
Channel Sensing Order for Cognitive Radio
Networks Using Reinforcement Learning

André C. Mendes and Carlos H. P. Augusto and Marcel W. R. da Silva and
Raphael M. Guedes and José F. de Rezende

Grupo de Teleinformática e Automação
Universidade Federal do Rio de Janeiro (UFRJ)

P.O. Box 68.504 – Rio de Janeiro, RJ 21.945–970
Emails: {andre,chenrique,marcel,raphael,rezende}@gta.ufrj.br

Abstract—This work investigates the problem of channel sens-
ing order used by a cognitive multichannel network, where each
user is able to perform primary user detection on only one
channel at a time. The sensing order indicates the sequence
of channels sensed by the secondary users when searching for
an available channel. When using an optimal sensing order, the
secondary user can find faster a free channel with high quality.
Brute-force algorithms may be used to find the optimal sensing
order. However, this approach requires great computational
effort. Even in scenarios where the secondary user knows the
probability of each channel being available, the sensing order
where the most available channels are sensed first is not ideal
when using adaptive modulation. Therefore, we propose an
approach using reinforcement learning to search dynamically for
the optimal sensing order. Through simulations, we evaluated our
proposal and compared its performance with other mechanisms,
and the results obtained are close to the optimal value provided
by the brute-force and superior to the other mechanisms in most
of the scenarios.

I. INTRODUCTION

The increasing demand for spectrum, along with the ineffi-
cient use of some licensed bands [1], pushed the idea of freeing
those underutilized bands for dynamic and opportunistic spec-
trum access [2]. This kind of access requires reconfigurable
network devices, called cognitive radios, capable of adapt-
ing their behavior in response to environmental stimuli [3].
Basically, cognitive radios can only access a certain band
of the spectrum when the users primarily licensed to this
band are inactive. For this, these cognitive devices, called
secondary users, need to determine by spectrum sensing when
primary users are active in order to avoid causing them a
harmful interference. Therefore, spectrum sensing is of most
importance in the correct operation of these devices.

In a single-radio and multiple-channel environment, sec-
ondary users can only sense one channel at a time to identify
potential opportunities for transmissions. In this scenario, the
channel sensing order can severely influence the performance
of cognitive networks. Thus, the search of the optimal channel
sensing order is a problem of great interest.

Recent works have tackled this problem [4]–[8]. Most of
them use the optimal stopping theory [9] to find the best chan-
nel sensing order to be used. In these works, time is divided

This research was supported by FAPERJ, CAPES, CNPq and FINEP.

in slots. And, at each slot, a secondary user senses channels
following a specific sequence until it finds a free channel.
In this case, the user can use this channel for transmission
for the remaining time of the slot, i.e. the effective time of
the slot used for transmission. With a priori knowledge of
the channel’s achievable rates and availability probabilities,
it is possible to calculate the expected reward of a specific
sensing order in terms of the effective transmission rate, i.e.
the product between the achievable rate and the effectiveness
of a slot. Therefore, one can find the optimal sequence of
channels by computing the expected reward of each possible
sequence and by choosing the sequence that reaches the best
reward. However, the complexity of this brute force approach
for N channels is O(N.N !), considering that the computation
of the expected reward for each sequence is O(1).

In order to reduce the computational complexity of this
search for optimal sensing order, the authors in [7], [10]
provide sub-optimal solutions. The first solution uses dynamic
programming [7] and has complexity of O(N.2N−1), while
the second one uses decision trees [10] with a complexity of
O(N3). The latter work evaluates the performance of these
two solutions in face of different degrees of primary activity,
and compare them to the randomly ordered sequence and to the
sequence in decreasing order of channel availabilities, referred
as “intuitive sequence” in [7].

In [8], the authors propose ordering the channels in
descending order of their achievable rates. This eliminates
the necessity of a priori knowledge about the activity of
the primary radios. This work also demonstrates that if the
secondary user always uses the first channel sensed as free,
the best reward for this sequence is obtained. In the solution
presented in [6], all channels have the same probability of
availability. In this case, the problem of channel sensing order
reduces to ordering the channels in the descending order
of their achievable rates, as in [8]. All these works have
the drawback of relying on a priori knowledge of channel’s
achievable rates and/or availability probabilities. Furthermore,
those solutions are difficult to embed in cognitive radios since
their computational complexity increases with the number of
channels.

In this work, we propose a low complexity solution, based

on a reinforcement learning machine, that follows the optimal
stopping concepts and associated rewards. This solution as-
sumes no prior knowledge of the moments of the random vari-
ables that represent the channel’s availability and achievable
rates. Further, it can dynamically adapt to variations of these
moments. It also has low computational complexity, which
makes it attractive to be embedded in cognitive radios. The
proposed solution is evaluated and compared to the optimal
an to other simple channel ordering solutions. The results
show that our solution is at most 5% worse than the optimal
sequence and it is far superior to the other solutions in most
scenarios.

In the remainder of this paper, the following section de-
scribes the system model. Section III provides the basic
concepts of reinforcement learning and presents our proposal.
In Section IV, we describe the simulation environment and
show the obtained results. Finally, Section V concludes the
paper and lists future works.

II. SYSTEM MODEL

In this section, we describe the system model, which is
similar to the model presented in [7] which serve as basis for
the design and implementation of our proposal. This model
allows determining the optimal sequence for channel sensing
through the application of optimal stopping theory. In this case,
the goal is to decide when to stop sensing new channels with
the purpose of maximizing the obtained reward. Therefore, this
theory allows defining the stopping rule that maximizes the
reward. Moreover, because the number of channels is finite,
and it equals to N , the method of backward induction can
be applied to find the expected reward of a sequence of N
channels.

Consider a secondary user and a finite number of chan-
nels, N . This user operates based on time slots, i.e. time is
divided into slots of duration T . In each slot, each channel
is free of primary radios activity with a probability pi. We
assume that the state of a channel in a slot, free or busy,
is independent of its previous state and the state of other
channels. We also consider that the signal to noise ratio (SNR)
obtained in a channel varies randomly for each slot due to
fading effects. The SNR random variable is assumed to be
i.i.d. among different slots and channels, and it follows an
arbitrary distribution. If the secondary user decides to transmit
on a channel sensed as free, ci, the transmission rate that
can be obtained is a function of the instantaneous SNR on
that channel. This function, F (SNRi), is a monotonically
increasing function that maps the SNR of the channel ci in
the obtained transmission rate.

Before deciding to use a channel in a particular slot, the
secondary user must perform the sensing of this channel with
the purpose of determining whether there is activity of primary
users. In the model, we assume that the sensing process is
error free. Since there is no prior knowledge about the status
of the channels, the secondary user performs a sequential
sensing of the N channels, following a predetermined order,
{o1, o2, ..., oN}. The efficiency of a given sensing order relates

to the time spent sensing the channels and the transmission rate
that the user obtains in the chosen channel.

Fig. 1. Process of channels sensing in a slot.

Figure 1 exemplifies the activity of a secondary user in
a slot, which has two phases: a sensing phase, and a data
transmission phase. The value τ corresponds to the time
required for sensing each channel. During the sensing phase, if
the channel ci is sensed as busy, the secondary user performs
channel sensing in ci+1, which is the next channel in the
used sensing order. However, if the channel ci is sensed as
free, the effective transmission rate obtained by the secondary
user in this channel for the remainder of the slot is given by
ei ×F (SNRi), where ei is the effectiveness of transmission,
calculated by the formula ei = T−iτ

T . Thus, the reward in the
use of each channel in a sequence is given by:

ri =
{

eiF (SNRi) if eiF (SNRi) > Ri+1

Ri+1 otherwise (1)

where Ri+1 for i ≤ N − 1 is the expected reward if the user
decides to proceed in sensing. The expected reward is given
by:

Ri+1 =
{

pi+1E[ri+1] + (1− pi+1)Ri+2 if i < N − 1
pi+1E[ri+1] if i = N − 1

(2)
Note that the set of expected rewards {R1, R2, ..., Rn}

can be obtained recursively from RN through Eq. 1 and 2.
Therefore, R1 is the reward expected by the secondary user
using a sequence of N channels. In general, Ri is the expected
value of the reward in the use of a partial sequence of channels
(oi, oi+1, ..., oN). Thus, the use of a channel sensed as free is
profitable if the reward, ri, in using the channel is greater than
the expected reward from the remainder of the sequence, Ri+1.
Otherwise, the secondary user must proceed sensing the next
channel of the sequence, and it cannot return to the previous
channels (recall).

III. DYNAMIC SENSING ORDER USING REINFORCEMENT
LEARNING

The proposed mechanism uses reinforcement learning to
dynamically determine the sensing order used in each slot. One
advantage of a mechanism based on reinforcement learning
is that it requires no prior knowledge about the channel’s
availability probabilities, or the estimated quality of each
channel through its average SNRs. Another key feature of
the proposal relates to its adaptability to changes in channels
characteristics, because it is able to learn from its past actions.
Therefore, the mechanism gains immunity to possible changes
in the channel’s availabilities, which may occur due to changes
in activity patterns of primary radios, and due to possible
changes in channels qualities (average SNRs), which may
occur due to mobility and large scale fading effects.

In the following subsections, we present the basics of
reinforcement learning theory and our proposed mechanism
for searching for the optimal sensing order.

A. Reinforcement Learning

Reinforcement learning [11] is a sort of learning machine
concerned with how an agent choose its actions, according to
cause and effect information obtained from the environment.
Briefly, in this method, a given agent, which inspects a given
state, performs an action that provides a reward. Based on the
collected reward, the agent learns the quality of the chosen
action. The problem is then to choose actions that maximize
the total rewards obtained by the agent.

The reinforcement learning method adopts a simple ap-
proach to minimize the complexity of the model, leading
to a low computational cost [12]. In contrast, this method
may present a slow convergence. Among the many existing
reinforcement learning techniques [11], we have adopted the
Q-learning technique [13] due to its simplicity, and for that
reason, it is described below in more detail.

The Q-learning method is an online algorithm, which deter-
mines the best action at each moment without prior knowledge
of the environment. The basic Q-learning model consists of:

- decision epochs, which represent the moments of execu-
tion of the algorithm, denoted by t ∈ T , T = {1, 2, ...};

- a set of states, which represent the modeled problem and
are denoted by s ∈ S;

- a set of actions, which represent possible decisions that
lead to new states, denoted by a ∈ A;

- rules that determine the reward of an action in a given
state, denoted by rt(s, a);

- transitioning rules between states.
Each agent maintains a Q-table, which is a |S|×|A| matrix,

where the rows represent the states and the columns indicate
the actions. The elements of this matrix are the Q-values,
Qt(s, a), which are updated by using the value of the collected
reward, rt(s, a), whenever the agent takes the action a in state
s.

The Q-value estimates the level of reward for the state-
action pair. Therefore, changes in Q-values lead to changes in

the decisions on what actions should be taken by agents. At
every moment of decision t, the agent observes its current state
(row) and chooses an action (column) in its Q-table. After the
execution of an action, the agent receives a reward rt(s, a)
that is relative to this performed action.

By using the received reward, the agent updates its respec-
tive entry on the Q-table at time t + 1 as:

Qt+1(s, a) =

Qt(s, a) + α[rt(s, a) + γmaxaQt(st+1, a)−Qt(s, a)]
(3)

In Eq. 3, α is known as the learning parameter, and γ as
the discount factor. Higher α values indicate that the agent
gives more importance to the recent experiences than to the
history. Higher γ values indicate that the agent values more
the future reward instead of the immediate reward [14]. The
Q-learning starts with the Q-table filled with zeros, and at
each decision epoch, the agent selects an action based on an
exploration strategy. A strategy commonly adopted is the ε−
greedy strategy [11], where the agent uses the probability ε to
decide between exploitation of the Q-table or exploration of
random states. Since ε is usually small, in most cases, the agent
greedily selects the action that satisfies maxaQ(s, a), i.e. the
action representing the best the agent thinks it can do from
state s [15]. However, occasionally, with probability ε, the
agent selects a random action. This strategy intends to make
agents to experiment all possible actions and its effects [16].

B. Proposal

One of the biggest challenges faced in the use of rein-
forcement learning at the problem of finding the optimal
sensing order was the states and actions modelling. A careless
modelling may lead to many states and actions, which would
slow down the convergence of exploration. At our model, we
define the state as the ordered pair (ok, ci), where ok is the
current position at the sensing order, and ci is the channel that
is sensed at that position. The possible actions of a secondary
user at the state (ok, ci) correspond to the possible channels
that could be sensed at the next position of the sensing order,
ok+1. According to that model, the Q-table will be a matrix
of dimensions N2 ×N (states × actions). Note that at this
model there is not a unique objective state to be reached by the
reinforcement learning; instead, the model leads to a sequence
of actions that maximize the immediate reward and create a
dynamic sensing order.

At the moment of choosing an action and updating the
Q-table, there are some import constraints that need to be
considered. First, an action taken at any state (ok, ∗), with
1 ≤ k ≤ (N − 1), always leads to a state where the position
at the sensing order is ok+1. At the states (oN , ∗), which
represent the last position in the sensing order, the actions
indicate the first channel that will be sensed at the next slot and
lead to a state (o1, ∗). When the secondary user decides to use
a channel ci and stops sensing at the position ok, the sensing
process at that slot finishes. At this case, the first channel that

will be sensed at the next slot is determined by the best action
at the state (oN , ci). Another constraint prevents the secondary
user to return to a previously sensed channel (recall). In order
to avoid recall, the secondary user needs to store the channels
already sensed on the current slot. Therefore, before taking an
action, the secondary user must eliminate the sensed channels
from the available actions.

The reward obtained at each state is other important part
of our model. The reinforcement learning uses this reward
to update the Q-table, as described in Section II. When the
channel ci is sensed as free at the position ok, the obtained
reward, rt, equals to the effective transmission rate at that
channel, ek×F (SNRi). When the channel is sensed as busy,
the Q-value representing that action needs to be decreased. For
that reason, the model uses the parameter δ, which assumes
values at the range [0, 1] and multiplies the current Q-value of
that action. Therefore, the model guarantees that an action that
leads to a busy channel always has its corresponding Q-value
reduced. By adopting this approach, the Q-value represents
not only the effective transmission rate, but also the channel’s
availability. In summary, the Q-table updating process can be
represented by the following:

Qt+1(s, a) =

{
(1− α)×Qt(s, a) + α× rt(s, a) if channel is free

δ ×Qt(s, a) if channel is busy
(4)

The proposed mechanism is described in details in Algo-
rithm 1. At the beginning, all state-action pairs at the Q-
table are filled with zeros. Afterwards, the mechanism enters
the learning phase, which is repeated during its entire period
of operation. At this phase, it decides between exploration,
where it chooses a random action, and exploitation, where it
chooses the best action based on the Q-table. After executing
the action, the mechanism is able to calculate the reward and
to update the corresponding Q-value.

An important feature of our proposal concerns the utilization
of the free channels. According to the model presented in
Section II, the optimal stopping rule requires the comparison
between the instant reward and the expected reward for the
remainder of the sequence. It indicates that may not always
be a good choice to use the first channel sensed as free.
In a similar fashion, our proposal uses a stopping rule that
consists in comparing the current reward, rt, to the best Q-
value among the possible actions available at that state. This
way, the proposal can estimate if the current reward is greater
than the expected reward of the best action available. Note
that, even when the free channel is not used, the Q-value
corresponding to that action is updated.

IV. NUMERICAL RESULTS

To evaluate the behavior of the reinforcement learning
mechanism in solving the problem of sensing order, we have
built a discrete events simulator using the Tcl language [17].

/* initializes Q-table */1

foreach s ∈ S, a ∈ A do2

Q(s,a) = 0;3

while (1) do4

/* learning phase */5

draws a random number x between 0 and 1;6

if (x < ε) then7

/* exploration */8

selects an action a randomly;9

else10

/* exploitation */11

selects the action a which possess the higher12

Q-value for the current state s;
if (free channel) then13

/* channel ca from action a */14

calculate reward rt(s, a);15

Qt+1(s, a)← (1− α)×Qt(s, a) + α× rt(s, a);16

if rt(s, a) > maxQ(s′, a′) then17

/* use channel ca */18

slot finishes ;19

else20

/* do not use channel ca */21

continue sensing ;22

else23

/* channel ca is busy */24

Qt+1(s, a)← δ ×Qt(s, a);25

continue sensing ;26

st = st+1;27

Algorithm 1: Proposed mechanism based on reinforcement
learning.

Through this simulator, we evaluate the performance of the fol-
lowing sensing orders: the dynamic sequence provided by our
proposal (RL), the optimal sequence obtained by brute force
(OPTIMAL), the sequence in descending order of the average
achievable rates (CAP) [8], the sequence in descending order
of channel’s availability probabilities (PROB), the sequence in
descending order of the product between the average achiev-
able rates and the availability probabilities (PROBxCAP), and
the sequence in random order of channels (RANDOM). It is
noteworthy that all the above sequences, except in the case
of RL, are static, i.e. they do not change during simulation.
In the case of RL, the sequence varies during simulation due
to the adaptations performed by the reinforcement learning
mechanism. Moreover, all these sequences, except RL and
RANDOM, assume a priori knowledge of the average achievable
rates and/or channel’s availability probabilities.

A. Simulation Model

At the beginning of each experiment, the simulator chooses
randomly the average achievable rate, hereafter called ca-
pacity, and the availability probability of each channel ci,
with i ∈ {1, ..., N}. The average capacities of the channels

follow an uniform distribution within the range [FCH ×
MAXCAP, MAXCAP], where FCH is a factor of chan-
nel homogeneity and MAXCAP is the maximum average
capacity of the channels. The parameter FCH assumes values
in the interval [0, 1]. A high FCH value makes the average
channel’s capacities more homogeneous and closer to the
MAXCAP . The channel’s availability probabilities follow a
uniform distribution within the range [0, 1].

During an experiment, at each slot T , the channels are set
randomly as free or busy according to their availability prob-
ability using either a uniform distribution or a exponentially
distributed on-off model. The instantaneous capacity of each
channel is also chosen randomly at each slot, by following a
uniform distribution within the range [MEANCAP × (1 −
FEV/2),MEANCAP × (1+FEV/2)]. At this case, FEV
is the factor of environment variability and MEANCAP is
the mean instantaneous capacity of each channel. With high
FEV values, the instantaneous achievable rate on each chan-
nel presents high variations. The parameter FEV assumes
values in the interval [1, 2].

At each slot, the simulator computes the reward obtained
by each implemented sequence using the same channel states
and instantaneous capacities, i.e. under the same condition for
the sake of fairness in the comparisons. The reward at each
slot corresponds to the effective transmission rate (Section II).
Each simulation run comprises the execution of X slots. At the
end of each run, the simulator computes the average reward
obtained by each sequence in all X slots.

B. Results

We have performed simulations with 50.000 slots each and
a number of channels varying from 3 to 8. We choose the
values of the parameters that were most representative within
its validity interval after a round of tests. Thus the exploration
factor ε is set to 0.7 during the first slots of each simulation,
which corresponds to 20% of the total number of slots. This
ε changes to 0.1 after that exploration period until the end of
the experiment. The parameter α of RL was set to 0.1. The
size of the slot T is a integer multiple of the time required for
sensing each channel (τ). We have conducted 200 simulation
runs for each set of parameters. In all graphs, we present the
average rewards obtained at each simulation run, with error
bars corresponding to confidence intervals of 95%.

In the first set of simulations, channels availability is
randomly chosen using a uniform distribution, i.e. they are
set as busy or free at each slot according to their availability
probability. In the other group of simulations, the channel
state is set according to an exponentially distributed on-off
model. In the simulation of this model, the channel stays
in the OFF-state (i.e. busy) for a exponentially distributed
time with a mean of tOFF . Thus, the tON can be obtained
by tON = (1−u)×tOF F

u , where u is the channel utilization
by primary users, i.e. the channel probability of being
unavailable. The results obtained for these two availability
models are presented in the next two subsections.

Uniformly Distributed Channel Availability

Figure 2 presents the results as a function of the number of
channels. In these simulations, both MAXCAP and the slot
size are set to 10, parameter δ is set to 0.95, and the FCH
and FEV parameters are set to 0.1 and 2.0, respectively.

 0

 2

 4

 6

 8

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL
Prob x Cap
Prob
Cap
Random

(a) absolute rewards

 0.6

 0.7

 0.8

 0.9

 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
ew

ar
d

Number of channels

RL
Prob x Cap
Prob
Cap
Random

(b) normalized rewards

Fig. 2. Results for FCH = 0.1, FEV = 2, and δ = 0.95.

Analyzing the absolute rewards presented in Figure 2(a),
one can see that as the number of channels increases, the
average reward for all simulated sequences also increases. This
behavior occurs because with a higher number of channels the
likelihood of channels with higher capacity and availability
increases. Also for this reason, PROB, CAP, PROBxCAP, RL
and OPTIMAL solutions, which are aware of the channel’s
achievable capacities and availability probabilities, achieve
better performance gains than the RANDOM sequence.

Figure 2(b) presents obtained average rewards normalized to
the OPTIMAL sequence performance. This performance com-
parison shows that our proposal, RL, is the one that achieves
results closer to the OPTIMAL sequence. The performance of
other sequences is worst because none of them use a stopping-
rule based on a expected reward for remaining sequence, i.e.
they stop sensing as soon as the first free channel is found.
Thus, the RL, using past experiences stored in the Q-table,
can determine efficiently whether it is advantageous to use a
particular channel sensed as free. Another interesting obser-
vation about the curves in Figure 2(b) is that the performance
of the PROB sequence is lower than the performance of CAP
and PROBxCAP sequences. This indicates that the difference
between the average channels capacities (MEANCAP) in
this scenario is more important than the difference between
their availability probabilities. Thus, it is better to sort channels
in the decreasing order of their average capacities since this
increases the likelihood of the first free channel to have a
higher channel capacity.

Figures 3 and 4 show the absolute and normalized re-
wards as a function of FEV and FCH , respectively. The
FEV parameter modifies the variability of the instantaneous
channels capacity at each slot, which is representative of the
dynamic variation of SNR. The PROB, CAP, PROBxCAP and

RANDOM are invariant with respect to this parameter due
to these sequencesuse the average values . Thus, observing
Figures 3(a) and 3(c), which considers the absolute reward,
and Figures 3(b) and 3(b), which consider the normalized
reward for all values of FEV , the sequences used are always
the same, and the rewards tend to a constant average value.
For OPTIMAL and RL sequences, the increase in the absolute
reward occurs because these strategies only use a free channel
if the instantaneous reward is greater than the expected reward
computed for the remaining of the sequence. Thus, these
strategies tend to use free channels with larger instantaneous
capacity due to their greater variability. Other strategies always
use a free channel, independent of their instantaneous capacity.

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8 2

R
ew

ar
d

FEV

Optimal
RL
Prob x Cap
Prob
Cap
Random

(a) FCH = 0.1

 0.6

 0.7

 0.8

 0.9

 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 r
ew

ar
d

FEV

RL
Prob x Cap
Prob
Cap
Random

(b) FCH = 0.1

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8 2

R
ew

ar
d

FEV

Optimal
RL
Prob x Cap
Prob
Cap
Random

(c) FCH = 0.9

 0.6

 0.7

 0.8

 0.9

 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 r
ew

ar
d

FEV

RL
Prob x Cap
Prob
Cap
Random

(d) FCH = 0.9

Fig. 3. Results for 6 channels, slot size = 10, channel capacity = 10.

FCH modifies the homogeneity of the channels with
respect to their average capacities. By increasing the
value of this parameter, the average capacities are closer
to MAXCAP , increasing the average reward with the
increase of FCH for all mechanisms, as shown in Figure 4.
However, the performance of the sequences sorted by channel
capacity, i.e. CAP and PROBxCAP, do not grow in the same
proportion. The explanation for this lies in the fact that when
the channels are more homogeneous, the lesser is the weight
of the capacity on the choice of the sequence. Therefore, the
PROB sequence improves in performance as channels become
more homogeneous.

On-Off Channel Availability Model

In the simulations of this availability model, the channel
utilization values at each slot is varied according to a uniformly

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

R
ew

ar
d

FCH

Optimal
RL
Prob x Cap
Prob
Cap
Random

(a) FEV = 1.0

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 r
ew

ar
d

FCH

RL
Prob x Cap
Prob
Cap
Random

(b) FEV = 1.0

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

R
ew

ar
d

FCH

Optimal
RL
Prob x Cap
Prob
Cap
Random

(c) FEV = 2.0

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 r
ew

ar
d

FCH

RL
Prob x Cap
Prob
Cap
Random

(d) FEV = 2.0

Fig. 4. Results for 6 channels, slot size = 10, channel capacity = 10.

distributed variable within the interval [0.1, 0.9] and the tOFF

is defined in number of slots.
In the first simulations, we evaluate the impact of using an

on-off model to characterize the activity of the primary users.
For these simulations the tOFF assumes values equals to 20,
100 and 200. Also, the δ, FCH and FEV parameters are set
to 0.95, 0.1 and 1.5, respectively. The absolute rewards are
shown in Figure 5.

By comparing the results in Figures 5(b), 5(c) and 5(d)
to the ones in Figure 5(a), one can observe that the perfor-
mance of the RL ı́s the most impacted with the increase of
tOFF . However, the performance degradation is small, which
demonstrates the robustness of the RL against different channel
availability processes without any prior knowledge.

In the next round of simulations, we evaluated the influence
of δ parameter (subsection III-B). This parameter dictates the
penalization incurred by the choice of a busy channel in the
sequence, leading to a reduced Q-value for that action. The
tOFF equals to 100 and FCH and FEV parameters assume
values equal to 0.1 and 1.5, respectively. Figure 6 shows the
absolute reward for different values of δ. The results show that
the larger is the value of δ, the better is the performance of the
RL. This occurs because in the on-off model, the unavailability
of a channel occurs in bursts of slots. This way, the reward
in the use of a busy channel can be very reduced, leading the
RL to change of sequence more often.

Finally, the last set of simulations evaluate the influence
of the FCH and FEV parameters when the on-off channel
availability model is used. The tOFF equals to 100, and δ
assumes the value of 0.99. The normalized rewards results are

 3

 4

 5

 6

 7

 8

 9

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL
Prob x Cap
Prob
Cap
Random

(a) uniform distribution

 3

 4

 5

 6

 7

 8

 9

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL
Prob x Cap
Prob
Cap
Random

(b) on-off model - tOFF = 20

 3

 4

 5

 6

 7

 8

 9

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL
Prob x Cap
Prob
Cap
Random

(c) on-off model - tOFF = 100

 3

 4

 5

 6

 7

 8

 9

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL
Prob x Cap
Prob
Cap
Random

(d) on-off model - tOFF = 200

Fig. 5. Uniform distribution vs on-off model.

 6

 7

 8

 9

 3 4 5 6 7 8

R
ew

ar
d

Number of channels

Optimal
RL − δ = 0.9
RL − δ = 0.95
RL − δ = 0.99

Fig. 6. Influence of the δ parameter.

shown in Figure 7. In the scenario with the larger heterogeneity
and smaller variability of the channels (FCH = 0.1 and
FEV = 1.0), the RL presents the worst performance relative
to the OPTIMAL for a small number of channels. This occurs
due to the dynamic nature of the RL. In these scenarios, any
temporary change from the optimal order causes a significant
performance degradation. In contrast, the RL achieves a per-
formance very close to the OPTIMAL in the other scenarios.

V. CONCLUSIONS

The spectrum sensing is a critical task for the opportunistic
use of licensed channels of the spectrum. Specifically, in
scenarios where users have only a single transceiver, which
has to sense one channel at a time to detect opportunities for
use. In these cases, the channel sensing order can have great
impact on performance. The optimal stopping theory can be
used to model the problem and determine the optimal sensing

 0.6

 0.7

 0.8

 0.9

 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
ew

ar
d

Number of channels

RL
Prob x Cap
Prob
Cap
Random

(a) FCH = 0.1 and FEV = 1.0

 0.6

 0.7

 0.8

 0.9

 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
ew

ar
d

Number of channels

RL
Prob x Cap
Prob
Cap
Random

(b) FCH = 0.9 and FEV = 1.0

 0.6

 0.7

 0.8

 0.9

 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
ew

ar
d

Number of channels

RL
Prob x Cap
Prob
Cap
Random

(c) FCH = 0.1 and FEV = 2.0

 0.6

 0.7

 0.8

 0.9

 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
ew

ar
d

Number of channels

RL
Prob x Cap
Prob
Cap
Random

(d) FCH = 0.9 and FEV = 2.0

Fig. 7. Influence of the channel heterogeneity and variability.

order. However, this theory assumes prior knowledge about
the availability probabilities and expected average capacity of
each channel.

We propose a low complexity solution that uses the rein-
forcement learning machine. This solution requires no prior
knowledge of the availability probability and expected average
capacity of each channel, and can dynamically adjust itself to
variations in these characteristics. Moreover, this solution has
low computational complexity, which makes it attractive to be
embedded in cognitive radios. For evaluate the performance of
the proposed mechanism, we developed a simulator that emu-
lates a secondary user that follows arbitrary sensing sequences.
The simulation results show that the proposed mechanism
achieves performance close to the optimal sensing order and
superior to other pre-established sequences.

As future works, we intend to extend the evaluation for the
case of multiple users and for scenarios where the availability
probability and the average channel’s capacities vary during
the simulations. In addition, it would be interesting to evaluate
how sensing errors can affect the proposed mechanism.

REFERENCES

[1] M. A. McHenry, “NSF Spectrum Occupancy Measurements Project
Summary,” Shared Spectrum Company report, Tech. Rep., 2005.

[2] FCC, “FCC-03-322 - NOTICE OF PROPOSED RULE MAKING AND
ORDER,” Federal Communications Commission, Tech. Rep., 30 Dec.
2003.

[3] J. Mitola III and G. Q. Maguire Jr., “Cognitive Radio: Making Software
Radio more Personal,” IEEE Pers. Communications, vol. 6, no. 4, pp.
13–18, Aug. 1999.

[4] S. Guha, K. Munagala, and S. Sarkar, “Approximation Schemes for
Information Acquisition and Exploitation in Multichannel Wireless
Networks,” in 44th. Allerton Conference, 2006.

[5] H. Kim and K. G. Shin, “Fast Discovery of Spectrum Opportunities in
Cognitive Radio Networks,” in IEEE DySPAN, 2008.

[6] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: a Hardware Constrained
Cognitive MAC for Efficient Spectrum Management,” IEEE JSAC, Jan.
2008.

[7] H. Jiang, L. Lai, R. Fan, and H. V. Poor, “Optimal Selection of Channel
Sensing Order in Cognitive Radio,” IEEE Transactions in Wireless
Communications, Jan. 2009.

[8] Ho Ting Cheng and Weihua Zhuang, “Simple Channel Sensing Order
in Cognitive Radio Networks,” IEEE Journal on Selected Areas in
Communications, Apr. 2011.

[9] Y. S. Chow, H. Robbins, and D. Siegmund, Great Expectations: The
Theory of Optimal Stopping. Houghton Mifflin Company, 1971.

[10] Han Han, Jin-long Wang, Qi-hui Wu, and Yu-zhen Huang, “Optimal
Wideband Spectrum Sensing Order Based on Decision-making Tree in
Cognitive Radio,” International Conference on Wireless Communica-
tions and Signal Processing (WCSP), 2010.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: an Introduction.
MIT Press, 1998.

[12] Kok-Lim Alvin Yau, Peter Komisarczuk, and Paul D. Teal, “Applications
of Reinforcement Learning to Cognitive Radio Networks,” in IEEE
International Conference in Communications (ICC), July 2010.

[13] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disserta-
tion, King’s College, May 1989.

[14] Kok-Lim Alvin Yau, Peter Komisarczuk, and Paul D. Teal, “Enhancing
network performance in distributed cognitive radio networks using
single-agent and multi-agent reinforcement learning,” in IEEE Confer-
ence on Local Computer Networks (LCN), Oct. 2010.

[15] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
no. 8, pp. 279–292, 1992.

[16] Jelle R. Kok and Nikos Vlassis, “Collaborative Multiagent
Reinforcement Learning by Payoff Propagation,” J. Mach. Learn.
Res., vol. 7, pp. 1789–1828, December 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1248547.1248612

[17] John Ousterhout, “Tcl - Tool Command Language,” 1988,
http://www.stanford.edu/ ouster/cgi-bin/tclHistory.php.

