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A bstract—Network traffic is  difficult to monitor and 
analyze, especially in high-bandwidth networks. 
Performance analysis,  in particular, presents extreme 
complexity and scalability challenges. GPU (Graphics 
Processing Unit) technology has been util ized recently to 
accelerate general purpose scientific and engineering 
computing. GPUs offer extreme thread-level parallelism 
with hundreds of simple cores.  Their data-parallel  
execution model can rapidly solve large problems with 
inherent data parallelism. At Fermilab, we have 
prototyped a GPU-accelerated network performance 
monitoring system, called G-NetMon, to support large-
scale scientific collaborations. In this work, we explore 
new opportunities in network traffic monitoring and 
analysis with GPUs. Our system exploits the data 
parallelism that exists within network flow data to 
provide fast analysis of bulk data movement between 
Fermilab and collaboration sites.  Experiments 
demonstrate that our G-NetMon can rapidly detect sub-
optimal bulk data movements.  

K ey w ords: GPU, Flow  A naly sis,  Netw ork Performance 
Monitoring, High-speed netw w orks.  

I.  INTRODUCTION 
Large-scale research efforts such as Large Hadron Collider 

experiments and climate modeling are built upon large, 
globally distributed collaborations. The datasets associated 
with these projects commonly reach petabytes or tens of 
petabytes per year. The ability to efficiently retrieve, store, 
analyze, and redistribute the datasets generated by these 
projects is extremely challenging. Such projects depend on 
predictable and efficient data transfers between collaboration 
sites. However, achieving and sustaining efficient data 
movement over high-speed networks with TCP remains an on-
going challenge. Obstacles to efficient and sustainable data 
movement arise from many causes and can create major 
impediments to the success of large-scale science 
collaborations. In practice, most sub-optimal data movement 
problems go unnoticed. Ironically, although various 
performance debugging tools and services are available to 
assist in identifying and locating performance bottlenecks, 
these tools cannot be applied until a problem is detected. In 
many cases, effective measures are not taken to fix a 
performance problem simply because the problem is either not 

detected at all or not detected in a timely manner. Therefore, it 
is extremely beneficial to possess a set of tools or services that 
can quickly detect sub-optimal data movement for large-scale 
scientific collaborations. 

Generally speaking, network traffic is difficult to monitor 
and analyze. Existing tools like Ping, Traceroute, OWAMP [1] 
and SNMP provide only coarse-grained monitoring and 
diagnosis data about network status [2][3]. It is very difficult to 
use these tools to detect sub-optimal data movement. For 
example, SNMP-based monitoring systems typically provide 1-
minute or 5-minute averages for network performance data of 
interest. These averages may obscure the instantaneous 
network status. On the other extreme, packet trace analysis 
[4][5] involves traffic scrutiny on a per-packet basis and 
requires high-performance computation and large-volume 
storage. It faces extreme scalability challenges in high-speed 
networks, especially as network technology evolves towards 
100 Gbps. Flow-based data analysis, using router-generated 
flow-data such as Cisco’s NetFlow [6] lies in between the two 
extremes. It produces a finer-grained analysis than SNMP, yet 
much less complex or voluminous as packet trace analysis. In 
this paper, we use flow-based analysis to detect sub-optimal 
data movements for large-scale scientific collaborations. 
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Figure 1 Number of Flow Records Generated at 
Fermilab Border Routers 

 
To quickly detect sub-optimal data movements, it is 

necessary to calculate transfer rates between collaboration sites 
on an ongoing basis. Sub-optimal bulk data movement is 
detected if the associated transfer rate falls below some 
standard that is either predefined or provided by other network 
services. To this end, we use network flow data to calculate 



transfer rates between Fermilab and collaboration sites. Our 
flow-based analysis requires traffic scrutiny on a per-flow-
record basis. In high-bandwidth networks, hundreds of 
thousands of flow records are generated each minute. Fermilab 
is the Tier-1 Center for the Large Hadron Collider’s (LHC) 
Compact Muon Solenoid (CMS) experiment, as well as the 
central data center for several other large-scale research 
collaborations. Scientific data (e.g., CMS) dominates off-site 
traffic volumes in both inbound and outbound directions. Every 
hour, millions of flow records are generated at Fermilab border 
routers (Figure 1). Processing that much flow data in near real 
time requires both enormous raw compute power and high I/O 
throughputs. 

Recently, GPU technology has been employed to accelerate 
general purpose scientific and engineering computing. GPUs 
offer extreme thread-level parallelism with hundreds of simple 
cores. The massive array of GPU cores offers an order of 
magnitude higher raw computation power than a conventional 
CPU. Its data-parallel execution model and ample memory 
bandwidth effectively hide memory access latency and can 
boost I/O intensive applications with inherent data parallelism.  

At Fermilab, we have prototyped a GPU-accelerated 
network performance monitoring system (G-NetMon) for our 
large-scale scientific collaborations. In this work, we explore 
new opportunities in network traffic monitoring and analysis 
with GPUs. G-NetMon exploits the inherent data parallelism 
that exists within network flow data and uses a GPU to rapidly 
calculate transfer rates between Fermilab and collaboration 
sites in near real time.  Experiments demonstrate that GPU can 
accelerate network flow data processing by a factor of 5 or 
more. G-NetMon can rapidly detect sub-optimal bulk data 
movement. 

The rest of the paper is organized as follows. In section 2, 
we discuss some background and related work. In section 3, we 
introduce our G-NetMON design. In section 4, we discuss the 
experiments we used to evaluate how GPU can accelerate 
network flow data processing in high-speed network 
environments. Also, we evaluate how our system can 
effectively detect sub-optimal data transfer between Fermilab 
and collaboration sites. Finally, Section 5 concludes the paper. 

II. BACKGROUND & RELATED WORK 
The rapidly growing popularity of GPUs makes them a 

natural choice for high-performance computing. Our GPU-
accelerated network performance monitoring system is based 
on NVIDIA’s Tesla C2070, featuring NVIDIA’s latest Fermi 
GPU architecture. In the following sections, we give a simple 
introduction of NVIDIA’s CUDA programming model and the 
Fermi GPU architecture. 

A. CUDA and the Fermi GPU Architecture 
CUDA is the hardware and software architecture that 

enables NVIDIA GPUs to execute programs written with C, 
C++, and other languages. It provides a simple programming 
model that allows application developers to easily program 
GPU and explicitly express parallelism. A CUDA program 
consists of parts that are executed on the host (CPU) and parts 
on the GPU. The parts that exhibit little or no data parallelism 
are implemented as sequential CPU threads. The parts that 
exhibit a rich amount of data parallelism are implemented as 

GPU kernels. GPU instantiates a kernel program on a grid of 
parallel thread blocks. Each thread within a thread block 
executes an instance of the kernel, and has a per-thread ID, 
program counter, registers, and private memory. Threads 
within a thread block can cooperate among themselves through 
barrier synchronization and shared memory. Thread blocks are 
grouped into grids, each of which executes a unique kernel. 
Each thread block has a unique block ID. A thread indexes its 
data with its respective thread ID and block ID. 

NVIDIA’s Fermi GPU architecture consists of multiple 
streaming multiprocessors (SMs), each consisting of 32 CUDA 
cores. A CUDA core executes a floating-point or integer 
instruction per clock for a thread. Each SM has 16 load/store 
units, allowing source and destination addresses to be 
calculated for sixteen threads per clock and 4 special function 
units (SFUs) to execute transcendental instructions. The SM 
schedules threads in groups of 32 parallel threads called warps. 
Each SM features two warp schedulers and two instruction 
dispatch units, allowing two warps to be issued and executed 
concurrently. The execution resources in a SM include 
registers, thread block slots, and thread slots. These resources 
are dynamically partitioned and assigned to threads to support 
their execution. We list these resource limits per SM in Table 
1. In addition, the Fermi GPU has six 64-bit memory partitions, 
for a 384-bit memory interface, supporting up to a total of 6 
GB of GDDR5 DRAM memory. A host interface connects the 
GPU to the CPU via PCI-Express. The GigaThread global 
scheduler distributes thread blocks to SM thread schedulers. 

Table 1 Physical Limits per SM for Fermi GPU 
Maximum Warps: 48 
Maximum Threads: 1536 
Maximum Blocks: 8 
Shared Memory: 48K 
Register Count: 32K 

B. GPU in Network Related Applications 
GPU offers extreme thread-level parallelism with hundreds 

of simple cores. The massive array of GPU cores offers an 
order of magnitude higher raw computation power than a 
conventional CPU. GPU’s data-parallel execution model and 
ample memory bandwidth fits nicely with most networking 
applications, which have inherent data parallelism at either 
packet level or at network data flow level. Recently, GPUs 
have shown a substantial performance boost to many network 
applications, including GPU-accelerated software router [7], 
pattern matching [8][9][10], network coding [11], IP table 
lookup [8], and cryptography [12]. So far, the application of 
GPU in network applications is manly focusing at packet level. 
In this work, we make use of GPU to accelerate network flow 
data analysis. 

C. Flow-based Analysis 
Flow-based analysis is widely used in traffic engineering 

[13][14], anomaly detection [15][16], traffic classification 
[17][18], performance analysis, and security [19][20][21], etc. 
For example, Internet2 makes use of flow data to generate 
traffic summary information by breaking the data down in a 
number of ways, including by IP protocol, by a well-known 
service or application, by IP prefixes associated with “local” 



networks, or by the AS pairs between which the traffic was 
exchanged. In [15], the sub-space method is applied to flow 
traffic to detect network-wide anomalies. 

III. G-NETMON SYSTEM DESIGN 
To quickly detect sub-optimal data movements, G-NetMon 

uses network flow data to calculate transfer rates between 
Fermilab and collaboration sites on an on-going basis. A sub-
optimal bulk data movement is detected if the associated 
transfer rates fall below some standard that is either predefined 
or provided by other network services. Our GPU-accelerated 
network performance monitoring system is deployed as shown 
in Figure 2. It receives flow data from site border routers as 
well as internal LAN routers. The routers export NetFlow V5 
records. The flow data is complete, not sampled. 

A. System Hardware Configuraton 
Our flow-based analysis requires traffic scrutiny on a per-

flow-record basis. Fermilab is the US-CMS Tier-1 Center and 
the main data center for a few other large-scale research 
collaborations. Every hour, millions of flow records are 
generated at Fermilab border routers (Figure 1). Considering 
the increasing volume of scientific data created every year, 
coupled with the evolution towards to 100 GigE network 
technologies, it is anticipated that our network flow data 
analysis requirements will be increasing accordingly. 
Therefore, our G-NetMon not only needs to handle current 
network conditions, but have the capability to accommodate 
the large growth of traffic expected in the near future. For now, 
Fermilab border routers generate less than 5,000,000 flow 
records every hour. Our target is to allow G-NetMon to handle 
50,000,000 flow records per hour.  

R&E 

Networks

FNAL Site

Border 

Routers

CPU

HUB

GPU

NIC

Network Performance 

Monitoring System

CPU
CPU

RAM

Tesla C2070

FlowData 

Feed

 
Figure 2 G-NetMon – Deployment 

G-NetMon is implemented in a system that consists of two 
8-Core 2.4 GHz AMD Opteron 6136 processors, two 1Gbps 
Ethernet interfaces, 32 GB of system memory, and one Tesla 
C2070 GPU. The Tesla C2070 GPU features the Fermi GPU 
architecture. Its key features are listed in Table 2.  

Table 2 Tesla C2070 Key Features 
SMs: 14 
Cores: 448 
Core Freq.: 1.15 GHz 
Global Memory Size: 6GB GDDR5 
Memory Bandwidth: 144 GB/s 
System Interface: PCIex16 Gen2 
Double Precision Peak 
Performance: 515 GFlops 

 

B. System Architecture 
The G-NetMon architecture is as shown in Figure 3. The 

system consists of a few parts that are executed on either the 
host (CPU) or GPU. Based on the CUDA design principle, the 
parts that exhibit little or no data parallelism are implemented 
as sequential CPU threads; the parts that exhibit a rich amount 
of data parallelism are implemented as GPU kernels. 
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Figure 3 A G-NetMon – Architecture 

 
B.1 CPU Domain 

Three CPU threads are implemented in the CPU domain. 
Site Registration Thread: it registers scientific subnets 

to our network performance monitoring system. The registered 
subnets are stored in the Site Catalog (a data buffer in host 
memory), which helps to identify scientific data transfer 
between Fermilab and collaboration sites. Large-scale research 
efforts like LHC CMS are built upon large, globally distributed 
collaborations. However, available computing and networking 
resources at different collaboration sites varies greatly. Larger 
sites, such as Fermilab, have data centers comprising thousands 
of computation nodes that function as massively scaled, highly 
distributed cluster-computing platforms. These sites are usually 
well connected to the outside world with high-bandwidth links 
of 10 Gbps or more. On the other hand, some small 
collaboration sites have limited computing resources and 
significantly lower bandwidth-networking connectivity. 
Therefore, scientific data transfers between collaboration sites 
can vary greatly in terms of performance and scale. It is 
difficult to design machine-learning algorithms to 
automatically identify scientific data transfers in terms of 
traffic patterns or characteristics. However, for a large-scale 
scientific application, the collaboration relationships between 
research institutions tend to be relatively static. In addition, the 
systems and networks assigned to a scientific application at a 
site are relatively fixed. Large-scale scientific data movement 
usually occurs between some specific subnets at each site. 
Therefore, by registering these subnets to our system, we can 
easily monitor data transfers between Fermilab and its 
collaboration sites through flow analysis of traffic between 
those subnets. 



FlowData Receiver Thread: a UDP daemon, which 
receives NetFlow V5 packets from border routers. The received 
flow records are stored in Flow Data Store (a data buffer in 
host memory). In the current implementation, Flow Data Store 
is designed to hold 50,000,000 flow records. Since a NetFlow 
V5 flow record is less than 50 Bytes, these 50,000,000 flow 
records require approximately 2.5GB of memory. Processed 
flow records in Flow Data Store are periodically cleaned and 
stored to disk to create space for subsequent network flow data. 

NetPerf Monitoring Thread: the main thread of our 
network performance monitoring system. Periodically (each 
hour), it copies Site Catalog and Flow Data Store to GPU 
memory and launches the corresponding GPU kernels to 
calculate the transfer rates between Fermilab and its 
collaboration sites. When GPU computation is completed, the 
NetPerf Monitoring Thread will synthesize the final results. A 
sub-optimal bulk data movement is detected if the associated 
transfer rates are below some predefined standard. Considering 
that TCP traffic is elastic, we use the statistics of transfer rate 
medians as our evaluation criteria. For a given site, network 
performance warnings would be issued if the associated 
median were less than 1Mbps for two consecutive hours. 

B.2 GPU Domain 

1) GPU Kernels 

In the GPU domain, we have implemented two GPU 
kernels, Catalog Kernel and TransRate Kernel. 

Catalog Kernel: it builds GPU Site Catalog, a hash table 
for registered scientific subnets in GPU memory, from Site 
Catalog. TransRate Kernel makes use of GPU Site Catalog to 
rapidly assign flow records to their respective subnets by 
examining their source or destination IP addresses. To make 
the hash table easy to implement and fast to search, all 
registered networks are transformed into /24 subnets and then 
entered in GPU Site Catalog. For the sake of scientific data 
transfer, a /24 subnet is large enough for most collaboration 
sites. Any network larger than /24 is divided into multiple 
entries in the hash table. Since GPU Site Catalog is mainly 
used for lookup operations and is rarely updated, there is no 
need to implement locks to protect unsynchronized write 
accesses. If any update is necessary, the table is rebuilt from 
scratch. 

TransRate Kernel: it calculates the transfer rates 
between Fermilab and its collaboration sites. TransRate Kernel 
exploits the inherent data parallelism that exists within network 
flow data. When GPU instantiates TransRate Kernel on a grid 
of parallel threads, each thread handles a separate flow record. 
On a C2070 GPU, thousands of flow records can be processed 
simultaneously. To handle a flow record, a TransRate thread 
first attempts to assign the flow record to its respective site and 
then calculates the corresponding transfer rates. With a hash of 
the /24 subnet of the flow record’s source or destination IP 
address, TransRate Kernel looks up the site to which the flow 
record belongs in GPU Site Catalog. Because each flow record 
includes data such as the number of packets and bytes in the 
flow and the timestamps of the first and last packet, calculation 
of transfer rate is simple. However, two additional factors must 
be considered. First, because a TCP connection is bidirectional, 
it will generate two flow records, one in each direction. In 
practice, a bulk data movement is usually unidirectional. Only 

the flow records in the forward direction reflect the true data 
transfer activities. The flow records in the other direction 
simply record the pure ACKs of the reverse path and should be 
excluded from transfer rate calculations. These flow records 
can be easily filtered out by calculating their average packet 
size, which is usually small. Second, a bulk data movement 
usually involves frequent administrative message exchanges 
between the two endpoints. A significant number of flow 
records are generated due to these activities. These records 
usually contain a small number of packets with short durations; 
their calculated transfer rates are generally of low accuracy and 
high variability. These flow records are also excluded from our 
transfer rate calculation.  

We calculate transfer rates (maximum, minimum, average, 
median) for each registered site and for each host in a 
registered site. To calculate the median statistics, we create an 
array of buckets for each host to count transfer rate frequencies. 
Each bucket represents a 10kbps interval. To save space, all 
transfer rates greater than 100Mpbs are counted in the last 
bucket. Therefore, for each host, we maintain a bucket array of 
size 10001. A bucket n represents the frequency of flow rates 
that fall within the interval [n*10kbps (n+1)*10kbps]. From the 
resulting bucket counts we determine the host and site medians. 
We use atomic CUDA operations to calculate and store all 
transfer rates in order to prevent unsynchronized data accesses 
by the threads. 

2). GPU Kernel Optimization 

The Catalog Kernel is relatively simple, with few 
opportunities for optimization. In fact, its functionality could be 
included in TransRate Kernel. However, because the overhead 
to launch a kernel is negligible [7], we have chosen to 
implement it as an independent kernel to preserve a modular 
design.  

Our TransRate kernel is optimized using various 
approaches: 
• Register Spilling Optimization. Without this optimization, 

a TransRate thread will use 47 registers. These registers 
hold compiler-generated variables. Because registers are 
in-chip memories that can be accessed rapidly, a single 
thread’s performance increases if registers are readily 
available. However, when we used the CUDA Occupancy 
Calculator to measure SM occupancy with varying block 
sizes, to our surprise, the occupancy rates were 
unacceptably low (Table 3). At such a low SM occupancy, 
the overall GPU performance would be greatly degraded. 
The improvement in each single thread cannot make up for 
the loss in overall thread parallelism. To raise GPU 
occupancy, we limit the maximum number of registers 
used by TransRate to 20 by compiling this kernel with the 
“-maxrregcount 20” option. As shown in Table 3, this 
register spilling optimization is effective, and the best 
GPU occupancy achieved as the number of threads per 
block is varied is now 100%. 

• Shared memory. Shared memories are on-chip memories 
and can be accessed at very high speed in a highly parallel 
manner. The TransRate kernel makes use of shared 
memory as much as possible to accelerate flow data 
processing.  



• Non-caching Load. Fermi architecture global memory has 
two types of loads, caching and non-caching. The caching 
load is the default mode. It first attempts to load from L1 
cache, then from L2 cache, and finally from the global 
memory. The load granularity is 128 bytes. The non-
caching load first attempts to hit in L2, and then the global 
memory. Its load granularity is 32 bytes. Our experiments 
show that non-caching load can boost the performance by 
at least 10%, and so the optimized TransRate kernel uses 
non-caching load to access Flow Data Store. 

Table 3 SM Occupancy Rates at Different Kernel 
Block Sizes 

Thread Size per Block 64 128 256 512 
SM Occupancy Rates 

@ Register/Thread=47 33% 42% 33% 33% 

SM Occupancy Rates 
@ Register/Thread=20 33% 67% 100% 100% 

 

IV. EXPERIMENTAL EVALUATION 
In this section, we show results of our experimental 

evaluation of G-NetMon. First, we evaluate the performance of 
our G-NetMon system. Also, we study how GPU can 
accelerate network flow data processing in high-volume 
network data flow environments. Second, we deploy our G-
NetMon in Fermilab production environments. We evaluate 
how G-NetMon can effectively detect sub-optimal data 
transfers between Fermilab and its collaboration sites.   

A. Performance Evaluation 
At present, Fermilab border routers produce fewer than 

5,000,000 flow records in an hour. However, our G-NetMon 
system is designed to handle a maximum load of 50,000,000 
flow records per hour. To evaluate the capabilities and 
performance of our system at such a network load, we collected 
more than a day’s flow records from the border routers and fed 
G-NetMon with 50,000,000 flow records. FlowData Receiver 
Thread receives these flow records and stores them in Flow 
Data Store. We also select the top 100 /24 scientific subnets 
that transfer to and from Fermilab in terms of traffic volume, 
and register them with Site Catalog. 

A.1 GPU Performance & Optimization 
To evaluate GPU performance, and the effects of various 

GPU kernel optimization approaches, we have implemented 
several G-NetMon variants with different enabled 
optimizations. Our objectives are to compare effects: 
• Shared-Memory vs. Non-Shared-Memory. For Non-

Shared-Memory, the TransRate Kernel does not use shared 
memory, and all the operations are executed on GPU 
global memory. 

• Caching-Load vs. Non-Caching-Load. 
• Hash-Table-Search vs. Non-Hash-Table-Search 

(sequential search). To calculate transfer rates between 
Fermilab and collaboration sites, it is first necessary to 
assign flow records to their respective sites. G-NetMon 
implements a hash table to perform this function. We have 

also implemented a Non-Hash-Table method (i.e., 
sequential search) in which all of the registered scientific 
subnets are maintained in a sequential list. To categorize a 
flow record, the TransRate kernel searches the list one by 
one until a matching site, or none, is found. 

We list all the G-NetMon variants according to enabled 
optimizations in Table 4. In the table, “Y” indicates that the 
“xxx” optimization is enabled, while “N” indicates the 
optimization is not used. We enabled the register-spilling 
optimization when compiling all of these GPU variants, and so 
the TransRate Kernel is launched with 100% occupancy. We 
ran experiments to measure the rates at which these G-NetMon 
variants process network flow data and compared them with 
the performance of the fully optimized G-NetMon. 

Table 4 GPU Variants with Different Features 

GPU Variants 
Features 

Hash 
Table 

Share-
Memory 

Caching 
Load 

G-NetMon Y Y N 
NH-S-C-GPU N Y Y 

NH-NS-C-GPU N N Y 
NH-NS-NC-GPU N N N 

H-NS-C-GPU Y N Y 
H-NS-NC-GPU Y N N 

H-S-C-GPU Y Y Y 
NH-S-NC-GPU N Y N 

 

  
Figure 4 GPU Processing Time 

 The NetPerf Monitoring thread copies Site Catalog and Flow 
Data Store to GPU memory and launches the corresponding 
GPU kernels to calculate the transfer rates. We evaluate how 
fast GPU can handle these data. The experiment results are 
shown in Figure 4. To handle 50,000,000 flow records, G-
NetMon takes approximately 900 milliseconds. The effects of 
the various GPU kernel optimizations are shown. For example, 
with the combination of hash table and non-caching-load, 
shared-memory can accelerate flow record processing by as 
much as 9.51%. As discussed above, shared memories are on-
chip memories that can be accessed at very high speed in a 
highly parallel manner. The experiment results show that the 
hash table mechanism significantly boosts G-NetMon 
performance, ranging from 11% to 20%. We used NVIDIA’s 
Compute Visual Profiler to profile the TransRate Kernel 
execution. Figure 5 gives the “Instruction Issued” comparisons 
of Hash-Table vs. Non-Hash-Table of all GPU code variants. 



These experiments show that the hash table mechanism can 
significantly reduce flow record categorization overheads.  

 
Figure 5 Hash-Table (in Red) vs. Non-Hash-Table (in Blue) 

 To our surprise, Figure 4 shows that non-caching-load boosts 
the performance significantly, by more than 10%. We speculate 
that the non-caching-load mode better fits G-NetMon’s traffic 
pattern. When using the caching load, the performance gain in 
L1 cache does not compensate for the performance loss caused 
by the larger load granularity. Table 5 gives the comparisons of 
caching load vs. non-caching load for various memory access 
parameters. We see that caching load causes higher memory 
traffic, degrading the overall performance. 

Table 5 Caching-Load vs. Non-Caching-Load 

 G-NetMon H-S-C-GPU 
L2 Read Requests 1.61835e+08 2.98727e+08 
L2 Write Requests 1.15432e+07 1.61657e+07 
Global Memory 
Read Requests 2.17803e+08 2.48466e+08 

Global Memory 
Write Requests 3.01409e+07 3.22455e+07 

A.2 GPU vs. CPU 
 In order to evaluate how GPU can accelerate network flow 
data processing in high-bandwidth network environments, we 
compare G-NetMon with its corresponding CPU 
implementations. We implemented two CPU variants, which 
are termed H-CPU and NH-CPU, respectively. Like G-
NetMon, H-CPU applies a hash table mechanism to rapidly 
assign flow records to their respective sites and then calculates 
the corresponding transfer rates. In contrast, NH-CPU 
implements a similar Non-Hash-Table method (sequential 
search) as NH-S-NC-GPU, in which all of the registered 
scientific subnets are maintained in a sequential list. To assign 
a flow record, CPU searches the list one by one until a 
matching site, or none, is found. We ran each of H-CPU and 
NH-CPU on a single 2.4 GHz AMD Opteron 6136 core, with 
the same set of data as used above. We make the comparisons 
of G-NetMon vs. H-CPU and NH-S-NC-GPU vs. NH-CPU. 
The results are shown in Figure 6. It takes H-CPU 4916.67 ms 
to handle 50,000,000 flow records; in contrast, G-NetMon 
requires 900ms. For the non-hash-table variants, NH-CPU and 
NH-S-NC-GPU take 36336.67 ms and 1098.23 ms, 
respectively. The comparisons clearly show that GPU can 
significantly accelerate the flow data processing, by a factor of 

5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-
NC-GPU vs. NH-CPU). The reason that we present the 
comparison of GPU vs. CPU for the non-hash-table 
implementations is because many network applications feature 
a similar sequential search computation pattern as our non-
hash-table implementations. For example, a network security 
application needs to examine each packet or flow with security 
rules one by one. The experiment results show GPU can 
significantly accelerate the data processing. 
 

 
 

Figure 6 G-NetMon vs. CPU 

A.3 Receiving Flow Records 
 G-NetMon receives NetFlow V5 packets from border routers 
via UDP. The received flow records are stored in Flow Data 
Store. A NetFlow V5 flow record is 48 bytes. A 1500-byte 
UDP packet, the largest allowed by standard Ethernet at the 
network, can transmit at most 30 flow records. Our G-NetMon 
system is designed to handle a maximum load of 50,000,000 
flow records per hour. Therefore, the FlowData Receiver 
thread needs to handle at least 463 packets per second, which 
amounts to an average traffic load of 5.56Mbps. Our G-
NetMon system can easily handle such a traffic load. However, 
because the flow records are transmitted via UDP, if CPU is 
busy with other tasks and the FlowData Receiver thread is not 
scheduled to handle the NetFlow traffic in time, the incoming 
packets can be dropped when the UDP receive buffer is full. 
We have run experiments to verify this scenario. In the 
experiments, the FlowData Receiver thread was assigned to 
share a core with a CPU-intensive application and the UDP 
receive buffer size was set to 4MB. We then sent it UDP traffic 
at varying rates, ranging from 100Mbps to 1Gbps, for 0.5 
seconds. When the UDP traffic rates reached 500Mbps or 
above, serious packet loss would occur. We repeated the above 
experiments with the FlowData Receiver thread assigned a 
dedicated core. No packet loss was detected. Therefore, to 
avoid the situation of NetFlow packets being dropped, G-
NetMon assigns a dedicated core for the FlowData Receiver 
thread to handle NetFlow traffic.    

B. Network Performance Monitoring 
 We have registered 100 /24 scientific subnets that transfer to 
and from Fermilab in G-NetMon. G-NetMon monitors the bulk 
data movement status between Fermilab and these subnets by 
calculating the corresponding data transfer statistics every hour. 
G-NetMon calculates the transfer rates (maximum, minimum, 



average, median) for each registered site and for each host in a 
registered site. Figure 7 gives the data transfer rates in an hour 
between Fermilab and a collaboration site.  
 A sub-optimal bulk data movement is detected if the 
associated transfer rate falls below a predefined standard. 
Considering that TCP traffic is elastic and network conditions 
are volatile, we use the statistics of transfer rate medians as our 
evaluation criteria. For a given site, network performance 
warnings would be issued if the associated median were less 
than 1Mbps for two consecutive hours.  
 To evaluate the effectiveness of G-NetMon in detecting sub-
optimal bulk data movements, we investigated the G-NetMon 
warnings for a period of two weeks. During this period, G-
NetMon issued performance warnings for 7 sites in total (there 
were multiple warnings for the same sites). For those sites that 
G-NetMon issued warnings, we contacted their network 
administrators to conduct end-to-end performance analysis. 
Five sites responded to our requests. The end-to-end 
performance analysis indicated poor network conditions 
between these sites and Fermilab. To our surprise, one site in 
Greece is even connected to the outside world with a 100 Mbps 
link. The investigation of these warnings demonstrated that our 
G-NetMon can effectively detect sub-optimal bulk data 
movements in a timely manner. G-NetMon can detect a sub-
optimal bulk data movement in two hours. 

V. CONCLUSION & DISCUSSION 
 At Fermilab, we have prototyped a GPU-accelerated network 
performance monitoring system for large-scale scientific 
collaborations, called G-NetMon. Our system exploits the 
inherent data parallelism that exists within network data flows 
and can rapidly analyze bulk data movements between 
Fermilab and its collaboration sites. Experiments demonstrate 
that our G-NetMon can detect sub-optimal bulk data movement 
in time. 
 Considering TCP traffic is elastic and network conditions are 
volatile, our G-NetMon system applies a very conservative 
approach to issue performance warnings. G-NetMon is chosen 
to perform transfer rate analysis every hour. Running G-
NetMon with shorter intervals can detect sub-optimal bulk data 
movement faster. However, it would also generate more 
ephemeral warnings and finally degrade our system’s 
effectiveness. 
 The main purpose of this work is to explore new 
opportunities in network traffic monitoring and analysis with 

GPUs. The experiment results show that GPU can significantly 
accelerate the flow data processing, by a factor of 5.38 (G-
NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU 
vs. NH-CPU). At present, G-NetMon is designed to detect sub-
optimal bulk data movements. In the future, we will enhance it 
with security features. To implement security features, G-
NetMon needs to examine flow records with security rules one 
by one in real time or semi-real time, which require more 
computation capabilities. The computation pattern of 
examining flow records with security rules one by one is 
similar to that of the non-hash-table implementations discussed 
in the paper, in which GPU can significantly accelerate the 
flow data processing. 
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