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Abstract—This paper investigates the problem of link schedul-
ing to meet traffic demands with minimum airtime in a multi-
transmit-receive (MTR) wireless network. MTR networks are a
new class of networks, in which each node can simultaneously
transmit to a number of other nodes, or simultaneously receive
from a number of other nodes. The MTR capability can be
enabled by the use of multiple directional antennas or multiple
channels. Potentially, MTR can boost the network capacity
significantly. However, link scheduling that makes full useof the
MTR capability must be in place before this can happen. We
show that optimal link scheduling can be formulated as a linear
program (LP). However, the problem is NP-hard because we need
to find all the maximal independent sets in a graph first before
the LP can be set up. We propose two computationally efficient
algorithms, called Heavy-Weight-First (HWF) and Max-Degree-
First (MDF) to solve this problem. Simulation results show that
both HWF and MDF can achieve superior performance in terms
of runtime and optimality. Specifically, we have conducted 1,000
simulation experiments with different network topologies and
traffic demands. On average, the HWF and MDF solutions are
within 90% of the optimal solutions.

I. I NTRODUCTION

This paper concerns the problem of link scheduling to min-
imize airtime usage in a new class of wireless networks called
multi-transmit-receive (MTR) wireless networks. In an MTR
network, a node can simultaneously transmit to a number of
other nodes, or simultaneously receive from a number of other
nodes. However, a node cannot simultaneously transmit and
receive (i.e., the half-duplexity is still in place). Enabling this
capability of MTR networks is the use of multiple directional
antennas at a node [1]–[5] or the use of multiple channels
on multiple collocated radios at a node [6]. Potentially, this
capability can increase the network capacity significantly[2],
[3], [6]. Details about MTR networks will be presented in
Section II.

Potentially, MTR networks can schedule more wireless
links than conventional wireless networks. Take Fig. 1 as an
example. In this four-node network, the mutually connected
nodes 1 and 2 are connected with nodes 3, which is in
turn connected with node 4. Since there are four edges,
there are totally eight directional links. Denote the link set
by {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 3)}. For
a conventional network, where multiple simultaneous trans-
missions or receptions at a node are not allowed, at most two
links can be active at a given time (e.g.,(1, 2) and (4, 3)).
However, an MTR network allows three links to be active
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Fig. 1. A four-node network

simultaneously (e.g.,(1, 2),(1, 3),(4, 3)).
This paper considers the link-scheduling problem of deter-

mining the minimum Time Division Multiple Access (TDMA)
frame length while fulfilling the traffic demands in MTR
networks. Although there have been prior studies on MTR
networks [1]–[5], [7]–[10], this particular link scheduling
problem (which is a well studied classical problem under
the context of non-MTR networks [11]–[16]) has not been
investigated as far as we know. Previously proposed MTR
MAC protocols, such as 2P [3], WiLDNet [2] and JazzyMAC
[5], are not efficient in that a node needs to maintain all of its
links in transmit mode for the same time duration regardless
of the actual link traffic demands. The links with lower
traffic demands will sit idle while the other links of the node
transmit; meanwhile, the nodes at the other ends of the idle
links are not allowed to transmit - this is purely a constraint
imposed by the MAC rather than an MTR constraint. Consider
the four-node example in Fig. 1 again. Suppose a traffic
demand for the above link set is[1, 1, 1, 1, 1, 1, 2, 1]. Then,
2P, WiLDNet and JazzyMAC obtain a sub-optimal schedule,
{(1, 2), (1, 3), (4, 3)},{(2, 1), (2, 3)},{(3, 4)},{(3, 1), (3, 2),
(3, 4)}, which requires four time slots. However, only
three time slots are required for an optimal schedule:
{(2, 1), (3, 1), (3, 4)}, {(1, 2), (3, 2), (3, 4)},{(1, 3), (2, 3),
(4, 3)}.

The primary research contributions of our paper are sum-
marized as follows.

1. We provide a formal specification of an MTR network,
and formulate the link-scheduling problem of determining
the minimum frame length required to meet the underly-
ing link-traffic demands.

2. We show that solving the link scheduling problem op-
timally is NP-hard, since we need find all the maximal
independent sets (MIS) in a graph.
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3. We propose two computationally efficient heuristic al-
gorithms to tackle this problem. The first algorithm
is a Heavy-Weight-First (HWF) algorithm, which gives
priority to the links with the heaviest traffic demands in its
schedule. The second algorithm is a MAX-Degree-First
(MDF) algorithm, which gives priority to the links with
the maximum degree in a conflict graph in its schedule.

4. We conduct extensive simulations based on regular and
random network topologies, with symmetric and asym-
metric traffic demands. The simulation results show that
both HWF and MDF can typically obtain solutions within
90% of the optimal solutions over 1,000 simulation
experiments based on symmetric and asymmetric traffic
demands.

The rest of the paper is organized as follows. In Section II,
we present the network model, basic assumptions and problem
formulation. Section III presents two heuristic algorithms. We
show the simulation results in Section IV. Section V concludes
the paper.

II. N ETWORK MODEL AND PROBLEM FORMULATION

In this section, we specify the MTR network model for-
mally. We then formulate the link-scheduling problem of
finding the minimum frame length in MTR networks as a
linear program (LP). The previously proposed MTR MAC
protocols (e.g., 2P [3], WiLDNet [2] and JazzyMAC [5]) are
shown to be sub-optimal.

A Multi-Transmit-Receive (MTR) network is defined as
follows.

Definition 1: In an MTR network, each node has a set of
neighbor nodes with whom it forms links. At any given time,
R1. A node can transmit simultaneously on a subset of its

outgoing links.
R2. A node can receive simultaneously on a subset of its

incoming links.
R3. A node cannot do operations R1 and R2 simultaneously,

(i.e., a node cannot transmit and receive simultaneously).
Given an MTR network, we are interested in how to

minimize the TDMA slots required to meet the underlying
link traffic demands.

A. Centralized Scheduling Problem

Let the link traffics be specified by the traffic matrix
T = [tij ], where tij is the amount of traffic from nodei
to its neighboring nodej. At any given time, let the set of
active links in the network be indicated by an indicator matrix,
M (k) = [m

(k)
ij ], wherem(k)

ij = 1 if link (i, j) is active, and

m
(k)
ij = 0 if link (i, j) is inactive.
Definition 2: An indicator matrix is called amatching ma-

trix if all nodes conform to rules R1, R2 and R3.
Let us consider the four-node network as shown in Fig. 1.

In this network, an example of a matching matrix is:

M (1) =









0 1 1 0
0 0 0 0
0 0 0 0
0 0 1 0









where matrix M (1) indicates that node 1 simultaneously
transmits to nodes 2 and 3 while node 4 transmits to node
3. Note that the matching matrixM (1) is maximalin that you
cannot turn any of its0 elements to1 without violating R3.

Definition 3: A matching matrix ismaximal if none of its
0 elements can be turned to 1 (while maintaining all its 1
elements at 1) without violating the rules in definition 1.

When we consider the link scheduling, we only need to
consider the maximal matching matrix. Suppose there beK

maximal matching matrices. Then, the problem that we are
considering is as follows:

min
∑K

k=1 xk

s.t.
∑K

k=1 M
(k)xk ≥ T

xk ≥ 0 for all k (1)

where xk denotes the number of time slots allocated to
maximal matching matrixM (k).

B. Sub-optimal Scheduling

In previously proposed MAC protocols for MTR networks
networks, such as 2P [3], WiLDNet [2] and JazzyMAC [5],
each node alternates between two phases (2P): simultaneous
reception (SynRx) and simultaneous transmission (SynTx).In
addition, a node is required to maintain all of its links in
transmit mode for the same time duration regardless of the
link traffic demands, resulting in inefficiency. In particular, the
simultaneous synchronized operations in these MAC protocols
indicate that when a node transmits, none of its neighbor nodes
can transmit. As far as scheduling is concerned, this constraint
is equivalent to (virtually) turning R1 in Definition 1 to a more
restrictive requirement, as follows:

R1′ When a node transmits, it transmits on all its outgoing
links.

Constraint R1′ plus the half-duplexity in constraint R3
implies that the neighbors of a node cannot transmit at the
same time.

Since with R1′, when a nodei transmits, it transmits
on all outgoing links, we might as well replace the traffic
requirements for outgoing traffic from nodei, (ti1, ti2, ..., tiN ),
by one single number,ti = maxj tij . Then t = (ti) is the
traffic vector describing the transmission requirements ofall
nodes.

Let S(l) = (s
(l)
i ) be a column indicator vector in which

s
(l)
i = 1 if node i transmits ands(l)i = 0 if node i does not

transmit. With respect to the graph describing the network,
S(l) is basically an independent set1 if it is to conform to R1′,
R2, and R3. It suffices to consider themaximal independent
set (MIS)2 in our scheduling problem. Suppose that there are
L MIS. Then, the scheduling problem can be formulated as

1An independent set is a subset of vertices such that no edge joins any two
of them.

2A maximal independent set is an independent set that is not the subset of
another independent set.



follows:

min
∑L

l=1 xl

s.t.
∑L

l=1 S
(l)xl ≥ t

xl ≥ 0 for all l (2)

Since Eq. (2) is defined in a more restrictive way, the
solution to Eq. (1) cannot be worse than that of Eq. (2).

Consider the four-node example (Fig. 1) again. In addition,
suppose we have the following traffic requirements:

T =









0 1 1 0
1 0 1 0
1 1 0 2
0 0 1 0









Then, we replace the outgoing traffic requirements of each
node by a single number and get a vector:

t = [1, 1, 2, 1]T

In the four-node example, there are three maximal indepen-
dent sets (MIS):

S(1) = [1, 0, 0, 1]T

S(2) = [0, 1, 0, 1]T

S(3) = [0, 0, 1, 0]T

We can verify that the optimal solution to the problem
defined in Eq. (2) is given by

x1 = 1, x2 = 1, x3 = 2

Thus, a total of four units of airtime is needed.
Now, let us go back to the original problem defined in Eq.

(1). First of all, the maximal matching matrices corresponding
to the above MIS are:

M (1) =









0 1 1 0
0 0 0 0
0 0 0 0
0 0 1 0









M (2) =









0 0 0 0
1 0 1 0
0 0 0 0
0 0 1 0









M (3) =









0 0 0 0
1 0 0 0
1 1 0 1
0 0 0 0









(3)

In addition, there are three additional maximal matching
matrices, shown as follows:

M (4) =









0 0 0 0
1 0 0 0
1 0 0 1
0 0 0 0








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Fig. 2. A five-node network

M (5) =









0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0









M (6) =









0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0









(4)

Indeed, the optimal solution to Eq. (1) is given by assigning
airtimes to the matrices in Eq. (4) only:

x1 = x2 = x3 = 0, x4 = 1, x5 = 1, x6 = 1

This solution requires three units of airtime, which is less
than four units in Eq. (2).

The above example gives rise to an interesting observation:
the matrices in Eq. (4) are the transposes of the matrices in
Eq. (3). Thus, we have the following theorem,

Theorem 1:If M (k) conforms to constraints R1, R2, and
R3 as defined in Definition 1, then so does its transpose.

Proof: It is obvious that constraints R1 and R2 are still
fulfilled in the transposed matching matrix. The direction of
transmission on a link simply gets reverse in the transposed
matching matrix, so that the transmitters become the receivers,
and vice versa. Thus, the half-duplexity constraint, R3 is still
fulfilled.

In the four-node example above, the set of maximal match-
ing matrices in Eq. (1) can be found from the MIS in Eq. (2).
More specifically, each MIS in Eq. (2) leads to two maximal
matching matrices. In one matrix, each vertex in MIS is a
transmit node and it transmits on all its outgoing links; in the
other one, each vertex in MIS is a receive node and it receives
on all its incoming links. Thus, each MISinducestwo maximal
matching matrices.

A question then is whether all maximal matching matrices
are induced from an MIS. Unfortunately, the answer is no.
Consider the following five-node network, as shown in Fig. 2.
A possible maximal matching matrix to this network is shown
as follows:

M ′ =













0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0













In this matching, nodes 1, 2, and 5 are transmitters; and
node 3 and 4 are receivers. The transmitters do not form an
MIS because nodes 1 and 2 are neighbors. The receivers do
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Fig. 3. The active links in the five-node network

not form an MIS because nodes 3 and 4 are neighbors. Fig. 3
depicts the active links in maximal matching matrixM ′.

In general, the number of maximal matchings can be more
than twice the number of MIS. Then, how are maximal
matching matrices related to MIS? To establish the relation,
we need to model the network with a different graph. We
use aconflict graph to describe the relationship between two
conflicting links. In this graph, each directional link is denoted
by a vertex, and there is an edge between two vertices if
the two associated links cannot be active at the same time.
The conflict graph for the five-node network above is shown
as Fig. 4, where vertex(i, j) represents linklij . With the
modified graph, we can then formulate the problem in Eq.
(1). In the traffic vector,tv = tij wherev represents the vertex
corresponding to linklij .

C. Problem Restatement

In optimization problem defined in Eq. (1), we represent a
matching by a matrixM (k) for pedagogical purposes. We now
define a more economical representation.

Definition 4: A matchingA in an MTR network is a subset
of links that conform to R1, R2 and R3.

Definition 5: A matching is said to be maximal if it is not
contained in any other matching.

Let E = {Ej : 1 ≤ j ≤ |E|} be the set of all the feasible
matchings. The number of time slots allocated to each feasible
matchingEj is denoted by a non-negative variableuj.

Let N be the total number of links in the network. We
introduce anN × |E| incidence matrixQ with elementsqij
such that

qij =

{

1, if link i is in matchingEj ,
0, otherwise.

where each column inQ indicates the links in a matching.
We also convert the traffic matrixT = [Tij ] to a vector

f = (fij)
T , where fij = Tij for i, j such thatTij 6= 0.

Then, the problem defined in Eq. (1) can be casted as a linear
program as follows:

min e
T
u

s.t. Q · u ≥ f

u ≥ 0 for all k (5)

where e is a vector whose components are all 1’s,f =
(f1, f2, ..., fN )T andu = (u1, u2, ..., u|E|)

T .
The difficulty of the above problem lies in how to find

all matchingsQ (equivalent to finding all the independent
sets in the associated conflict graph, which is NP-complete).
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Fig. 4. The conflict graph for the five-node network

This motivates us to investigate heuristic algorithms to solve
this problem. We will present two computationally efficient
algorithms in the next section.

III. H EURISTIC ALGORITHMS

In this section, we propose two heuristic algorithms, heavy-
weight-first (HWF) algorithm and max-degree-first (MDF)
algorithm to solve the link-scheduling problem defined in Eq.
(5). HWF is a greedy algorithm that always chooses links with
the maximum traffic demand (the heaviest weight) into the
scheduling set during each round until all the traffic is satisfied.
MDF, on the other hand, chooses links with the maximum
degree in the conflict graph during each round.

Both HWF and MDF make use of a conflict graph to capture
constraints R1, R2 and R3. In the conflict graph, a link(i, j)
is represented by a vertex. Two links,(i, j) and(k, l), conflict
with each other if and only ifi = l or j = k. An edge is
drawn between the vertices representing(i, j) and (k, l) if
they conflict with each other.

A. Heavy-Weight-First Algorithm

Algorithm 1 Heavy-Weight-First Algorithm
Require: the networkG, traffic demandf
1: construct matchingA according toG;
2: generate the conflict graphCG;
3: while the traffic demandf 6= 0 do
4: sort matchingA of the links in a descending order based on the traffic

demands;
5: Ei := ∅;
6: m := 1;
7: while m 6= N do
8: pick the elementA(m);
9: if addingA(m) into Ei does not cause conflict in setEi then

10: addA(m) into Ei;
11: end if
12: m := m+ 1;
13: end while
14: tmin := mine∈Ei

te (te ∈ f );
15: ui := tmin;
16: for j := 1 to N do
17: Update the weight of every link inEi to tj := tj − tmin;
18: if tj = 0 then
19: remove linkj from matchingA;
20: end if
21: end for
22: outputEi andui;
23: i := i+ 1
24: end while

In Heavy-Weight-First algorithm (HWF), we first sort the
links according to their traffic demands in a descending order.
To construct a matching,Ei, we go through the link one by
one. A link will be included intoEi if it does not conflict with



Algorithm 2 Max-Degree-First Algorithm
Require: the networkG, traffic demandf
1: construct matchingA according toG;
2: generate the conflict graphCG;
3: calculate the degree of each link based on the conflict graph CG;
4: while the traffic demandf 6= 0 do
5: sort matchingA of the links in a descending order of the degrees;
6: Ei := ∅;
7: m := 1;
8: while m 6= N do
9: pick the elementA(m);

10: if addingA(m) into Ei does not cause conflict in the setEi then
11: addA(m) into Ei;
12: end if
13: m := m+ 1;
14: end while
15: tmin := mine∈Ei

te (te ∈ f );
16: ui := tmin;
17: for j := 1 to N do
18: Update the weight of every link inEi to tj := tj − tmin;
19: if tj = 0 then
20: remove linkj from matchingA;
21: update the conflict graphCG;
22: update the degree of each vertex inCG;
23: end if
24: end for
25: outputEi andui;
26: i := i+ 1
27: end while

the existing links inEi according to the conflict graph. Once
we have gone through all the links in the sorted list, we then
identify the link inEi with the least amount of traffic. Let us
say this is linkk, with traffic fk . We then assignfk time slots
to matchingEi. We subtractfk from the traffic of all the links
in Ei, and remove linkk and other links inEi with the same
amount of traffic (if any) from further consideration: thereis
not traffic left to be scheduled for these links. The links are
then resorted according to their remaining traffics. The above
process is iterated until all traffic demands are met. At most
N iterations are needed, since each iteration removes at least
one link from further consideration.

B. Max-Degree-First Algorithm

In MDF, we sort the links according to their degrees in the
conflict graph in a descending order. Other than the different
way of sorting the links, the algorithm of MDF is essentially
the same as that of HWF. In particular, at least one link will
be removed at the end of each iteration. The degrees of the
neighbors to this link will be updated. The remaining links will
also need to be resorted accordingly before the next iteration.
During each iteration, at least one link will be removed. Thus,
similar to HWF, MDF needs at mostN iterations.

IV. SIMULATION RESULTS

We have conducted extensive simulation experiments on a
Pentium 2.86GHz PC with 2GB memory. We consider several
types of networks: (1) regular networks, including the linear
network in Fig. 5, the grid network in Fig. 6, the ring network
in Fig. 7, and the fully-connected network in Fig. 8; (2)
random networks with varying degrees of connectivity. We

, - . / 0 1

Fig. 5. The linear network

also consider various traffic demands,symmetricas well as
asymmetric.

Symmetric traffic demands mean thatfij = fji for all pairs
of i-j neighbors. Symmetric traffic demands, on the other
hand, mean thatfij 6= fji for somei-j neighbors.

When the network topology is bipartite, we can easily find
the optimal solution for the link scheduling problem. Details
about this issue are presented in Appendix A. Note that sincea
tree network topology can always be organized into a bipartite
graph, link scheduling in an MTR tree network is also easy.

A. Performance in Regular Networks

For the investigation of regular networks, we first present the
simulation results of the linear network in Fig. 5. For this small
network, we can easily find the optimal solution by simple
hand calculation.

We present the simulation results in Table I. The link set is
{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5)}.
Both HWF and MDF achieve the optimal solutions for both
symmetric traffic demands (simulation No. 1 and simulation
No. 2) and asymmetric traffic demands (simulation No. 3).

TABLE I
SIMULATION RESULTS FOR THE LINEAR NETWORK

No. Traffic demandsf HWF MDF optimal

1 [5, 5, 5, 5, 5, 5, 5, 5, 5, 5] 10 10 10
2 [6, 6, 4, 4, 8, 8, 5, 5, 7, 7] 16 16 16
3 [6, 3, 4, 5, 7, 8, 5, 2, 7, 9] 16 16 16

In the second set of simulations, we consider a grid
network with nine nodes, as shown in Fig. 6. The sim-
ulations results are shown in Table. II. The link set is
{(1, 2), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 3), (4, 5
), (4, 9), (5, 2), (5, 4), (5, 6), (5, 8), (6, 1), (6, 5), (6, 7), (7, 6
), (7, 8), (8, 5), (8, 7), (8, 9), (9, 4), (9, 8)}. The simulation re-
sults show that both HWF and MDF obtain the optimal
solution of 10 for the symmetric traffic demands (simulation
No. 1). But for asymmetric traffic demands (simulation No.
2), HWF obtains a solution of 20, which is greater than
the optimal solution of 18; while MDF obtains the optimal
solution of 18.

TABLE II
SIMULATION RESULTS FOR THE GRID NETWORK

No. Traffic demandf HWF MDF optimal

1 [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10 10 10
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]

2 [7, 8, 8, 4, 7, 2, 8, 1, 3, 1, 1, 9, 20 18 18
7, 4, 10, 1, 5, 4, 8, 8, 2, 5, 5, 7]

The third set of simulations are based on a ring
network with six nodes, as shown in Fig. 7. Simula-
tions results are shown in Table III. The link set is
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{(1, 2), (1, 6), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4)
, (5, 6), (6, 1), (6, 5)}. The simulation results show that both
HWF and MDF achieve the optimal solution of 10 for symmet-
ric traffic demands (simulation No. 1) and asymmetric traffic
demands (simulation No. 2).

TABLE III
SIMULATION RESULTS FOR THE RING NETWORK

No. Traffic demandsf HWF MDF optimal

1 [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] 10 10 10
2 [2, 5, 10, 3, 4, 6, 7, 8, 9, 11, 4, 12] 23 23 23

We have also conducted 1,000 simulation experiments (with
different traffic demands) for each of the following networks:
the linear network (Fig. 5), the grid network (Fig. 6), the ring
network (Fig. 7) and the fully-connected network (Fig. 8).

In order to compare the solutions obtained by the proposed
algorithms with optimal solutions, we introduce thepercentage
cost penalty[12] as a performance measure. Its definition is
as follows:

P =
T − Topt

Topt

× 100% (6)

whereT denotes the total number of time slots obtained by
the heuristic algorithm andTopt is the total number of time
slots in the optimal solution.

We computeP of HWF and MDF over the 1,000 ex-
periments and present the averagedP values in Table 4. In
each experiment, we generate a random traffic demand vector
f , where each element off conforms to a discrete uniform
distribution with values ranging from 1 to 10.

The results in Table IV show that MDF outperforms HWF
in the linear network, the grid network and the ring network.
But HWF performs better in the fully-connected network. The
above results can be explained intuitively as follows. Recall
that a link is removed at the end of each iteration in MDF or
HWF. The nature of MDF is such that the link being removed
has a high degree in the conflict graph. In this sense, MDF
tends to remove many edges in the conflict graph. As a result,
in a sparsely connected network (e.g., the linear network in
Fig. 5, the grid network in Fig. 6 and the ring network in Fig.
7), many links become conflict-free after several iterations.

By contrast, in a densely connected network, (e.g., the
fully-connected network in Fig. 8), the links are so closely
connected together in the conflict graph (e.g., in Fig. 9) that
very few links can become conflict-free even after several
iterations. As to why HWF tends to have better performance
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Fig. 9. The conflict graph for the fully-connected network

than MDF when the network is densely connected, we shall
defer the intuitive explanation to Section 4.2, where we focus
on large-scale random networks.

TABLE IV
SIMULATION RESULTS FOR RANDOM TRAFFIC IN VARIED REGULAR

NETWORKS

Average cost penalty
of HWF

Average cost penalty
of MDF

Linear network (Fig.
5)

5.49% 0%

Grid network (Fig. 6) 8.16% 0%

Ring network (Fig. 7) 7.97% 0%

Fully-connected
network (Fig. 8)

4.04% 9.15%

B. Performance in Random Networks

For comparison purposes, we carry outexhaustive search
to find optimal solutions. We compare the average runtime
of HWF and MDF with that of exhaustive search. To reduce
the runtime of exhaustive search, we use a branch-and-bound
algorithm, first proposed in [17].

We generate random network topologies, represented by
random matrixG, which is symmetric with zero diagonal.
In G, entry gij = 1 if there is a pair directional links
between nodesi and j; and gij = 0 otherwise. For our
simulation experiments,Pr[gij = 1] = p = 0.5, ∀i, j. Thus,
the networks being simulated are densely connected in that a
node is connected to half of the other nodes on average. The
number of nodes in the simulated networks isn = 6. Thus,
the maximum number of unidirectional links isn(n−1) = 30.
Each directional link will conflict with at most2n − 1 other
links under the MTR constraints. Thus, in the associated
conflict graph, each link has a degree ranging from 1 to 11
whenn = 6.

In the first set of simulations, we consider symmetric traffic
demands. If there is a link between nodei and nodej (i.e.,
gij = 1), then the traffic between them,fij = fji, is randomly
generated according to the discrete uniform distribution with
values ranging from 1 to 10. We conduct 1,000 experiments
and present the results in Fig. 10 and Table V. Each experiment
is based on one random networkG and one associated



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Average degree

P
er

ce
nt

ag
e 

co
st

 p
en

al
ty

 

 

HWF
MDF

Fig. 10. The percentage cost penalty: symmet-
ric traffic
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Fig. 11. The percentage cost penalty: asym-
metric traffic
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demands

TABLE V
SIMULATION RESULTS FOR SYMMETRIC TRAFFIC OVER RANDOM

NETWORKS

No. of obtained
solutions within
100% optimality

No. of obtained
solutions with
P within 10%

Average
P

Average
runtime
(second)

Exhaustive
Search 1,000 1,000 0% 1.7522

HWF 540 781 6.40% 0.0015

MDF 549 786 5.59% 0.0017

random demandf . Fig. 10 plots percentage cost penalty versus
average link degree. Table V gives the statistics of the 1,000
experiments.

Fig. 10 and Table V show that both HWF and MDF achieve
reasonably good performance. In particular, Table V shows
that there are nearly 800 solutions obtained by HWF and MDF
with penalty cost no greater than 10%. On average, HWF and
MDF have averageP of 6.40% and 5.59%, respectively. Table
V also shows that the average runtime of the two algorithms
is much smaller than that of exhaustive search.

We have also conducted 1,000 simulations based on asym-
metric traffic demands. The simulation results are presented
in Fig. 11 and Table VI. The traffic demandfij of each link
(i, j) is randomly generated according to the discrete uniform
distribution with values ranging from 1 to 10. But the traffic
in the opposite direction,fji is not set tofij ; rather, it is
generated anew using the same distribution. It is shown in
Fig. 11 and Table VI that HWF outperforms MDF in this
asymmetric traffic scenario. In particular, Table VI shows that
HWF obtain 872 solutions withP less than 10% versus 779
obtained by MDF. On average, HWF has a lower averageP

of 3.42% versus 5.32% of MDF.
HWF outperforms MDF in the asymmetric case because

HWF can ”compact traffic demands” as it runs. By com-
pacting traffic demands, we mean HWF can decrease the
range of the traffic demands in the network after each it-
eration. To see this, suppose we have a traffic demand,
f = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], where the traffic ranges from
1 to 10. Suppose that in the first iteration, links with traffic

TABLE VI
SIMULATION RESULTS FOR ASYMMETRIC TRAFFIC OVER RANDOM

NETWORKS

No. of obtained
solutions within
100% optimality

No. of obtained
solutions with
P within 10%

Average
P

Average
runtime
(second)

Exhaustive
Search 1,000 1,000 0% 1.8511

HWF 655 872 3.42% 0.0017

MDF 568 779 5.32% 0.0019

demands, 8, 9, and 10 have been chosen for scheduling. Then,
we have an updated demand,f = [0, 1, 1, 2, 2, 3, 4, 5, 6, 7] after
this iteration. Now the traffic demands to be scheduled have a
narrower range (i.e., 1 to 7) in the future. With compact traffic,
in the later iterations, more scheduled links can be removed
in each iteration because they have the same traffic demands.
MDF, on the other hand, does not have such an advantage.

Additional simulations have further verified our observation.
We have conducted five additional sets of simulations. Each set
of simulations are based on different values of traffic demand
range. The first set of simulations are based onS1 (1∼10),
i.e., traffic demands randomly generated according to discrete
uniform distribution with values ranging from 1 to 10. The
second set of simulations are based onS2 (1∼20) with values
ranging from 1 to 20, etc. For each set of simulations, we
calculate the averagedP values for HWF and MDF over 100
simulations. Fig. 12 plots theP values versus different traffic
ranges. It is shown in Fig. 12 that MDF and HWF perform
comparably withP of 3.54% and 3.52%, respectively, when
traffic demands ranges from 1 to 10. However,P of MDF
increases quickly as the range of traffic demands increases,
while HWF remains somewhat immune to suchP increase.

One possible improvement for future work is to integrate the
two heuristic algorithms together. In particular, we couldfirst
sort the links according to their traffic demands in a descending
order. Then, we schedule the links with the heaviest weight
first. When there is a tie and two links have the same weight,
we choose the link with the maximum degree in the associated
conflict graph for scheduling.



V. CONCLUSION

In this paper, we have investigated MTR networks in which
a node may simultaneously send to a number of other nodes;
or simultaneously receive from other nodes. This capability
can potentially improve the network capacity substantially. We
have (i) provided a formal specification of MTR networks
for a systematic study; (ii) formulated the link-scheduling
problem of minimizing the airtime usage in an MTR wireless
network as a linear program (LP) and demonstrated that it is
NP-hard; (iii) proposed two computationally efficient heuristic
algorithms to solve this LP; and (iv) presented extensive sim-
ulation results to show that both Heavy-Weight-First (HWF)
and Maximum-Degree-First (MDF) algorithms achieve good
optimality and runtime performance. With regard to (iv), both
HWF and MDF have average percentage cost penalty less
than 10% over 1, 000 simulation experiments with different
network topologies and traffic demands. The average runtime
of both HWF and MDF is less than 0.01 second.
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APPENDIX A
We consider the link-scheduling problem of finding the minimum

frame length in an MTR network that has a bipartite graph structure.
Not all networks can be casted into a bipartite structure, however.
But for those network topologies that are bipartite graphs (including
tree topologies), optimal scheduling is rather simple. Note that the
term ”graph” here refers to the structure of the network itself, rather
than the conflict graph associated with the network.

A graph is bipartite if its vertex set can be partitioned intotwo
subsetsA andB so that each edge has one endpoint inA and the
other endpoint inB. Fig. 13 shows an example of a bipartite graph.

1 2

3

4

A B

5

6

7

Fig. 13. The bipartite graph

A bipartite graph is a 2-colorable graph, i.e., we can use twocolors
to colorize all vertices in the graph. For example in Fig. 13,we can
color all nodes 1, 5, 6 and 7 inA gray, and all node 2, 3 and 4 in
B white. The gray nodes 1, 5, 6 and 7 can operate in transmit mode
while the white nodes 2, 3 and 4 can operate in receive mode at the
same time. Thus, MTR constraints can be easily met in a bipartite
topology. Suppose the link set for the bipartite graph in Fig. 13 is
{(1, 2), (1, 3), (1, 4), (2, 1), (2, 5), (2, 6), (3, 1), (4, 1), (4, 7)
, (5, 2), (6, 2), (7, 4)} and the associated traffic demand vector isf =
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Then we only need two time slots
to schedule all the traffic demands.

In general, if an MTR network is bipartite, we needT 1

max +T 2

max

time slots to fulfill all the traffic demands, whereT 1

max is the
maximum traffic demand among links in one direction in the bipartite
graph; andT 2

max is the maximum traffic demand in the other
direction.

Consider the bipartite example in Fig. 13 again. Suppose thetraffic
demand vector isf = [9, 8, 10, 6, 3, 4, 2, 8, 5, 7, 8, 7]. Then, to fulfill
all the traffic demands, we can useT 1

max + T 2

max = 10 + 8 = 18
time slots.

We can use a simple algorithm to solve the link scheduling problem
in a bipartite MTR network. In the first step, we first choose the
link with the maximum traffic demand (T 1

max) into the scheduling
link set E1. Then, we choose a link into link setE1 if it does not
conflict with the existing links inE1 according the conflict graph.
Repeat this process until no link can be added into link setE1. We
then assignT 1

max time slots to link setE1. In the second step, we
add all other remaining links into link setE2. Then, we assign the
maximum demand among all the remaining links,T 2

max time slots to
link set E2. Consider the above example again. The traffic demand
vector isf = [9, 8, 10, 6, 3, 4, 2, 8, 5, 7, 8, 7]. Thus, in the first step,
we have link setE1 = (1, 4), (1, 2), (1, 3), (5, 2), (6, 2), (7, 4) and
time slotsT 1

max = 10 for link (1, 4). In the second step, we have
link setE2 = (2, 1), (2, 5), (2, 6), (3, 1), (4, 1), (4, 7) and time slots
T 2

max = 8 for link (4, 1).
If the network is bipartite, we can easily solve the link scheduling

problem in MTR networks. However, intentionally restricting the
network topology to a bipartite graph may compromise network
reliability and the network capacity [5]. Therefore, we need to
consider more general topologies other than bipartite graphs. This
is the motivation for our studies of more general network topologies
in the main body of this paper.
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