, peer B,
is behind NAT. Then, peer A, having a global address and
wishing to set up a connection to B, will contact the mediator
M with its own address and port combination. M will forward
this connection request message along its persistent control
connection to B, who will then set up a direct connection
to A. This process is known as Connection Reversal and is
possible, as the NATed host B has no restrictions in setting up
a connection from inside to A’s public address. This technique
also works when B is behind multiple layers of NAT.

It gets hairy, though, when both A and B are behind NAT
but wish to establish a direct connection. Then, a widely used
solution is hole punching. Before going into the details of hole
punching, let us revisit the basic functionality of NAT:
Mapping. The most basic functionality is the mapping of

the internal address/port pair to the external pair and
vice versa. The source address and port combination of
any packet leaving NAT is mapped using this forward

NAT Hole Punching Revisited

Peer A NAT Mediator M NAT Peer B

M:m ← B:b [B:b; B-ID]M:m ← B':b' [B:b; B-ID]
1.) RegisterA:a → M:m [A:a; B-ID] A':a' → M:m [A:a; B-ID]

2.) Connection Request

3.) Forward Endpoints 3.) Forward Endpoints
A':a' ← M:m [B:b; B':b']A:a ← M:m [B:b; B':b'] M:m → B':b' [A:a; A':a'] M:m → B:b [A:a; A':a']

4.) Connection Establishment (concurrent; repeat if necessary)

A:a → B':b'

A':a' ← B:bA':a' ← B':b'

New Filter Rule:
A':a' ↔ B':b'

New Filter Rule:
B':b' ↔ A':a'

X

Fig. 1: Message sequence diagram of parallel TCP hole punching (adapted from [4]). The notation S:s → R:r [P] denotes
that a sender with address S and port s sends the payload p to a receiver with address R and port r.

translation, while any destination address and port from
the outside will be mapped in reverse. Most of today’s
NAT boxes employ endpoint independent mapping, i.e.,
an internal host/port pair used for concurrent connections
to multiple external hosts will use only a single external
address/port pair. This endpoint independence is the only
real requirement for hole punching but is standard in
almost all NAT boxes (for exceptions to this rule, see
Section V-D1).

Filtering. Even though the mapping may be endpoint in-
dependent, many NATs do restrict sending data back
through a mapping to a list of peers the inside machine
has already had contact with. Many NAT boxes do
employ filtering; hole punching, however, is able to deal
with it. If all NAT boxes were to suddenly cease filtering,
hole punching could be slightly optimized.

Additional properties of NAT boxes include whether the
port mapping is predictable. NAT boxes vary widely in their
port allocation policies, so hole punching does not rely on
predicting the mapping. If the NAT box did not provide end-
point independent mapping, port prediction would be required,
however.

A nice property of hole punching is that it is independent of
the number of layers of NAT boxes that shield our endpoints
from the global address pool [4].

An in-depth description of the two most relevant hole
punching techniques for TCP connection follows. We consider
TCP because it is the protocol of choice for the exchange of
non-real time data; in addition, TCP seems to become popular
even for streaming data, as it is the transport protocol used by
HTTP streaming. UDP, on the other hand, is not covered here.
Its connectionless behavior, however, makes hole punching

essentially trivial.

A. Parallel TCP hole punching

Parallel TCP hole punching was first described in [4].
Figure 1 shows the message exchanges.

1) Peer B registers through TCP with mediator M, sending
its private endpoint B:b and a unique identifier, B-ID.
The mediator also obtains the public endpoint B′:b′ from
the apparent source of the connection. B and M keep
this connection open. This establishes the mapping and
allows control information to flow later.

2) At some later point in time, peer A requests a TCP
connection to peer B, knowing B-ID. It sends M a
message containing this request and its own private
endpoint, A:a. M also obtains A′:a′ from the packet
headers. A and M keep their connection open.

3) M introduces A and B to each other by sending each
the endpoint information of the other.

4) Now both peers have all the information they need to set
up the mapping. If their NATs did not filter, they could
immediately set up a connection. However, we assume
filters to be in place. Nevertheless, both endpoints try to
set up direct connections to each other. The first one
will be refused as its TCP SYN packet reaches the
peer’s NAT without a proper filter in place. However,
this packet has established a filter rule in its own NAT,
making sure that the peer’s reverse connection setup
attempt will succeed. This all happens in parallel, hence
the name. When a connection fails or times out, each of
the peers will simply retry. Care only needs to be taken
that incoming and outgoing connections use the same
local and remote ports.

2

NAT Hole Punching Revisited

To make sure the connection is actually the one that was
expected, the endpoints should perform mutual authentication.

The parallel box of Figure 1 shows only one possible
message exchange sequence. It could also happen that both
connections traverse their NATs in outbound direction before
they reach the opposite NATs. Then, a simultaneous connec-
tion setup happens, which the NAT boxes and especially the
hosts’ OSes need to handle.

One complication with the use of TCP hole punching is
related to the fact that sockets can either be passive (accepting
incoming connections) or active (initiating an outgoing con-
nection). Thus each peer needs to have four sockets open: One
to the mediator, one for incoming connections, and one each
for connecting to the public and private endpoint of the peer.1

(If connections to other peers are open as well, this further
adds to the socket count.) All four sockets need to be mapped
to the same source port for the system to work. Operating
systems do not allow this by default, however, this can be
overridden on most of them by setting the SO_REUSEADDR
socket option. On top of that, FreeBSD systems allow even
more reuse of ports using SO_REUSEPORT. This problem,
its implications and workarounds are discussed in detail in
Section III.

B. Sequential TCP hole punching

In contrast to parallel TCP hole punching, the message order
in sequential hole punching is deterministic as coordinated
by the mediator. Eppinger et al. [3] have first published this
approach under the name NatTrav. The original NatTrav also
describes the use of multiple, redundant mediators. This aspect
is not included here, as it is not essential to the technique, and
is orthogonal to the topic of this paper.

Figure 2 shows the process as described by Eppinger et
al. Arrows in the same color/pattern belong to the same
connection. The steps are as follows:

1) Peer B registers with mediator M, passing a unique iden-
tifier, B-ID. The registration, which can be transmitted
in UDP or TCP, is acknowledged.

2) When later peer A would like to connect to B, it sends a
connection request message including B-ID to M. This
message always uses TCP.

3) M sends a connection request notification to B along
the connection established in step 1. This notification
includes a correlator, corr, which will be used to asso-
ciate steps 4 and 7 with this request.

4) Peer B acknowledges this message by opening a new
TCP connection to M and including its private endpoint,
B:b2.

5) M checks if B sits behind a NAT box by comparing B’s
private and public endpoints, and sets the NATed flag
accordingly. M sends B the public endpoint of A and
the NATed flag. This connection then has to be closed
to enable B to reuse the same port subsequently.

1Also trying to connect to the private endpoint ensures that peers behind
the same NAT box will use the most efficient connection possible.

6) If B sits behind a NAT box (as indicated by the NATed
flag), it sends a TCP connection request to A which will
fail due to one of the following reasons:

• A’s NAT box silently discards the unsolicited SYN
message which eventually results in B’s timer to
expire. We use a default timeout of 2sec as rec-
ommended in [3], which might not be long enough
for slow or congested links, but significantly con-
tributes to the overall performance of sequential
hole punching. Silently discarding unsolicited SYN
messages is by far the most widely implemented
NAT behavior.

• A’s NAT box actively rejects the unsolicited SYN
message. In this case, B can proceed right away with
step 7.

• A does not sit behind a NAT or A’s NAT box lets
the unsolicited SYN message through. Even in this
case B’s connection request will fail, because A still
has an open connection with M and therefore does
not listen for incoming connection requests yet.

Please note that it is imperative for B to use the same
local port as in step 4. If B does not sit behind a NAT
box, this step is omitted.

7) B now listens on port B:b2, from which the previous
request originated. It then indicates its readiness for
connection establishment to M.

8) M sends B’s public endpoint to A using the connection
from step 2.

9) A closes the connection to M, then connects to B using
the same local port as the previous connection to M.
B’s NAT device already has an appropriate mapping and
filter, so the connection will succeed.

The initial registration can use either TCP or UDP. While
UDP has the advantage of requiring less kernel state at M
(a single UDP socket is enough, TCP would require one per
client), the clients would need to regularly and actively refresh
NAT state using keep-alive messages over UDP.

The advantage of sequential TCP hole punching over its
parallel cousin is that only one single socket ever needs to be
bound to a given local port and the operating system does not
need to correctly handle simultaneous TCP connection setups.
The NAT boxes, however, still need to cope with an outgoing
TCP SYN packet being answered by an incoming SYN packet
instead of the normal SYN-ACK, as illustrated on B’s NAT in
Figure 2.

NatTrav [3] described here is far from the only sequential
TCP hole punching proposal. Others, such as NUTSS [5] or
NATBLASTER [2], require manipulating the packets’ Time-
to-Live (TTL) field, reading TCP sequence numbers or inject-
ing hand-crafted network packets by the application. These
mechanisms frequently require superuser privileges and are
definitely impossible to implement in a platform-independent
way in Java. Therefore, such approaches will not be further
discussed in this paper.

3

NAT Hole Punching Revisited

Peer A NAT Mediator M NAT Peer B

1a.) Register
M:m1 ← B:b1 [B-ID]M:m1 ← B':b1' [B-ID]

1b.) Register Response
M:m1 → B':b1' M:m1 → B:b1

2.) Lookup Request

3.) Conn. Req. Notification

 A:a → M:m2 [B-ID] A':a' → M:m2 [B-ID]

M:m1 → B':b1' [corr] M:m1 → B:b1 [corr]

4.) Conn. Req. Notif. ACK

5.) Connection Request Details

6.) Punch Hole

M:m2 ← B:b2 [corr; B:b2]M:m2 ← B':b2' [corr; B:b2]

M:m2 → B':b2' [A':a'; NATed] M:m2 → B:b2 [A':a'; NATed]

A':a' ← B:b2A':a' ← B':b2'
X

7.) Readiness Notification

M:m2 ← B':b3' [corr] M:m2 ← B:b3 [corr]

8.) Lookup Response

9.) Connection Establishment

A':a' ← M:m2 [B':b2']A:a ← M:m2 [B':b2']

A:a → B':b2' A':a' → B':b2'

Close
Connection

to M:m2

Listen on
B:b2

Close
Connection

to M:m2

Close
Connection

to M:m2

NATed := (B' != B)

New Filter Rule:
B':b2' ↔	 A':a'

Fig. 2: Message sequence diagram of sequential TCP hole punching

III. BINDING MULTIPLE SOCKETS TO THE SAME PORT

Parallel hole punching requires binding multiple sockets to
the same local endpoint, which is not permitted by default.
Socket options can help, however.

A. OS capabilities

Different operating systems differ in their TCP implemen-
tations and how they support corner cases of the protocol;
moreover, different operating systems provide slightly differ-
ent socket APIs.

One difference in the protocol implementation concerns
simultaneous connection establishment, where two endpoints
try to establish connections to each other at the same time.
As tests of a set of relevant operating systems—Windows 7,
MacOS X 10.6.5, Linux (Ubuntu 10.04 LTS), Solaris (Open-
Solaris 2009.06), and FreeBSD 8.1 as a representative of the
*BSD family—have shown, all tested OSes support simulta-
neous connection establishment, see Table I.

TABLE I: Simultaneous connection establishment support.

Operating System
Windows Linux FreeBSD MacOS X Solaris

X X X X X

Another difference concerns the ability to bind two or more
sockets to the same port. This corner case is rarely well
documented or tested. Our second experiment therefore tested
whether a C program could bind two sockets to the same port,

examining all possible combinations of server (‘listen’) and
client socket creation. For each operating system, the most
reuse-friendly socket option was chosen. For MacOS X and
FreeBSD, this was their special SO_REUSEPORT, the other
three used the common SO_REUSEADDR. All sockets were
bound to the wildcard IP address IPADDR_ANY. Table II
shows whether the particular combination worked (‘X’), did
not work (‘—’), or only worked when the client socket was
already connected or at least in connection setup before the
second socket was bound (‘C’), i.e., the remote endpoint was
already specified.

TABLE II: Operating system support for socket combinations.
See text for explanation.

Socket creation Operating System
First Second Windows Linux BSD MacOS X Solaris
Client Client X X X X C
Client Server X X X X C
Server Client X — X X —
Server Server X — X X —

The results indicate that on Linux and Solaris, the server
socket must be created after the client socket for the two to
coexist. Thus, a portable implementation should never rely on
the other order. This sequence can be achieved in parallel TCP
hole punching, but requires some care.

4

NAT Hole Punching Revisited

B. Support within Java

For a portable Java implementation, OS support by itself is
not sufficient; in addition, the OS’s capabilities must also be
accessible within Java.

Java provides the classes java.net.Socket and
java.net.ServerSocket. To achieve platform inde-
pendence, both support only a limited set of socket op-
tions. SO_REUSEADDR can be enabled by calling the
setReuseAddress() method since Java 1.4, but there is
no option to set SO_REUSEPORT, due to its limitation to
FreeBSD derived platforms. This restriction leads to the results
in Table III, when testing the multiple-bind capabilities of the
different operating systems in Java.

TABLE III: Java support for socket combinations. See text for
explanation.

Socket creation Operating System
First Second Windows Linux BSD MacOS X Solaris
Client Client X X C C C
Client Server X X C C C
Server Client X — — — —
Server Server X — — — —

There is one notable difference to Table II: MacOS X and
FreeBSD implementations now share the Solaris limitation
of a socket requiring at least a pending connection setup
(i.e., defined remote endpoint) before another socket can
be bound to the same port, because their SO_REUSEPORT
option cannot be taken advantage of in Java. Even though the
limitations for Java are more strict than for native applications
as described in Section III-A, the most stringent case is not
further curtailed. Therefore, the consequences for portable, OS
agnostic applications remain the same.

For Java implementations, care needs to be taken that server
sockets for the Unix relatives cannot be reused due to the
limitations outlined in Table III. While this is not a problem
under Windows, portable programs are required to close the
old server socket and create a new one instead of reusing
the existing socket, as a listening socket will prevent more
client sockets from being opened. This is especially important
because the first connection setup for parallel hole punching
generally fails.

IV. HOLE PUNCHING EXPERIMENTS

Four criteria are key for the evaluation of NAT traversal
techniques, namely effectuality, performance, implementation
complexity, and resource usage. Obviously, the technique
should be effectual, i.e., work even under adverse circum-
stances, and the connection setup should be fast and efficient.
Moreover, the implementation should be easy to understand
(debug, test, and maintain), and avoid any resource wastes.

To verify the first two criteria, multiple tests were run in
two different environments:
Virtual Internet. All nodes and boxes were simulated in

our lab using virtual machines. The concrete setups are
described in full detail in Section IV-A.

Real Internet. Peers A and B were behind real NAT boxes,
behind DSL connections of different providers. The me-
diator has a public Internet address. The concrete setups
for this environment are described in Section IV-B.

Three different scenarios were evaluated in both environments:
Concurrent connection requests. Peer A launches multiple

concurrent requests for connection establishment. This
scenario tests how well both hole punching implementa-
tions can deal with multiple concurrent incoming connec-
tion requests. This is particularly interesting for parallel
hole punching that has to cope with many sockets bound
to the same local port and with many concurrent threads
that have to synchronize with each other. Sequential hole
punching, on the other hand, is expected to be affected
much less due to its sequential nature. The number of
concurrent requests was set to 5.

Successive connection requests. Peer A initiates connection
requests one after the other, with increasing waiting times.
One of the goals is to verify the long-term state retention
behavior of the NAT. For this experiment, the waiting
times are 1, 5, 10, 20, 30, 60, 120, and 240 s.

Random connection requests. 5 threads on peer A initiate
connections to peer B. Each thread uses a repeatable uni-
formly distributed pseudorandom waiting time between
subsequent connections in the range of 0 to 60 s. This
setup attempts to model real-world behavior.

A few bytes of data were exchanged after each successful
connection establishment in order to verify the connection.

A. ‘Virtual Internet’ Environment

B

M

A

Fig. 3: ‘Virtual Internet’ Environment

Figure 3 shows this environment. Each box is implemented
as a virtual machine. The center box acts as a switch with
delay and bandwidth limitation for a crude Internet simulation.
More concretely, the delay between peers A and B is 30ms,
and the delay between any one peer and the mediator is 25ms.
The download bandwidth of the peers is limited to 2048 Kb/s,
the upload bandwidth to 192 Kb/s, corresponding, e.g., to a
typical 2 Mb/s DSL connection.

The NAT is implemented using standard iptables mas-
querading on Linux. This provides endpoint independent map-
ping, allowing only connection setup from the inside. Any
other packet is silently discarded.

The combination of one of the five considered operating
systems for peers A and B yields 25 different concrete setups.
On each of these setups, we performed tests for each of
the three scenarios (1) Concurrent connection requests, (2)
Successive connection requests, and (3) Random connection

5

NAT Hole Punching Revisited

requests. In all setups, the mediator was run on a virtual Linux
machine.

B. ‘Real Internet’ Environment

This environment matches Figure 3, with the center box
being the real Internet with two DSL connections to the NAT
boxes, and the mediator placed on campus. Because the main
focus of this environment is on testing real NAT boxes (as
opposed to the iptables simulation in the ‘Virtual Internet’
Environment), only two different setups, i.e., combinations of
OSes for peers A and B, were used, namely peer A always
running Windows 7 and peer B running either MacOS X or
Windows 7. The mediator was run on Mac OS. All tested
NAT boxes employed endpoint independent mapping, as well
as address and port dependent filtering.

V. EVALUATION

In this section we evaluate and compare the two techniques,
parallel vs. sequential hole punching, with respect to the four
criteria mentioned in section Section IV, namely performance,
implementation complexity, resource usage, and effectuality.

A. Performance

Figure 4 contains the plots for the ’virtual Internet’ environ-
ment. Please note that only results for parallel hole punching
are shown because sequential hole punching does not work in
this environment, as will be discussed in section Section V-D.

As can be seen, for peer B running MacOS X the connection
times are around 1sec in most cases. These times stem from
the fact that simultaneous TCP connection establishment on
MacOS X takes about 1sec, as we could observe in isolated
tests. Whenever neither peer A nor peer B run MacOS X,
then the mean connection setup times vary between 250ms
and 690ms.

Figure 5 shows the results for the ’real Internet’ environ-
ment. Please note that they were not taken in a controlled
environment, so individual packet delay or losses do affect
comparability. Sequential hole punching clearly shows an
about 2sec higher setup time, which is due to the 2sec timeout
specified in [3]. This timeout should cover most situations
without packet loss today, although slow or lossy connections
might become a problem. Even in developed countries, these
2sec may not be enough, especially for mobile Internet access,
where the mobile provider operates the NAT for its customers
and the wireless link may be unpredictable due to signal
quality or high usage.

Reducing the timeout would thus make the protocol less
robust. A significant reduction of the timeout would require the
introduction of retransmits to achieve a reasonable connection
chance. This would in effect make the protocol very similar to
parallel hole punching, both in performance and complexity.

B. Implementation Complexity

Sequential hole punching as described in Figure 2 is rather
straightforward to implement, as there are only few parallel
operations needed: None on peer A, and for peer B only to reg-
ularly send out keep-alive messages, which can be integrated

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]

MacOS X
Linux

Windows
FreeBSD

Solaris

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]

MacOS X
Linux

Windows
FreeBSD

Solaris

 0

 1000

 2000

 3000

MacOS X Linux Windows FreeBSD Solaris

Se
tu

p
tim

e
[m

s]

MacOS X
Linux

Windows
FreeBSD

Solaris

Fig. 4: Mean connection setup times for parallel hole punching
in the ’virtual Internet’ environment. The upper plot shows
the results for the concurrent connection requests scenario,
the middle plot for successive connection requests, and the
lower plot for random connection requests. Error bars indicate
minimum/maximum times. The labels on the X-axis denote
peer A’s operating system, the color code of the bars indicate
peer B’s operating system.

into the application main loop. However, Figure 2 assumes
that there is no packet loss in step 6 and the timeout was
chosen generous enough. When these assumptions fail (e.g.,
for wireless/mobile clients as described above), the protocol
will fail and recovery mechanisms need to be designed in,
which add further setup delays and complexity to the main
application having to deal with failures.

A parallel hole punching implementation requires more

6

NAT Hole Punching Revisited

 0

 1000

 2000

 3000

 4000

 5000

Windows MacOS X Windows MacOS X

Se
tu

p
tim

e
[m

s]

Parallel Sequential

Concurrent
Successive

Random

Fig. 5: Mean connection setup times in the ’real Internet’
environment. Error bars indicate minimum/maximum times.
The labels on the X-axis denote peer B’s operating system,
the color code of the bars indicate the scenario under test.

thought, as it needs to deal with simultaneous use of sockets
as described in Section III above. It also requires substantial
thread operations and synchronization, which adds to the
higher complexity of a parallel hole punching implementation.

C. Resource Usage

Parallel hole punching requires more resources on the peers
than sequential hole punching, as multiple threads need to be
running, more sockets are created and destroyed, and more
than one connection is open at the same time. Sequential hole
punching, on the other hand, requires more messages and more
actual connection setups and teardowns to the mediator.

Kernel resources for the mediator are higher for parallel hole
punching, as the mediator has to keep an open TCP connection
with each registered peer. For sequential hole punching, the
mediator can use a single UDP port to register all peers.
On the other hand, a mediator for sequential hole punching
needs to store some session information (correlator, corr,
see fig. 2), whereas a mediator for parallel hole punching can
be completely stateless and is thus better scalable.

In summary, there is little difference between the two
approaches from the perspective of the peers. This is especially
true because today even mobile end devices, such as smart-
phones, have enough storage and CPU resources to support
slightly more demanding applications. As far as the mediator
is concerned, whether fewer open connections or stateless
operation is preferable cannot be decided independent of the
concrete environment and usage.

D. Effectuality

During our experiments, it became clear that actual NAT
is harder to deal with than pure theory and message sequence
diagrams would implicate. Some of these effects are discussed
below, structured into NAT box problems (mapping and filter-
ing behavior, mapping loss, and SYN-ACK checks) and end-
system behavior (direct private connection, anti-virus tools,
and OS/Java limitations (discussed in Section III)). A summary
can be found in Table IV.

TABLE IV: Hole punching effectuality components

Effectuality Parallel Sequential

N
A

T Mapping + –
Mapping loss + –
SYN-ACK checks + –

H
os

t Direct connection + (–)
Anti-virus + –
OS support (–) +

1) Mapping: In Section II, endpoint independent mapping
was listed as a precondition for hole punching. However, even
if one side, say peer A, employs address dependent mapping,
hole punching can succeed under the following conditions:
• peer A uses the same external IP address for all mappings;
• peer B uses endpoint independent mapping in combina-

tion with address dependent filtering or a less restrictive
filter policy.

In this situation, sequential hole punching works only when
peer A’s NAT is address dependent, but not when B’s NAT
is. Parallel hole punching, on the other hand, will succeed in
both cases due to its symmetric behavior.

2) Mapping drop: A NAT box could immediately destroy
a connection context when the connection is reset or closed.
This is disastrous for the sequential approach, because if the
remote NAT on step 6 of Figure 2 returns a TCP RST message,
then the reverse connection in step 9 will fail.

For parallel hole punching, the SYN packets are likely to
cross outside the NATs eventually, and thus create a successful
simultaneous connection setup. Also, as long as not both NATs
reject packets with RST and drop mappings, parallel hole
punching will still succeed.

3) Linux iptables SYN-ACK check: Linux iptables
is very strict at checking the validity of packets: In a correct
simultaneous setup, the replayed SYN packet must contain
the same sequence number as the original SYN. Most if
not all NAT boxes, however, do not check this condition,
whereas iptables does. Iptables therefore uses some
form of connection-dependent filtering. This behavior prevents
all sequential hole punching attempts in the ‘Virtual Internet’
scenario from succeeding. There was no problem, however, for
parallel hole punching, as both a server and client socket are
active, therefore resulting in a simultaneous connection setup,
supported iptables behavior.

We did not observe this kind of filtering with our tested NAT
boxes. However, as iptables is frequently used in semi-
professional and SME contexts, a hole punching technique
should be able to deal with such behavior.

4) Direct private connection: Parallel hole punching na-
tively supports direct connections to private addresses. This
is done in an attempt to connect more efficiently to machines
behind the same NAT and can be done with minimal additional
overhead. While the same behavior could be implemented for
sequential hole punching, the sequential nature would require
waiting for an additional timeout (likely) or error (unlikely).

Sequential hole punching to a peer behind the same NAT
succeeds only if the NAT supports hair pinning, and otherwise

7

NAT Hole Punching Revisited

fails completely. With hair pinning, however, the connection
will unnecessarily traverse the NAT, leading to additional
resource utilization and poorer performance.

5) AVG anti-virus software: During our experiments, se-
quential hole punching failed when peer B was running Win-
dows with anti-virus software by AVG2. Close examination
with purpose-built test applications and Wireshark3 revealed
the following behavior introduced by AVG:

When connect() is called on a socket and then aborted
after the 2sec timeout, the application behavior is as expected.
However, Wireshark reveals that retransmits of that initial SYN
packet continue after 3 and 9sec, despite the connect()
having been aborted and the socket being closed in the
application at that time. However, the OS kernel still believes
the socket to be active. This discrepancy leads to the wrong
behavior, when the SYN packet from the final connection
establishment (step 9 in Figure 2) finally arrives: It connects
with the client socket, resulting in a simultaneous connection
setup. The application, however, has already abandoned that
socket, so no data transfer will be possible.

This problem could be reproduced on clean installations of
Windows 7 (32bit and 64bit variants) with the current version
of AVG Anti-Virus Free Edition 2011 (version 10.0.1191). As
AVG claims [7] their anti-virus products to be installed on
more than 110 million machines, this is a severe problem for
sequential hole punching. Parallel hole punching, once more,
is not affected by this problem.

E. Summary

Table V summarizes the comparison between parallel and
sequential hole punching.

TABLE V: Hole punching metric summary.

Metric Parallel Sequential

Effectuality + + + +
Performance + + +
Implementation – – –
Resources – –

As we have seen in section V-D, parallel hole punching is by
far the more effectual technique, as it can deal with a number
of non-standard and even adverse conditions. Sequential hole
punching, on the other hand, is more vulnerable under the
same circumstances. In terms of performance, parallel hole
punching is also superior to sequential hole punching. This
is mainly due to the timeout that is inherent to sequential
hole punching. The only criterion in favor of sequential hole
punching is implementation complexity. As we have discussed
in section V-B, parallel hole punching requires significantly
more complex code because of its high degree of multi-
threading. With respect to resource consumption, we do not
see a clear winner on either side.

2http://www.avg.de
3http://www.wireshark.org

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented and discussed Java im-
plementations of parallel and sequential hole punching. As
our evaluation has shown, parallel hole punching is, in most
respects, superior to sequential hole punching. Our open
source parallel hole punching implementation is available at
http://ice.in.htwg-konstanz.de/.

Plans on evolving this software are fourfold. First, to
evaluate the integration of port prediction for the rare case
of NAT boxes with address dependent mapping. Second, we
are working on an integrated approach for NAT traversal.
The goal is to minimize setup times by allowing the first
few data packets to go through the mediator and then be
seamlessly mapped to the direct connection. This is especially
useful for Java RMI between NATted hosts, where we plan
to integrate this feature as our third plan. Fourth, we are
working on ports onto mobile platforms. First results on
Android are available and back our hypothesis that modern
mobile devices are powerful enough to support the multi-
threading and advanced socket options requirements stemming
from parallel hole punching.

REFERENCES

[1] C. Aoun and E. Davies, “Reasons to Move the Network Address
Translator - Protocol Translator (NAT-PT) to Historic Status,” RFC 4966
(Informational), Internet Engineering Task Force, Jul. 2007. [Online].
Available: http://tools.ietf.org/html/rfc4966 I

[2] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, “Natblaster: Estab-
lishing tcp connections between hosts behind nats,” in ACM SIGCOMM
Asia Workshop, 2005. II-B

[3] J. L. Eppinger, “TCP Connections for P2P Apps: A Software Approach
to Solving the NAT Problem,” Carnegie Mellon University, Tech. Rep.,
Jan. 2005. II-B, 6, II-B, V-A

[4] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across
network address translators,” in In USENIX Annual Technical Conference,
2005, pp. 179–192. 1, II, II-A

[5] S. Guha, “Nutss: a sip-based approach to udp and tcp network connec-
tivity,” in SIGCOMM 2004 Workshops. ACM Press, 2004, pp. 43–48.
II-B

[6] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for Stateless
Address Autoconfiguration in IPv6,” RFC 4941 (Draft Standard),
Internet Engineering Task Force, Sep. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4941.txt I

[7] A. Technologies, “AVG Technologies - Unternehmensprofil.” [Online].
Available: http://free.avg.com/de-de/company-profile V-D5

[8] G. Tsirtsis and P. Srisuresh, “Network Address Translation - Protocol
Translation (NAT-PT),” RFC 2766 (Historic), Internet Engineering Task
Force, Feb. 2000, obsoleted by RFC 4966, updated by RFC 3152.
[Online]. Available: http://tools.ietf.org/html/rfc2766 I

8

http://www.avg.de
http://www.wireshark.org
http://ice.in.htwg-konstanz.de/
http://tools.ietf.org/html/rfc4966
http://www.ietf.org/rfc/rfc4941.txt
http://free.avg.com/de-de/company-profile
http://tools.ietf.org/html/rfc2766

	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-142409

