
G-NetMon: A GPU-accelerated Network
Performance Monitoring System for Large Scale

Scientific Collaborations

Wenji Wu, Phil DeMar, Don Holmgren, Amitoj Singh, Ruth Pordes
Computing Division, Fermilab

Batavia, IL 60510, USA
E-mail: {wenji, demar, djholm, amitoj, ruth}@fnal.gov

A bstract—Network traffic is difficult to monitor and
analyze, especially in high-bandwidth networks.
Performance analysis, in particular, presents extreme
complexity and scalability challenges. GPU (Graphics
Processing Unit) technology has been util ized recently to
accelerate general purpose scientific and engineering
computing. GPUs offer extreme thread-level parallelism
with hundreds of simple cores. Their data-parallel
execution model can rapidly solve large problems with
inherent data parallelism. At Fermilab, we have
prototyped a GPU-accelerated network performance
monitoring system, called G-NetMon, to support large-
scale scientific collaborations. In this work, we explore
new opportunities in network traffic monitoring and
analysis with GPUs. Our system exploits the data
parallelism that exists within network flow data to
provide fast analysis of bulk data movement between
Fermilab and collaboration sites. Experiments
demonstrate that our G-NetMon can rapidly detect sub-
optimal bulk data movements.

K ey w ords: GPU, Flow A naly sis, Netw ork Performance
Monitoring, High-speed netw w orks.

I. INTRODUCTION
Large-scale research efforts such as Large Hadron Collider

experiments and climate modeling are built upon large,
globally distributed collaborations. The datasets associated
with these projects commonly reach petabytes or tens of
petabytes per year. The ability to efficiently retrieve, store,
analyze, and redistribute the datasets generated by these
projects is extremely challenging. Such projects depend on
predictable and efficient data transfers between collaboration
sites. However, achieving and sustaining efficient data
movement over high-speed networks with TCP remains an on-
going challenge. Obstacles to efficient and sustainable data
movement arise from many causes and can create major
impediments to the success of large-scale science
collaborations. In practice, most sub-optimal data movement
problems go unnoticed. Ironically, although various
performance debugging tools and services are available to
assist in identifying and locating performance bottlenecks,
these tools cannot be applied until a problem is detected. In
many cases, effective measures are not taken to fix a
performance problem simply because the problem is either not

detected at all or not detected in a timely manner. Therefore, it
is extremely beneficial to possess a set of tools or services that
can quickly detect sub-optimal data movement for large-scale
scientific collaborations.

Generally speaking, network traffic is difficult to monitor
and analyze. Existing tools like Ping, Traceroute, OWAMP [1]
and SNMP provide only coarse-grained monitoring and
diagnosis data about network status [2][3]. It is very difficult to
use these tools to detect sub-optimal data movement. For
example, SNMP-based monitoring systems typically provide 1-
minute or 5-minute averages for network performance data of
interest. These averages may obscure the instantaneous
network status. On the other extreme, packet trace analysis
[4][5] involves traffic scrutiny on a per-packet basis and
requires high-performance computation and large-volume
storage. It faces extreme scalability challenges in high-speed
networks, especially as network technology evolves towards
100 Gbps. Flow-based data analysis, using router-generated
flow-data such as Cisco’s NetFlow [6] lies in between the two
extremes. It produces a finer-grained analysis than SNMP, yet
much less complex or voluminous as packet trace analysis. In
this paper, we use flow-based analysis to detect sub-optimal
data movements for large-scale scientific collaborations.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

$"

&!
!)
*%
%*
%&
+!
!"

&!
!)
*%
%*
%$
+!
,"

&!
!)
*%
%*
%,
+%
-"

&!
!)
*%
%*
&&
+!
!"

&!
!)
*%
%*
&$
+!
,"

&!
!)
*%
%*
&,
+%
-"

&!
!)
*%
&*
!&
+!
!"

&!
!)
*%
&*
!$
+!
,"

&!
!)
*%
&*
!,
+%
-"

&!
!)
*%
&*
%&
+!
!"

&!
!)
*%
&*
%$
+!
,"

&!
!)
*%
&*
%,
+%
-"

&!
!)
*%
&*
&&
+!
!"

.
/
0
1
2
3"
4
5"
67
4
8
"9
2
:4
3;
<"

=
>7
7>
4
?
<"

Figure 1 Number of Flow Records Generated at
Fermilab Border Routers

To quickly detect sub-optimal data movements, it is

necessary to calculate transfer rates between collaboration sites
on an ongoing basis. Sub-optimal bulk data movement is
detected if the associated transfer rate falls below some
standard that is either predefined or provided by other network
services. To this end, we use network flow data to calculate

transfer rates between Fermilab and collaboration sites. Our
flow-based analysis requires traffic scrutiny on a per-flow-
record basis. In high-bandwidth networks, hundreds of
thousands of flow records are generated each minute. Fermilab
is the Tier-1 Center for the Large Hadron Collider’s (LHC)
Compact Muon Solenoid (CMS) experiment, as well as the
central data center for several other large-scale research
collaborations. Scientific data (e.g., CMS) dominates off-site
traffic volumes in both inbound and outbound directions. Every
hour, millions of flow records are generated at Fermilab border
routers (Figure 1). Processing that much flow data in near real
time requires both enormous raw compute power and high I/O
throughputs.

Recently, GPU technology has been employed to accelerate
general purpose scientific and engineering computing. GPUs
offer extreme thread-level parallelism with hundreds of simple
cores. The massive array of GPU cores offers an order of
magnitude higher raw computation power than a conventional
CPU. Its data-parallel execution model and ample memory
bandwidth effectively hide memory access latency and can
boost I/O intensive applications with inherent data parallelism.

At Fermilab, we have prototyped a GPU-accelerated
network performance monitoring system (G-NetMon) for our
large-scale scientific collaborations. In this work, we explore
new opportunities in network traffic monitoring and analysis
with GPUs. G-NetMon exploits the inherent data parallelism
that exists within network flow data and uses a GPU to rapidly
calculate transfer rates between Fermilab and collaboration
sites in near real time. Experiments demonstrate that GPU can
accelerate network flow data processing by a factor of 5 or
more. G-NetMon can rapidly detect sub-optimal bulk data
movement.

The rest of the paper is organized as follows. In section 2,
we discuss some background and related work. In section 3, we
introduce our G-NetMON design. In section 4, we discuss the
experiments we used to evaluate how GPU can accelerate
network flow data processing in high-speed network
environments. Also, we evaluate how our system can
effectively detect sub-optimal data transfer between Fermilab
and collaboration sites. Finally, Section 5 concludes the paper.

II. BACKGROUND & RELATED WORK
The rapidly growing popularity of GPUs makes them a

natural choice for high-performance computing. Our GPU-
accelerated network performance monitoring system is based
on NVIDIA’s Tesla C2070, featuring NVIDIA’s latest Fermi
GPU architecture. In the following sections, we give a simple
introduction of NVIDIA’s CUDA programming model and the
Fermi GPU architecture.

A. CUDA and the Fermi GPU Architecture
CUDA is the hardware and software architecture that

enables NVIDIA GPUs to execute programs written with C,
C++, and other languages. It provides a simple programming
model that allows application developers to easily program
GPU and explicitly express parallelism. A CUDA program
consists of parts that are executed on the host (CPU) and parts
on the GPU. The parts that exhibit little or no data parallelism
are implemented as sequential CPU threads. The parts that
exhibit a rich amount of data parallelism are implemented as

GPU kernels. GPU instantiates a kernel program on a grid of
parallel thread blocks. Each thread within a thread block
executes an instance of the kernel, and has a per-thread ID,
program counter, registers, and private memory. Threads
within a thread block can cooperate among themselves through
barrier synchronization and shared memory. Thread blocks are
grouped into grids, each of which executes a unique kernel.
Each thread block has a unique block ID. A thread indexes its
data with its respective thread ID and block ID.

NVIDIA’s Fermi GPU architecture consists of multiple
streaming multiprocessors (SMs), each consisting of 32 CUDA
cores. A CUDA core executes a floating-point or integer
instruction per clock for a thread. Each SM has 16 load/store
units, allowing source and destination addresses to be
calculated for sixteen threads per clock and 4 special function
units (SFUs) to execute transcendental instructions. The SM
schedules threads in groups of 32 parallel threads called warps.
Each SM features two warp schedulers and two instruction
dispatch units, allowing two warps to be issued and executed
concurrently. The execution resources in a SM include
registers, thread block slots, and thread slots. These resources
are dynamically partitioned and assigned to threads to support
their execution. We list these resource limits per SM in Table
1. In addition, the Fermi GPU has six 64-bit memory partitions,
for a 384-bit memory interface, supporting up to a total of 6
GB of GDDR5 DRAM memory. A host interface connects the
GPU to the CPU via PCI-Express. The GigaThread global
scheduler distributes thread blocks to SM thread schedulers.

Table 1 Physical Limits per SM for Fermi GPU
Maximum Warps: 48
Maximum Threads: 1536
Maximum Blocks: 8
Shared Memory: 48K
Register Count: 32K

B. GPU in Network Related Applications
GPU offers extreme thread-level parallelism with hundreds

of simple cores. The massive array of GPU cores offers an
order of magnitude higher raw computation power than a
conventional CPU. GPU’s data-parallel execution model and
ample memory bandwidth fits nicely with most networking
applications, which have inherent data parallelism at either
packet level or at network data flow level. Recently, GPUs
have shown a substantial performance boost to many network
applications, including GPU-accelerated software router [7],
pattern matching [8][9][10], network coding [11], IP table
lookup [8], and cryptography [12]. So far, the application of
GPU in network applications is manly focusing at packet level.
In this work, we make use of GPU to accelerate network flow
data analysis.

C. Flow-based Analysis
Flow-based analysis is widely used in traffic engineering

[13][14], anomaly detection [15][16], traffic classification
[17][18], performance analysis, and security [19][20][21], etc.
For example, Internet2 makes use of flow data to generate
traffic summary information by breaking the data down in a
number of ways, including by IP protocol, by a well-known
service or application, by IP prefixes associated with “local”

networks, or by the AS pairs between which the traffic was
exchanged. In [15], the sub-space method is applied to flow
traffic to detect network-wide anomalies.

III. G-NETMON SYSTEM DESIGN
To quickly detect sub-optimal data movements, G-NetMon

uses network flow data to calculate transfer rates between
Fermilab and collaboration sites on an on-going basis. A sub-
optimal bulk data movement is detected if the associated
transfer rates fall below some standard that is either predefined
or provided by other network services. Our GPU-accelerated
network performance monitoring system is deployed as shown
in Figure 2. It receives flow data from site border routers as
well as internal LAN routers. The routers export NetFlow V5
records. The flow data is complete, not sampled.

A. System Hardware Configuraton
Our flow-based analysis requires traffic scrutiny on a per-

flow-record basis. Fermilab is the US-CMS Tier-1 Center and
the main data center for a few other large-scale research
collaborations. Every hour, millions of flow records are
generated at Fermilab border routers (Figure 1). Considering
the increasing volume of scientific data created every year,
coupled with the evolution towards to 100 GigE network
technologies, it is anticipated that our network flow data
analysis requirements will be increasing accordingly.
Therefore, our G-NetMon not only needs to handle current
network conditions, but have the capability to accommodate
the large growth of traffic expected in the near future. For now,
Fermilab border routers generate less than 5,000,000 flow
records every hour. Our target is to allow G-NetMon to handle
50,000,000 flow records per hour.

R&E

Networks

FNAL Site

Border

Routers

CPU

HUB

GPU

NIC

Network Performance

Monitoring System

CPU
CPU

RAM

Tesla C2070

FlowData

Feed

Figure 2 G-NetMon – Deployment

G-NetMon is implemented in a system that consists of two
8-Core 2.4 GHz AMD Opteron 6136 processors, two 1Gbps
Ethernet interfaces, 32 GB of system memory, and one Tesla
C2070 GPU. The Tesla C2070 GPU features the Fermi GPU
architecture. Its key features are listed in Table 2.

Table 2 Tesla C2070 Key Features
SMs: 14
Cores: 448
Core Freq.: 1.15 GHz
Global Memory Size: 6GB GDDR5
Memory Bandwidth: 144 GB/s
System Interface: PCIex16 Gen2
Double Precision Peak
Performance: 515 GFlops

B. System Architecture
The G-NetMon architecture is as shown in Figure 3. The

system consists of a few parts that are executed on either the
host (CPU) or GPU. Based on the CUDA design principle, the
parts that exhibit little or no data parallelism are implemented
as sequential CPU threads; the parts that exhibit a rich amount
of data parallelism are implemented as GPU kernels.

FlowData

Receiver

NetFlow v5

(UDP)

Flow Data

Store
Site Catalog C

P
U

 D
o

m
a

in
G

P
U

 D
o

m
a

in

Site

Registration

Flow Data

Store

Site

Registration

Copy

TransRate

Kernel

Catalog

Kernel

G
P

U

S
ite

 C
a
ta

lo
g

TranRate

Statistics

TranRate

Statistics

NetPerf

Monitoring

Performance

Warning

Figure 3 A G-NetMon – Architecture

B.1 CPU Domain

Three CPU threads are implemented in the CPU domain.
Site Registration Thread: it registers scientific subnets

to our network performance monitoring system. The registered
subnets are stored in the Site Catalog (a data buffer in host
memory), which helps to identify scientific data transfer
between Fermilab and collaboration sites. Large-scale research
efforts like LHC CMS are built upon large, globally distributed
collaborations. However, available computing and networking
resources at different collaboration sites varies greatly. Larger
sites, such as Fermilab, have data centers comprising thousands
of computation nodes that function as massively scaled, highly
distributed cluster-computing platforms. These sites are usually
well connected to the outside world with high-bandwidth links
of 10 Gbps or more. On the other hand, some small
collaboration sites have limited computing resources and
significantly lower bandwidth-networking connectivity.
Therefore, scientific data transfers between collaboration sites
can vary greatly in terms of performance and scale. It is
difficult to design machine-learning algorithms to
automatically identify scientific data transfers in terms of
traffic patterns or characteristics. However, for a large-scale
scientific application, the collaboration relationships between
research institutions tend to be relatively static. In addition, the
systems and networks assigned to a scientific application at a
site are relatively fixed. Large-scale scientific data movement
usually occurs between some specific subnets at each site.
Therefore, by registering these subnets to our system, we can
easily monitor data transfers between Fermilab and its
collaboration sites through flow analysis of traffic between
those subnets.

FlowData Receiver Thread: a UDP daemon, which
receives NetFlow V5 packets from border routers. The received
flow records are stored in Flow Data Store (a data buffer in
host memory). In the current implementation, Flow Data Store
is designed to hold 50,000,000 flow records. Since a NetFlow
V5 flow record is less than 50 Bytes, these 50,000,000 flow
records require approximately 2.5GB of memory. Processed
flow records in Flow Data Store are periodically cleaned and
stored to disk to create space for subsequent network flow data.

NetPerf Monitoring Thread: the main thread of our
network performance monitoring system. Periodically (each
hour), it copies Site Catalog and Flow Data Store to GPU
memory and launches the corresponding GPU kernels to
calculate the transfer rates between Fermilab and its
collaboration sites. When GPU computation is completed, the
NetPerf Monitoring Thread will synthesize the final results. A
sub-optimal bulk data movement is detected if the associated
transfer rates are below some predefined standard. Considering
that TCP traffic is elastic, we use the statistics of transfer rate
medians as our evaluation criteria. For a given site, network
performance warnings would be issued if the associated
median were less than 1Mbps for two consecutive hours.

B.2 GPU Domain

1) GPU Kernels

In the GPU domain, we have implemented two GPU
kernels, Catalog Kernel and TransRate Kernel.

Catalog Kernel: it builds GPU Site Catalog, a hash table
for registered scientific subnets in GPU memory, from Site
Catalog. TransRate Kernel makes use of GPU Site Catalog to
rapidly assign flow records to their respective subnets by
examining their source or destination IP addresses. To make
the hash table easy to implement and fast to search, all
registered networks are transformed into /24 subnets and then
entered in GPU Site Catalog. For the sake of scientific data
transfer, a /24 subnet is large enough for most collaboration
sites. Any network larger than /24 is divided into multiple
entries in the hash table. Since GPU Site Catalog is mainly
used for lookup operations and is rarely updated, there is no
need to implement locks to protect unsynchronized write
accesses. If any update is necessary, the table is rebuilt from
scratch.

TransRate Kernel: it calculates the transfer rates
between Fermilab and its collaboration sites. TransRate Kernel
exploits the inherent data parallelism that exists within network
flow data. When GPU instantiates TransRate Kernel on a grid
of parallel threads, each thread handles a separate flow record.
On a C2070 GPU, thousands of flow records can be processed
simultaneously. To handle a flow record, a TransRate thread
first attempts to assign the flow record to its respective site and
then calculates the corresponding transfer rates. With a hash of
the /24 subnet of the flow record’s source or destination IP
address, TransRate Kernel looks up the site to which the flow
record belongs in GPU Site Catalog. Because each flow record
includes data such as the number of packets and bytes in the
flow and the timestamps of the first and last packet, calculation
of transfer rate is simple. However, two additional factors must
be considered. First, because a TCP connection is bidirectional,
it will generate two flow records, one in each direction. In
practice, a bulk data movement is usually unidirectional. Only

the flow records in the forward direction reflect the true data
transfer activities. The flow records in the other direction
simply record the pure ACKs of the reverse path and should be
excluded from transfer rate calculations. These flow records
can be easily filtered out by calculating their average packet
size, which is usually small. Second, a bulk data movement
usually involves frequent administrative message exchanges
between the two endpoints. A significant number of flow
records are generated due to these activities. These records
usually contain a small number of packets with short durations;
their calculated transfer rates are generally of low accuracy and
high variability. These flow records are also excluded from our
transfer rate calculation.

We calculate transfer rates (maximum, minimum, average,
median) for each registered site and for each host in a
registered site. To calculate the median statistics, we create an
array of buckets for each host to count transfer rate frequencies.
Each bucket represents a 10kbps interval. To save space, all
transfer rates greater than 100Mpbs are counted in the last
bucket. Therefore, for each host, we maintain a bucket array of
size 10001. A bucket n represents the frequency of flow rates
that fall within the interval [n*10kbps (n+1)*10kbps]. From the
resulting bucket counts we determine the host and site medians.
We use atomic CUDA operations to calculate and store all
transfer rates in order to prevent unsynchronized data accesses
by the threads.

2). GPU Kernel Optimization

The Catalog Kernel is relatively simple, with few
opportunities for optimization. In fact, its functionality could be
included in TransRate Kernel. However, because the overhead
to launch a kernel is negligible [7], we have chosen to
implement it as an independent kernel to preserve a modular
design.

Our TransRate kernel is optimized using various
approaches:
• Register Spilling Optimization. Without this optimization,

a TransRate thread will use 47 registers. These registers
hold compiler-generated variables. Because registers are
in-chip memories that can be accessed rapidly, a single
thread’s performance increases if registers are readily
available. However, when we used the CUDA Occupancy
Calculator to measure SM occupancy with varying block
sizes, to our surprise, the occupancy rates were
unacceptably low (Table 3). At such a low SM occupancy,
the overall GPU performance would be greatly degraded.
The improvement in each single thread cannot make up for
the loss in overall thread parallelism. To raise GPU
occupancy, we limit the maximum number of registers
used by TransRate to 20 by compiling this kernel with the
“-maxrregcount 20” option. As shown in Table 3, this
register spilling optimization is effective, and the best
GPU occupancy achieved as the number of threads per
block is varied is now 100%.

• Shared memory. Shared memories are on-chip memories
and can be accessed at very high speed in a highly parallel
manner. The TransRate kernel makes use of shared
memory as much as possible to accelerate flow data
processing.

• Non-caching Load. Fermi architecture global memory has
two types of loads, caching and non-caching. The caching
load is the default mode. It first attempts to load from L1
cache, then from L2 cache, and finally from the global
memory. The load granularity is 128 bytes. The non-
caching load first attempts to hit in L2, and then the global
memory. Its load granularity is 32 bytes. Our experiments
show that non-caching load can boost the performance by
at least 10%, and so the optimized TransRate kernel uses
non-caching load to access Flow Data Store.

Table 3 SM Occupancy Rates at Different Kernel
Block Sizes

Thread Size per Block 64 128 256 512
SM Occupancy Rates

@ Register/Thread=47 33% 42% 33% 33%

SM Occupancy Rates
@ Register/Thread=20 33% 67% 100% 100%

IV. EXPERIMENTAL EVALUATION
In this section, we show results of our experimental

evaluation of G-NetMon. First, we evaluate the performance of
our G-NetMon system. Also, we study how GPU can
accelerate network flow data processing in high-volume
network data flow environments. Second, we deploy our G-
NetMon in Fermilab production environments. We evaluate
how G-NetMon can effectively detect sub-optimal data
transfers between Fermilab and its collaboration sites.

A. Performance Evaluation
At present, Fermilab border routers produce fewer than

5,000,000 flow records in an hour. However, our G-NetMon
system is designed to handle a maximum load of 50,000,000
flow records per hour. To evaluate the capabilities and
performance of our system at such a network load, we collected
more than a day’s flow records from the border routers and fed
G-NetMon with 50,000,000 flow records. FlowData Receiver
Thread receives these flow records and stores them in Flow
Data Store. We also select the top 100 /24 scientific subnets
that transfer to and from Fermilab in terms of traffic volume,
and register them with Site Catalog.

A.1 GPU Performance & Optimization
To evaluate GPU performance, and the effects of various

GPU kernel optimization approaches, we have implemented
several G-NetMon variants with different enabled
optimizations. Our objectives are to compare effects:
• Shared-Memory vs. Non-Shared-Memory. For Non-

Shared-Memory, the TransRate Kernel does not use shared
memory, and all the operations are executed on GPU
global memory.

• Caching-Load vs. Non-Caching-Load.
• Hash-Table-Search vs. Non-Hash-Table-Search

(sequential search). To calculate transfer rates between
Fermilab and collaboration sites, it is first necessary to
assign flow records to their respective sites. G-NetMon
implements a hash table to perform this function. We have

also implemented a Non-Hash-Table method (i.e.,
sequential search) in which all of the registered scientific
subnets are maintained in a sequential list. To categorize a
flow record, the TransRate kernel searches the list one by
one until a matching site, or none, is found.

We list all the G-NetMon variants according to enabled
optimizations in Table 4. In the table, “Y” indicates that the
“xxx” optimization is enabled, while “N” indicates the
optimization is not used. We enabled the register-spilling
optimization when compiling all of these GPU variants, and so
the TransRate Kernel is launched with 100% occupancy. We
ran experiments to measure the rates at which these G-NetMon
variants process network flow data and compared them with
the performance of the fully optimized G-NetMon.

Table 4 GPU Variants with Different Features

GPU Variants
Features

Hash
Table

Share-
Memory

Caching
Load

G-NetMon Y Y N
NH-S-C-GPU N Y Y

NH-NS-C-GPU N N Y
NH-NS-NC-GPU N N N

H-NS-C-GPU Y N Y
H-NS-NC-GPU Y N N

H-S-C-GPU Y Y Y
NH-S-NC-GPU N Y N

Figure 4 GPU Processing Time

 The NetPerf Monitoring thread copies Site Catalog and Flow
Data Store to GPU memory and launches the corresponding
GPU kernels to calculate the transfer rates. We evaluate how
fast GPU can handle these data. The experiment results are
shown in Figure 4. To handle 50,000,000 flow records, G-
NetMon takes approximately 900 milliseconds. The effects of
the various GPU kernel optimizations are shown. For example,
with the combination of hash table and non-caching-load,
shared-memory can accelerate flow record processing by as
much as 9.51%. As discussed above, shared memories are on-
chip memories that can be accessed at very high speed in a
highly parallel manner. The experiment results show that the
hash table mechanism significantly boosts G-NetMon
performance, ranging from 11% to 20%. We used NVIDIA’s
Compute Visual Profiler to profile the TransRate Kernel
execution. Figure 5 gives the “Instruction Issued” comparisons
of Hash-Table vs. Non-Hash-Table of all GPU code variants.

These experiments show that the hash table mechanism can
significantly reduce flow record categorization overheads.

Figure 5 Hash-Table (in Red) vs. Non-Hash-Table (in Blue)

 To our surprise, Figure 4 shows that non-caching-load boosts
the performance significantly, by more than 10%. We speculate
that the non-caching-load mode better fits G-NetMon’s traffic
pattern. When using the caching load, the performance gain in
L1 cache does not compensate for the performance loss caused
by the larger load granularity. Table 5 gives the comparisons of
caching load vs. non-caching load for various memory access
parameters. We see that caching load causes higher memory
traffic, degrading the overall performance.

Table 5 Caching-Load vs. Non-Caching-Load

 G-NetMon H-S-C-GPU
L2 Read Requests 1.61835e+08 2.98727e+08
L2 Write Requests 1.15432e+07 1.61657e+07
Global Memory
Read Requests 2.17803e+08 2.48466e+08

Global Memory
Write Requests 3.01409e+07 3.22455e+07

A.2 GPU vs. CPU
 In order to evaluate how GPU can accelerate network flow
data processing in high-bandwidth network environments, we
compare G-NetMon with its corresponding CPU
implementations. We implemented two CPU variants, which
are termed H-CPU and NH-CPU, respectively. Like G-
NetMon, H-CPU applies a hash table mechanism to rapidly
assign flow records to their respective sites and then calculates
the corresponding transfer rates. In contrast, NH-CPU
implements a similar Non-Hash-Table method (sequential
search) as NH-S-NC-GPU, in which all of the registered
scientific subnets are maintained in a sequential list. To assign
a flow record, CPU searches the list one by one until a
matching site, or none, is found. We ran each of H-CPU and
NH-CPU on a single 2.4 GHz AMD Opteron 6136 core, with
the same set of data as used above. We make the comparisons
of G-NetMon vs. H-CPU and NH-S-NC-GPU vs. NH-CPU.
The results are shown in Figure 6. It takes H-CPU 4916.67 ms
to handle 50,000,000 flow records; in contrast, G-NetMon
requires 900ms. For the non-hash-table variants, NH-CPU and
NH-S-NC-GPU take 36336.67 ms and 1098.23 ms,
respectively. The comparisons clearly show that GPU can
significantly accelerate the flow data processing, by a factor of

5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-
NC-GPU vs. NH-CPU). The reason that we present the
comparison of GPU vs. CPU for the non-hash-table
implementations is because many network applications feature
a similar sequential search computation pattern as our non-
hash-table implementations. For example, a network security
application needs to examine each packet or flow with security
rules one by one. The experiment results show GPU can
significantly accelerate the data processing.

Figure 6 G-NetMon vs. CPU

A.3 Receiving Flow Records
 G-NetMon receives NetFlow V5 packets from border routers
via UDP. The received flow records are stored in Flow Data
Store. A NetFlow V5 flow record is 48 bytes. A 1500-byte
UDP packet, the largest allowed by standard Ethernet at the
network, can transmit at most 30 flow records. Our G-NetMon
system is designed to handle a maximum load of 50,000,000
flow records per hour. Therefore, the FlowData Receiver
thread needs to handle at least 463 packets per second, which
amounts to an average traffic load of 5.56Mbps. Our G-
NetMon system can easily handle such a traffic load. However,
because the flow records are transmitted via UDP, if CPU is
busy with other tasks and the FlowData Receiver thread is not
scheduled to handle the NetFlow traffic in time, the incoming
packets can be dropped when the UDP receive buffer is full.
We have run experiments to verify this scenario. In the
experiments, the FlowData Receiver thread was assigned to
share a core with a CPU-intensive application and the UDP
receive buffer size was set to 4MB. We then sent it UDP traffic
at varying rates, ranging from 100Mbps to 1Gbps, for 0.5
seconds. When the UDP traffic rates reached 500Mbps or
above, serious packet loss would occur. We repeated the above
experiments with the FlowData Receiver thread assigned a
dedicated core. No packet loss was detected. Therefore, to
avoid the situation of NetFlow packets being dropped, G-
NetMon assigns a dedicated core for the FlowData Receiver
thread to handle NetFlow traffic.

B. Network Performance Monitoring
 We have registered 100 /24 scientific subnets that transfer to
and from Fermilab in G-NetMon. G-NetMon monitors the bulk
data movement status between Fermilab and these subnets by
calculating the corresponding data transfer statistics every hour.
G-NetMon calculates the transfer rates (maximum, minimum,

average, median) for each registered site and for each host in a
registered site. Figure 7 gives the data transfer rates in an hour
between Fermilab and a collaboration site.
 A sub-optimal bulk data movement is detected if the
associated transfer rate falls below a predefined standard.
Considering that TCP traffic is elastic and network conditions
are volatile, we use the statistics of transfer rate medians as our
evaluation criteria. For a given site, network performance
warnings would be issued if the associated median were less
than 1Mbps for two consecutive hours.
 To evaluate the effectiveness of G-NetMon in detecting sub-
optimal bulk data movements, we investigated the G-NetMon
warnings for a period of two weeks. During this period, G-
NetMon issued performance warnings for 7 sites in total (there
were multiple warnings for the same sites). For those sites that
G-NetMon issued warnings, we contacted their network
administrators to conduct end-to-end performance analysis.
Five sites responded to our requests. The end-to-end
performance analysis indicated poor network conditions
between these sites and Fermilab. To our surprise, one site in
Greece is even connected to the outside world with a 100 Mbps
link. The investigation of these warnings demonstrated that our
G-NetMon can effectively detect sub-optimal bulk data
movements in a timely manner. G-NetMon can detect a sub-
optimal bulk data movement in two hours.

V. CONCLUSION & DISCUSSION
 At Fermilab, we have prototyped a GPU-accelerated network
performance monitoring system for large-scale scientific
collaborations, called G-NetMon. Our system exploits the
inherent data parallelism that exists within network data flows
and can rapidly analyze bulk data movements between
Fermilab and its collaboration sites. Experiments demonstrate
that our G-NetMon can detect sub-optimal bulk data movement
in time.
 Considering TCP traffic is elastic and network conditions are
volatile, our G-NetMon system applies a very conservative
approach to issue performance warnings. G-NetMon is chosen
to perform transfer rate analysis every hour. Running G-
NetMon with shorter intervals can detect sub-optimal bulk data
movement faster. However, it would also generate more
ephemeral warnings and finally degrade our system’s
effectiveness.
 The main purpose of this work is to explore new
opportunities in network traffic monitoring and analysis with

GPUs. The experiment results show that GPU can significantly
accelerate the flow data processing, by a factor of 5.38 (G-
NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU
vs. NH-CPU). At present, G-NetMon is designed to detect sub-
optimal bulk data movements. In the future, we will enhance it
with security features. To implement security features, G-
NetMon needs to examine flow records with security rules one
by one in real time or semi-real time, which require more
computation capabilities. The computation pattern of
examining flow records with security rules one by one is
similar to that of the non-hash-table implementations discussed
in the paper, in which GPU can significantly accelerate the
flow data processing.

REFERENCES

[1] OWAMP website, http://www.internet2.edu/performance/owamp/
[2] K. Papagiannaki, R. Cruz, C. Diot, “network performance monitoring

at small time scales,” Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, Miami Beach, FL, USA, 2003.

[3] T. Benson, A. Anand, A. Akella, M. Zhang, “Understanding Data
Center Traffic Characteristics,” In Proceedings of ACM WREN,
2009.

[4] V. Paxson, “Automated packet trace analysis of TCP
implementations,” In Proceedings of SIGCOMM’97, 1997.

[5] V. Paxson, “End-to-End Internet packet dynamics,” In proceedings of
SIGCOMM’97, 1997.

[6] NetFlow website, http://www.cisco.com/
[7] S. Han, K. Jang, K. Park, S. Moon, “PacketShader, a GPU-

Accelerated Software Router,” In Proceedings of SIGCOMM’10,
New Delhi, India.

[8] S. Mu, X. Zhang, N. Zhang, J. Lu, Y.S. Deng, and S. Zhang, “IP
Routing Processing with Graphic Processors,” In Design, Automation
& Test in Europe Conference & Exhibition, 2010.

[9] R. Smith, N. Goyal, J. Ormont, C. Estan, and K. Sankaralingam,
“Evaluating GPUs for Network Packet Signature Matching,” In IEEE
ISPASS, 2009.

[10] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S.
Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” In Proceedings of Recent Advances in
Intrusion Detection (RAID), 2008.

[11] H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-accelerated many-
core network coding,” in IEEE INFOCOM, 2009.

[12] O. Harrison and J. Waldron, “Practical Symmetric Key Cryptography
on Modern Graphics Hardware,” In USENIX Security, 2008.

[13] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft. Structural Analysis of Network Traffic Flows. In ACM
SIGMETRICS’04, New York, June 2004.

[14] A. Kalafut, J. Merwe, M. Gupta, “Communities of interest for
internet traffic prioritization,” In Proceedings of 28th IEEE
International Conference on Computer Communications Workshops,
2009.

Figure 7 Transfer rates between Fermilab and a Collaboration Site

[15] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-Wide

Traffic Anomalies,” In Proceedings of ACM SIGCOMM’04, 2004.
[16] A. Lakhina, M. Crovella, C. Diot, “Characterization of Network-

Wide Anomalies in Traffic Flows,” In Proceedings of IMC’04, 2004.
[17] J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy, W.

Willinger. A methodology for studying persistency aspects of internet
flows,” SIGCOMM Comput. Commun. Rev. 35, 2 (2005).

[18] Internet2 NetFlow, http://netflow.internet2.edu/weekly/
[19] R. Sommer and A. Feldmann, “NetFlow: Information loss or win?,”

in Proc. ACM Internet Measurement Workshop, 2002.
[20] C. Gates, M. Collins, M. Duggan, A. Kompanek, M. Thomas, “More

netflow tools: for performance and security,” In Proceedings of
LISA’04, 2004.

[21] V. Krmicek, J. Vykopal, R. Krejci, “Netflow based system for NAT
detection,” In Proceedings of 5th international student workshop on
emerging networking experiments and technologies, 2009.

