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Abstract—This paper investigates the problem of link schedul- 0
ing to meet traffic demands with minimum airtime in a multi-
transmit-receive (MTR) wireless network. MTR networks are a
new class of networks, in which each node can simultaneously e °

transmit to a number of other nodes, or simultaneously receie

from a number of other nodes. The MTR capability can be a

enabled by the use of multiple directional antennas or mulple

channels. Potentially, MTR can boost the network capacity .

significantly. However, link scheduling that makes full useof the Fig. 1. A four-node network

MTR capability must be in place before this can happen. We

show that optimal link scheduling can be formulated as a linar

program (LP). However, the problem is NP-hard because we neke  ;

to find all the maximal independent sets in a graph first before S|mul.tane0usly (e.g(,l, 2).(1, 3)'(4’ 3). .

the LP can be set up. We propose two computationally efficient 1 NiS paper considers the link-scheduling problem of deter-
algorithms, called Heavy-Weight-First (HWF) and Max-Degree- mining the minimum Time Division Multiple Access (TDMA)
First (MDF) to solve this problem. Simulation results show hat frame length while fulfilling the traffic demands in MTR
both HWF and MDF can achieve superior performance in terms  networks. Although there have been prior studies on MTR
of runtime and optimality. Specifically, we have conducted 1000 networks [1]-[5], [7]-[10], this particular link schedalj

simulation experiments with different network topologies and . . . .
traffic demands. On average, the HWF and MDF solutions are Problem (which is a well studied classical problem under

within 90% of the optimal solutions. the context of non-MTR networks [11]-[16]) has not been
investigated as far as we know. Previously proposed MTR
. INTRODUCTION MAC protocols, such as 2P][3], WiLDNEet|[2] and JazzyMAC

I115], are not efficient in that a node needs to maintain all ®f it
imize airtime usage in a new class of wireless networks «tallgnks in transmit mode for the same time duration regardless

multi-transmit-receive (MTR) wireless networks. In an MTF\?]c f;_hed actuaij I'nlf”trf"tlmdcl demant(:]s. 'It'Ee :!nts V]\,”:E Iow((jer
network, a node can simultaneously transmit to a number of ¢ _fman N V;I]I'I Sltr: € V\é ne te':ho ?L n Sg fetﬂo .EI
other nodes, or simultaneously receive from a number ofrotjéansm' » meanwhile, the nodes at e other ends of the idie

nodes. However, a node cannot simultaneously transmit HH(S are not allowed to transmit - this is purely a consirz?un
receive (i.e., the half-duplexity is still in place). Eniaig this imposed by the MAC rather than an MTR constraint. Consider

capability of MTR networks is the use of multiple directid)nathe four-node example n Fid.] 1 again. Suppose a traffic
mand for the above link set {&,1,1,1,1,1,2,1]. Then,

antennas at a nodeél[1]+[5] or the use of multiple channeg : . .
on multiple collocated radios at a node [6]. Potentiallys th 1 \;V'L?Net ‘an Jaz;yMACzt obtain a4sub-0pt|mal szchedule,
capability can increase the network capacity significafily (1> 2)» (1:3), (4,3)}.4(2,1), (2,3)},{(3,4)}.{(3, 1), (3,2),

[3], [6]. Details about MTR networks will be presented in(3’4)}’ which requires four time slots. However, only

Sectior(T. three time slots are required for an optimal schedule:

Potentially, MTR networks can schedule more wirelesgz1)’(3’1)’(3’4)}’ {(1,2),3,2), 3, 49}1{(1,3), (2,3),

links than conventional wireless networks. Take Fig. 1 as an’ . o

example. In this four-node network, the mutually connected ' N€ Primary research contributions of our paper are sum-
nodes 1 and 2 are connected with nodes 3, which is fparized as follows.

turn connected with node 4. Since there are four edgesl. We provide a formal specification of an MTR network,

there are totally eight directional links. Denote the lindt s and formulate the link-scheduling problem of determining
by {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,4), (4,3)}. For the minimum frame length required to meet the underly-
a conventional network, where multiple simultaneous trans  ing link-traffic demands.

missions or receptions at a node are not allowed, at most tw@. We show that solving the link scheduling problem op-

links can be active at a given time (e.gl,2) and (4, 3)). timally is NP-hard, since we need find all the maximal

However, an MTR network allows three links to be active independent sets (MIS) in a graph.

This paper concerns the problem of link scheduling to mi
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3. We propose two computationally efficient heuristic awhere matrix M (V) indicates that node 1 simultaneously
gorithms to tackle this problem. The first algorithnmransmits to nodes 2 and 3 while node 4 transmits to node
is a Heavy-Weight-First (HWF) algorithm, which gives3. Note that the matching matrix/ (") is maximalin that you
priority to the links with the heaviest traffic demands in itgannot turn any of it¥ elements tal without violating R3.
schedule. The second algorithm is a MAX-Degree-First Definition 3: A matching matrix ismaximalif none of its
(MDF) algorithm, which gives priority to the links with 0 elements can be turned to 1 (while maintaining all its 1
the maximum degree in a conflict graph in its schedulelements at 1) without violating the rules in definition 1.

4. We conduct extensive simulations based on regular andyhen we consider the link scheduling, we only need to
random network topologies, with symmetric and asyntonsider the maximal matching matrix. Suppose therdsbe
metric traffic demands. The simulation results show thaiaximal matching matrices. Then, the problem that we are
both HWF and MDF can typically obtain solutions withinconsidering is as follows:

90% of the optimal solutions over 1,000 simulation

experiments based on symmetric and asymmetric traffic min Zszl T

demands. st. K MWy >T

The rest of the paper is organized as follows. In Sedfibn Il, B
. . x>0 for all k Q)

we present the network model, basic assumptions and problem
formulation. Section ]Il presents two heuristic algoritiiVe \yhere 2, denotes the number of time slots allocated to
show the simulation results in SectionIV. Secfion V coneid maximal matching matrix7 ).
the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION B. Sub-optimal Scheduling

In this section, we specify the MTR network model for- |n previously proposed MAC protocols for MTR networks
mally. We then formulate the link-scheduling problem ofietworks, such as 2P][3], WiLDNetl[2] and JazzyMAG [5],
finding the minimum frame length in MTR networks as @ach node alternates between two phases (2P): simultaneous
linear program (LP). The previously proposed MTR MAGeception (SynRx) and simultaneous transmission (Synifix).
protocols (e.g., 2F_[3], WILDNet [2] and JazzyMACI [5]) areaddition, a node is required to maintain all of its links in

shown to_be sub—c_)ptimal._ _ _ transmit mode for the same time duration regardless of the
A Multi-Transmit-Receive (MTR) network is defined asink traffic demands, resulting in inefficiency. In partiaulthe
follows. simultaneous synchronized operations in these MAC prdgoco

Definition 1: In an MTR network, each node has a set ghdicate that when a node transmits, none of its neighboesiod
neighbor nodes with whom it forms links. At any given timegan transmit. As far as scheduling is concerned, this cainstr
R1. A node can transmit simultaneously on a subset of isequivalent to (virtually) turning R1 in Definition 1 to a m
outgoing links. restrictive requirement, as follows:
R2. A node can receive simultaneously on a subset of itﬁl,
incoming links.
R3. A node cannot do operations R1 and R2 simultaneously, ) o )
(i.e., a node cannot transmit and receive simultaneously) Constraint R1 plus the half-duplexity in constraint R3
Given an MTR network, we are interested in how t(J)mplles that the neighbors of a node cannot transmit at the

minimize the TDMA slots required to meet the underlyinéam_e tlme.. ) ) ) )
link traffic demands. Since with R1, when a node: transmits, it transmits

] ) on all outgoing links, we might as well replace the traffic
A. Centralized Scheduling Problem requirements for outgoing traffic from nodet;1, tiz, ..., tin ),
Let the link traffics be specified by the traffic matrixoy one single number, = max;t;;. Thent = (¢;) is the
T = [ti;], wheret,; is the amount of traffic from node traffic vector describing the transmission requirementsibf
to its neighboring nodg. At any given time, let the set of nodes.

When a node transmits, it transmits on all its outgoing
links.

active links in the network be indicated by an indicator rixatr ~ Let S() = (sgl)) be a column indicator vector in which
M® = [m{?], wherem(} = 1if link (i, j) is active, and s = 1 if node i transmits ands!"” = 0 if node i does not
ml(,;?) = 0 if link (i, j) is inactive. transmit. With respect to the graph describing the network,
Definition 2: An indicator matrix is called anatching ma- S is basically an independentlgézﬁ it is to conform to R1,
trix if all nodes conform to rules R1, R2 and R3. R2, and R3. It suffices to consider theaximalindependent
Let us consider the four-node network as shown in Eig. et (MISE in our scheduling problem. Suppose that there are
In this network, an example of a matching matrix is: L MIS. Then, the scheduling problem can be formulated as
01 10
1An independent set is a subset of vertices such that no edgegay two
) 0000
MW = of them.
0000 2A maximal independent set is an independent set that is easubset of
00 1 0 another independent set.



follows: 0

. L
min lel L1 e ° e
s.t. Zlel SOz >t a

x2; >0 forall ] (2)

. . . . L. Fig. 2. A five-node network
Since Eq. [(R) is defined in a more restrictive way, the 9

solution to Eq.[{IL) cannot be worse than that of Ed. (2).

Consider the four-node example (Hig. 1) again. In addition, 01 00
suppose we have the following traffic requirements: MO 0 0 0O
01 01
(1) (1) 1 8 0000
=102 00 1 0

o [0 0 @
Then, we replace the outgoing traffic requirements of each 00 1 0

node by a single number and get a vector:
Indeed, the optimal solution to Eq. (1) is given by assigning

— T
t=[1,1,21] airtimes to the matrices in Eq. (4) only:

) 3 )

In the four-node example, there are three maximal indepen- g =T =5 =024 = 1,25 = 1,26 = 1
dent sets (MIS):
W _ T This solution requires three units of airtime, which is less
S =11,0,0,1] than four units in Eq. (2).
S =10,1,0,1)7 The above example gives rise to an interesting observation:
53 — [0,0,1,0" the matrices in Eq. (4) are the transposes of the matrices in
Eq. (3). Thus, we have the following theorem,
We can verify that the optimal solution to the problem Theorem 1:1f M) conforms to constraints R1, R2, and
defined in Eq. (2) is given by R3 as defined in Definitiof] 1, then so does its transpose.
Proof: It is obvious that constraints R1 and R2 are still
fulfilled in the transposed matching matrix. The directidn o
Thus, a total of four units of airtime is needed. transmission on a link simply gets reverse in the transposed
Now, let us go back to the original problem defined in Eqnatching matrix, so that the transmitters become the recgiv
(1). First of all, the maximal matching matrices corresgogd and vice versa. Thus, the half-duplexity constraint, R3}ils s

to the above MIS are: fulfilled. _ n
In the four-node example above, the set of maximal match-

r1=1, 20=1, x3=2

0 110 ing matrices in Eqg. (1) can be found from the MIS in Eq. (2).
MO = 0 000 More specifically, each MIS in Eq. (2) leads to two maximal
0000 matching matrices. In one matrix, each vertex in MIS is a
0010 transmit node and it transmits on all its outgoing links;he t
other one, each vertex in MIS is a receive node and it receives
0 00 O o e .
101 0 on all its incoming links. Thus, each MiSducegwo maximal
M® = 00 0 0 matching matrices.
00 1 0 A question then is whether all maximal matching matrices
are induced from an MIS. Unfortunately, the answer is no.
00 0 0 Consider the following five-node network, as shown in Eig. 2.
100 0 A possible maximal matching matrix to this network is shown
M®) = ©)
=111 0 1 as follows:
000 0 001 00
0 01 00
In addition, there are three additional maximal matching M=]1010000
matrices, shown as follows: 0 00 0O
000 10
0 00 O
y@w_| 1 000 In this matching, nodes 1, 2, and 5 are transmitters; and
11001 node 3 and 4 are receivers. The transmitters do not form an
0 00O MIS because nodes 1 and 2 are neighbors. The receivers do



O
[H—(—®)
o

Fig. 3. The active links in the five-node network

Fig. 4. The conflict graph for the five-node network

not form an MIS because nodes 3 and 4 are neighbors Figris motivates us to investigate heuristic algorithms tveso

depicts the active links in maximal matching matfix'. this problem. We will present two computationally efficient
In general, the number of maximal matchings can be mojgyorithms in the next section.

than twice the number of MIS. Then, how are maximal
matching matrices related to MIS? To establish the relation IIl. HEURISTIC ALGORITHMS
we need to model the network with a different graph. We In this section, we propose two heuristic algorithms, heavy
use aconflictgraph to describe the relationship between twaweight-first (HWF) algorithm and max-degree-first (MDF)
conflicting links. In this graph, each directional link ismd#ed algorithm to solve the link-scheduling problem defined in Eq
by a vertex, and there is an edge between two vertices(H). HWF is a greedy algorithm that always chooses links with
the two associated links cannot be active at the same tintee maximum traffic demand (the heaviest weight) into the
The conflict graph for the five-node network above is showstheduling set during each round until all the traffic issfal.
as Fig.[4, where vertexi, j) represents link;;. With the MDF, on the other hand, chooses links with the maximum
modified graph, we can then formulate the problem in Edegree in the conflict graph during each round.
(1). In the traffic vectort, = ¢;; wherev represents the vertex Both HWF and MDF make use of a conflict graph to capture
corresponding to link;;. constraints R1, R2 and R3. In the conflict graph, a ljik))
is represented by a vertex. Two links, j) and(k, 1), conflict
with each other if and only if = [ or j = k. An edge is
In optimization problem defined in Eq. (1), we representdawn between the vertices representiigj) and (k,1) if
matching by a matrix\/ (*) for pedagogical purposes. We nowthey conflict with each other.
define a more economical representation.
Definition 4: A matchingA in an MTR network is a subset
of links that conform to R1, R2 and R3. _ _ _
Definition 5: A matching is said to be maximal if it is not Algorithm 1 Heavy-Weight-First Algorithm
contained in any other matching. Require: the networkG, traffic demandf
Let E = {E; : 1 < j < |E|} be the set of all the feasible ; g‘;’;ﬁ}gﬁ tﬁ;“gﬁg}ﬁiﬁgfgﬁg? 106
matchings. The number of time slots allocated to each flasiba: while the traffic demand # 0 do
matchingEj is denoted by a non-negative variabdp 4:  sort matchingA of the links in a descending order based on the traffic
Let N be the total number of links in the network. We 5. ETE”&S’
introduce anN x |E| incidence matrixQ with elementsg;; 6 m:=1;

C. Problem Restatement

A. Heavy-Weight-First Algorithm

7:  while m # N do
such that 8: pick the elementd(m);
1, iflink 4 is in matchingF;, 9: if adding A(m) into E; does not cause conflict in sé; then
dij = 0. otherwise 10: addA(m) into E;;
’ ’ 11: end if

where each column if) indicates the links in a matching. ig enénv;;|£”+ L

We also convert the traffic matrif’ = [T;;] to a vector 14. ¢, = mingc g, te (te € £);
f = (fi;)*, where f;; = T;; for i, j such thatT;; # 0. 15  u; = tmin;

. ; : - for j:=1to N do
Then, the problem defined in EqJ (1) can be casted as a Im%%r Update the weight of every link iff; 10 £; = ¢; — tyin;

program as follows: 18: if t; = 0 then
19: remove linkj from matchingA;
min eTu 20: end if
21: end for
s.l. Q-ux>f 22:  outputE; andu;;
u >0 for all k 5) 23 ii=itl
- ( ) 24: end while

where e is a vector whose components are all 1fs,=

(f1, fao o f)T @ndu = (ug, ug, ..., up) 7’ In Heavy-Weight-First algorithm (HWF), we first sort the
The difficulty of the above problem lies in how to findlinks according to their traffic demands in a descendingorde

all matchings@ (equivalent to finding all the independenflTo construct a matching?;, we go through the link one by

sets in the associated conflict graph, which is NP-completehe. A link will be included intaF; if it does not conflict with



Algorithm 2 Max-Degree-First Algorithm 0 a e ° ° e

Require: the networkG, traffic demandf

1: construct matchingd according toG; Fig. 5.

2: generate the conflict grapbG;

3: calculate the degree of each link based on the conflicthgéa@;

4: while the traffic demandf # 0 do

5:  sort matchingA of the links in a descending order of the degrees; also consider various traffic demandgmmetricas well as
6-

7

8

9

The linear network

Ei_i_:f’_? asymmetric
il 1 £ N do Symmetric traffic demands mean thag = f;; for all pairs
: pick the elementd (m); of i-j neighbors. Symmetric traffic demands, on the other

10: if addingA(m) into E; does not cause conflict in the sBt then hand. mean thaf- ) 75 f for somei-i neighbors
11: addA(m) into E;; ’ ij 7 Jji me:-) ey ‘ .
1o end if b When the network topology is bipartite, we can easily find
13: mi=m+1; the optimal solution for the link scheduling problem. Ditai
igf f”d while e about this issue are presented in Appendix A. Note that since
16 gy ek e (te € 1) tree network topology can always be organized into a bijearti
17:  for j:=1to N do graph, link scheduling in an MTR tree network is also easy.
18: Update the weight of every link ifv; to t; :=t; — tmin; )
19: if ¢; =0 then _ Y A. Performance in Regular Networks
3(1); L%ﬂg;’: t'r']’;kf:(j;%’i‘gt“;?;;g?ﬁf“' For the investigation of regular networks, we first preskat t
22: update the degree of each vertex(i; simulation results of the linear network in Fig. 5. For thisadl
34315 eng?gr'f network, we can easily find the optimal solution by simple
25:  outputE; andu; hand calculation.
260 Q=i We present the simulation results in TaBle I. The link set is
2T end Whlle {(1’ 2)7 (2’ 1)7 (2’ 3)7 (3’ 2)7 (3’ 4)7 (4" 3)7 (4" 5)7 (5’ 4)7 (5’ 6)7 (6’ 5)}

Both HWF and MDF achieve the optimal solutions for both

symmetric traffic demands (simulation No. 1 and simulation
the existing links inE; according to the conflict graph. OnceNo. 2) and asymmetric traffic demands (simulation No. 3).
we have gone through all the links in the sorted list, we then
identify the link in E; with the least amount of traffic. Let us
say this is linkk, with traffic f. . We then assigrf, time slots

TABLE |
SIMULATION RESULTS FOR THE LINEAR NETWORK

to matchingF;. We subtractf;, from the traffic of all the links No. | Traffic demand€ | HWF | MDF | optimal
in E;, and remove links and other links inE; with the same 1 5,5,5,5,5,5,5,5,5,5 10 10 10
amount of traffic (if any) from further consideration: theése 2 | 16644885577 | 16 16 16
not traffic left to be scheduled for these links. The links are 8 6,3,4,5,7,852%79 16 16 16

then resorted according to their remaining traffics. Thevabo In th d set of simulati id id
process is iterated until all traffic demands are met. At most n he second set Of simulations, we consider a gri
twork with nine nodes, as shown in Figl 6. The sim-

N iterations are needed, since each iteration removes dt | %t' it h in TablE] IIl. The link set i
one link from further consideration. ulations results are shown in f1a ) € link set 1s

{(]" 2)7 (]" 6)7 (2’ 1)7 (2’ 3)7 (2’ 5)7 (3’ 2)7 (3’ 4)7 (4’ 3)7 (4’ 5
B. MaX-Degree-FirSt A|gor|thm )a (47 9)3 (57 2)3 (57 4)3 (57 6)3 (57 8)3 (67 1)a (67 5)3 (67 7)3 (77 6
) ) ) - ),(7,8),(8,5),(8,7),(8,9),(9,4),(9,8)}. The simulation re-
In MDF, we sort the links according to their degrees in thgyits show that both HWF and MDF obtain the optimal
conflict graph in a descending order. Other than the differegy|ytion of 10 for the symmetric traffic demands (simulation
way of sorting the links, the algorithm of MDF is essentiallyyo. 1). But for asymmetric traffic demands (simulation No.
the same as that of HWF. In particular, at least one link wifl) - HwF obtains a solution of 20, which is greater than

be removed at the end of each iteration. The degrees of {ig optimal solution of 18; while MDF obtains the optimal
neighbors to this link will be updated. The remaining linkd w gq|ution of 18.

also need to be resorted accordingly before the next iterati
During each iteration, at least one link will be removed. hu
similar to HWF, MDF needs at mosY iterations.

TABLE Il
SIMULATION RESULTS FOR THE GRID NETWORK

No. | Traffic demandf | HWF | MDF | optimal
IV. SIMULATION RESULTS 1 [5,5,5,5,5,5,5,5,5,5,5,5, 10 10 10
) ) ) ) 5,5,5,5,5,5,5,5,5,5,5, 5]
We have conducted extensive simulation experiments on & 2 | [7,8,8,4,7,2,8,1,3,1, 1,9, 20 18 18
Pentium 2.86GHz PC with 2GB memory. We consider several 7,4,10,1,5,4,8,8,2,5,5,7]

types of networks: (1) regular networks, including the éne

network in Fig[5, the grid network in Fif] 6, the ring network The third set of simulations are based on a ring
in Fig. [@, and the fully-connected network in Figl 8; (2network with six nodes, as shown in Fig] 7. Simula-
random networks with varying degrees of connectivity. Weons results are shown in Tabledlll. The link set is
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Fig. 6. The grid net- Fig. 7. The ring net- Fig. 8. The fully-
work work connected network Fig. 9. The conflict graph for the fully-connected network

{(1,2),(1,6),(2,1),(2,3),(3,2),(3,4), (4,3), (4,5), (5,4) than MDF when the network is densely connected, we shall

,(5,6),(6,1),(6,5)}. The simulation results show that bothyefer the intuitive explanation to Section 4.2, where weufoc
HWF and MDF achieve the optimal solution of 10 for symmefyy |arge-scale random networks.

ric traffic demands (simulation No. 1) and asymmetric traffic

demands (simulation No. 2). TABLE IV
SIMULATION RESULTS FOR RANDOM TRAFFIC IN VARIED REGULAR
TABLE 1l NETWORKS

SIMULATION RESULTS FOR THE RING NETWORK

No. | Traffic demands | HWF [ MDF [ optimal Averag(fe ﬁ\(ﬁlt: penalty Avera%? '\(;loDsé penalty
. )
1 [5,5,5,5,5,5,5,5,5,5,5, 5] 10 10 10
2 | [2,5,10,3,4,6,7,8,9,11,4,12] | 23 23 23 . ;
Linear network (Fig. 5.49% 0%

We have also conducted 1,000 simulation experiments (with _ 0%
different traffic demands) for each of the following netwairk ~Grid network (FigL®) 8.16% °
the linear network (Fid.J5), the grid network (Fid. 6), thegi ' _ 0
network (Fig[7) and the fully-connected network (Fiy. 8).  Ring nework (FigLy) 7.97% °

In Qrder to_ compare the splutlons qbtalned by the proposed Fully-connected Lo 0 15%
algorithms with optimal solutions, we introduce thercentage network (Fig[®) R ’
cost penalty12] as a performance measure. Its definition is
as follows:

p=T=Topt _ 100% (6) B. Performance in Random Networks
Topt

For comparison purposes, we carry @axhaustive search
whereT' denotes the total number of time slots obtained htp find optimal solutions. We compare the average runtime
the heuristic algorithm and’,. is the total number of time of HWF and MDF with that of exhaustive search. To reduce
slots in the optimal solution. the runtime of exhaustive search, we use a branch-and-bound

We compute P of HWF and MDF over the 1,000 ex- algorithm, first proposed in_[17].
periments and present the averagedialues in Table 4. In  We generate random network topologies, represented by
each experiment, we generate a random traffic demand veecsommdom matrixG, which is symmetric with zero diagonal.

f, where each element df conforms to a discrete uniformin G, entry g;; = 1 if there is a pair directional links
distribution with values ranging from 1 to 10. between nodes and j; and g;; = 0 otherwise. For our

The results in TablgTV show that MDF outperforms HWFsimulation experiment$r[g;; = 1] = p = 0.5, Vi, j. Thus,
in the linear network, the grid network and the ring networkhe networks being simulated are densely connected in that a
But HWF performs better in the fully-connected network. Theode is connected to half of the other nodes on average. The
above results can be explained intuitively as follows. Recaaumber of nodes in the simulated networksnis= 6. Thus,
that a link is removed at the end of each iteration in MDF dhe maximum number of unidirectional linksrngn —1) = 30.
HWF. The nature of MDF is such that the link being removeBach directional link will conflict with at mos2n — 1 other
has a high degree in the conflict graph. In this sense, MDiRks under the MTR constraints. Thus, in the associated
tends to remove many edges in the conflict graph. As a reselvnflict graph, each link has a degree ranging from 1 to 11
in a sparsely connected network (e.g., the linear network whenn = 6.

Fig.[H, the grid network in Fid.]6 and the ring network in Fig. In the first set of simulations, we consider symmetric traffic
[7), many links become conflict-free after several iteration demands. If there is a link between nodend nodej (i.e.,

By contrast, in a densely connected network, (e.g., tlg, = 1), then the traffic between therfi,; = f;;, is randomly
fully-connected network in Fid18), the links are so closelgenerated according to the discrete uniform distributidth w
connected together in the conflict graph (e.g., in Elg. 9} thaalues ranging from 1 to 10. We conduct 1,000 experiments
very few links can become conflict-free even after severahd present the results in Fig]10 and Table V. Each expetimen
iterations. As to why HWF tends to have better performanég based on one random networ® and one associated
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Fig. 10. The percentage cost penalty: symmetFig. 11. The percentage cost penalty: asymFig. 12. The percentage cost penalty vs traffic

ric traffic metric traffic demands
TABLE V TABLE VI
SIMULATION RESULTS FOR SYMMETRIC TRAFFIC OVER RANDOM SIMULATION RESULTS FOR ASYMMETRIC TRAFFIC OVER RANDOM
NETWORKS NETWORKS
No. of obtained | No. of obtained Average Average No. of obtained | No. of obtained Average Average
solutions within | solutions with P 9 runtime solutions within | solutions with P 9 runtime
100% optimality | P within 10% (second) 100% optimality | P within 10% (second)
Exhaustive Exhaustive
1.7522 1.8511
Search 1,000 1,000 0% Search 1,000 1,000 0%
HWF 540 781 6.40% 0.0015 HWF 655 872 3.42% 0.0017
MDF 549 786 5.59% 0.0017 MDF 568 779 5.32% 0.0019

random demanfl. Fig.[10 plots percentage cost penalty versidgemands, 8, 9, and 10 have been chosen for scheduling. Then,
average link degree. Tallg V gives the statistics of the@,0@&e have an updated demafid+ [0, 1,1,2,2,3,4, 5,6, 7] after
experiments. this iteration. Now the traffic demands to be scheduled have a

Fig.[I0 and TableV show that both HWF and MDF achievearrower range (i.e., 1 to 7) in the future. With compacfficaf
reasonably good performance. In particular, Tdble V shows the later iterations, more scheduled links can be removed
that there are nearly 800 solutions obtained by HWF and MDifr each iteration because they have the same traffic demands.
with penalty cost no greater than 10%. On average, HWF alMDF, on the other hand, does not have such an advantage.
MDF have averag® of 6.40% and 5.59%, respectively. Table Additional simulations have further verified our obseroati
[Vlalso shows that the average runtime of the two algorithrivge have conducted five additional sets of simulations. Eath s
is much smaller than that of exhaustive search. of simulations are based on different values of traffic dednan

We have also conducted 1,000 simulations based on asy@mnge. The first set of simulations are basedSn(1~10),
metric traffic demands. The simulation results are presentee., traffic demands randomly generated according to eliscr
in Fig.[I1 and Tabl&VI. The traffic demany; of each link uniform distribution with values ranging from 1 to 10. The
(i,7) is randomly generated according to the discrete uniforsecond set of simulations are based%n(1~20) with values
distribution with values ranging from 1 to 10. But the trafficzanging from 1 to 20, etc. For each set of simulations, we
in the opposite directionf;; is not set tof;;; rather, it is calculate the average values for HWF and MDF over 100
generated anew using the same distribution. It is shown simulations. Fig[_I2 plots th& values versus different traffic
Fig. [11 and Tablé_VI that HWF outperforms MDF in thisranges. It is shown in Fig._12 that MDF and HWF perform
asymmetric traffic scenario. In particular, Tablg VI showatt comparably withP of 3.54% and 3.52%, respectively, when
HWF obtain 872 solutions withP less than 10% versus 779traffic demands ranges from 1 to 10. However,of MDF
obtained by MDF. On average, HWF has a lower averBge increases quickly as the range of traffic demands increases,
of 3.42% versus 5.32% of MDF. while HWF remains somewhat immune to suBhincrease.

HWF outperforms MDF in the asymmetric case becauseOne possible improvement for future work is to integrate the
HWF can "compact traffic demands” as it runs. By comtwo heuristic algorithms together. In particular, we cofitdt
pacting traffic demands, we mean HWF can decrease #wmt the links according to their traffic demands in a desitend
range of the traffic demands in the network after each ibrder. Then, we schedule the links with the heaviest weight
eration. To see this, suppose we have a traffic demaffidst. When there is a tie and two links have the same weight,
f=11,2,3,4,5,6,7,8,9,10], where the traffic ranges fromwe choose the link with the maximum degree in the associated
1 to 10. Suppose that in the first iteration, links with trafficonflict graph for scheduling.



V. CONCLUSION

APPENDIXA

In this paper, we have investigated MTR networks in which We consider the link-scheduling problem of finding the miaim

a node may simultaneously send to a number of other nodf

me length in an MTR network that has a bipartite graphcstme.
t all networks can be casted into a bipartite structureydver.

or simultaneously receive from other nodes. This capgbiligt for those network topologies that are bipartite graphelding

can potentially improve the network capacity substantidile

tree topologies), optimal scheduling is rather simple.eNibtat the

have (i) provided a formal specification of MTR networkderm "graph” here refers to the structure of the networkifitsather
for a systematic study; (i) formulated the link-schedglinthan the conflict graph associated with the network.

problem of minimizing the airtime usage in an MTR wirelesgu
network as a linear program (LP) and demonstrated that it

NP-hard; (iii) proposed two computationally efficient histic
algorithms to solve this LP; and (iv) presented extensive si

ulation results to show that both Heavy-Weight-First (HWF)
and Maximum-Degree-First (MDF) algorithms achieve good

optimality and runtime performance. With regard to (iv)thbo

HWF and MDF have average percentage cost penalty less
than 10% over 1, 000 simulation experiments with different
network topologies and traffic demands. The average runtime

of both HWF and MDF is less than 0.01 second.
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A graph is bipartite if its vertex set can be partitioned imtm
bsetsA and B so that each edge has one endpointdirand the
ther endpoint inB. Fig.[I3 shows an example of a bipartite graph.

Fig. 13. The bipartite graph

A bipartite graph is a 2-colorable graph, i.e., we can usedwors
to colorize all vertices in the graph. For example in Eig. 4@, can
color all nodes 1, 5, 6 and 7 id gray, and all node 2, 3 and 4 in
B white. The gray nodes 1, 5, 6 and 7 can operate in transmit mode
while the white nodes 2, 3 and 4 can operate in receive modeeat t
same time. Thus, MTR constraints can be easily met in a lifipart
topology. Suppose the link set for the bipartite graph in. is
{(1,2),(1,3),(1,4), (2,1),(2,5),(2,6), (3,1), (4,1), (4,7)
,(5,2),(6,2),(7,4)} and the associated traffic demand vectdt is
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]. Then we only need two time slots
to schedule all the traffic demands.

In general, if an MTR network is bipartite, we ne@t .. + 72 .«
time slots to fulfill all the traffic demands, wherg.,. is the
maximum traffic demand among links in one direction in theattipe
graph; andT2,. is the maximum traffic demand in the other
direction.

Consider the bipartite example in Fig]13 again. Supposé alffic
demand vector i§ = [9, 8, 10,6, 3,4,2,8,5,7,8,7]. Then, to fulfill
all the traffic demands, we can u§&,,. + 72,, = 10 + 8 = 18
time slots.

We can use a simple algorithm to solve the link schedulingplera
in a bipartite MTR network. In the first step, we first choose th
link with the maximum traffic demand1{,,,) into the scheduling
link set E1. Then, we choose a link into link séf; if it does not
conflict with the existing links inE; according the conflict graph.
Repeat this process until no link can be added into linkisetWe
then assigrT}},. time slots to link setF;. In the second step, we
add all other remaining links into link séf.. Then, we assign the
maximum demand among all the remaining linkg,,,. time slots to
link set E». Consider the above example again. The traffic demand
vector isf = [9, 8, 10,6, 3,4,2,8,5,7,8,7]. Thus, in the first step,
we have link sett; = (1,4),(1,2),(1,3),(5,2),(6,2),(7,4) and
time slotsTih.. = 10 for link (1,4). In the second step, we have
link set B, = (2,1),(2,5),(2,6),(3,1), (4,1), (4, 7) and time slots
T2, = 8 for link (4,1).

If the network is bipartite, we can easily solve the link shileng
problem in MTR networks. However, intentionally restngi the
network topology to a bipartite graph may compromise nekwor
reliability and the network capacity [[5]. Therefore, we deto
consider more general topologies other than bipartite hgaf his
is the motivation for our studies of more general networkotogies
in the main body of this paper.
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