
Comparative Performance Analysis of
High-speed Transfer Protocols for Big Data

Se-young Yu, Nevil Brownlee, and Aniket Mahanti
Department of Computer Science

University of Auckland, New Zealand

Abstract—Researchers working in diverse fields such as astron-
omy, experimental physics, genomics, and meteorology have to
frequently deal with analyzing voluminous amounts of complex
data. Such data is often referred to as big data. These researchers
work in teams and have to transfer this data over long distances.
Efficiently transferring big data over long distances requires
the use of appropriate transfer protocols. Several TCP-based
and UDP-based protocols have been proposed in the literature,
however, a comparative analysis of such protocols is lacking in
the literature. This paper presents a comparative performance
analysis of four well-known high-speed data transfer protocols for
long fat networks, namely, GridFTP, FDT, UDT, and Tsunami.
We performed extensive experiments to measure the effectiveness
of each protocol in terms of its throughput for various round-
trip times, and against increasing levels of congestion inducing
TCP or UDP background traffic on a 10 Gb/s network. Our
results show that without much tuning, TCP based protocols are
able to achieve throughputs of more than 2 Gb/s. In presence of
background traffic, UDP protocols perform better.

I. INTRODUCTION

Data-intensive research involving the Large Hadron Col-
lider (LHC), Square kilometer Array (SKA), and International
Thermonuclear Experimental Reactor (ITER) produce large
volumes of data over relatively short periods. These data need
to be transferred via high-speed networks, typically 10 Gb/s,
to other locations to be analyzed by teams of researchers
collaborating around the world. TCP has inherent limitations
regarding high-speed links due to its preservative congestion
control algorithms.

When there is a packet loss TCP reduces its window size,
thus yielding some of the bandwidth to competing flows. This
Additive Increase Multiplicative Decrease (AIMD) behaviour
can prevent TCP from using the full bandwidth of an LFN
[1]. Furthermore, this behaviour can cause poor link utilization
during data transfer, and lead to unfair allocation of available
bandwidth between concurrent flows.

To overcome this limitation and utilize available bandwidth
during high-speed data transfer with large bandwidth delay
product (BDP) links, a number of protocols have been proposed
[2], [3], [4], [5], [6]. There are a number of TCP variants
such as TCP CUBIC [6] which modify TCP’s congestion
control algorithm to increase throughput over LFNs. Some
protocols use UDP (e.g., UDT, Tsunami) [3], [4] with their own
congestion control, overcoming TCP limitations by increasing
throughput more rapidly from the start or by decreasing their
throughput less when a packet loss occurs. Others such as

GridFTP [2] and FDT [5] use multiple TCP sessions with data
striping to achieve a larger window size, thus increasing the
throughput.

There has been some work on analyzing transfer protocols
for transferring big data using analytical and simulation tech-
niques [7], [8], however, an experimental evaluation is lacking.
In this paper, we use experiments performed on a 10 Gb/s
testbed network to perform a comparative analysis of four well-
known high-speed transfer protocols, namely, GridFTP, FDT,
UDT, and Tsunami. Our goal is to understand the behaviour of
each of these protocols over a congested long-haul link as well
as under varying level of background traffic. Furthermore, we
want to compare TCP-based and UDP-based protocols and see
which protocols perform better under the stated conditions.

Our results show that while TCP-based protocols are more
efficient in transporting over short distances (low round trip
times), UDP-based protocols may be well suited for longer
distances (high round trip times). UDP-based protocols are able
to reach their maximum throughput much faster than TCP-
based protocols. In the presence of background traffic, we
found rapid decrement in the throughput of data transfers for
TCP-based protocols.

The rest of the paper is organized as follows. Section II
describes the four analyzed transfer protocols. Section III
discusses related work. Section IV presents our data collection
and analysis methodology. Section V presents results of our
analysis. Section VI discusses the implications of the presented
results. Section VII concludes the paper.

II. BACKGROUND

High-speed data transfer protocols for LFN can be classified
into two categories; TCP-based protocols [2], [5] and UDP-
based protocols [3], [4]. TCP-based protocols make use of TCP
tuning and parallel connection to achieve higher throughput
while UDP-based mechanisms use their own congestion control
algorithms to avoid the possible inefficiency of slow start and
AIMD. Table I summarizes the key features of four protocols
evaluated in this paper.

UDT [3] is an UDP-based connection-oriented data transfer
protocol with Decreasing Increases AIMD (DAIMD). GridFTP
[2] is an extension to FTP that includes enhancements such
as parallel data transfer, data striping and better access to the
stored data. FDT [5] uses TCP at the transport layer with
concurrent threads and connections during the transfer. Tsunami

38th Annual IEEE Conference on Local Computer Networks

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 292

TABLE I: High-Speed Transfer Protocols for Long Fat Networks

Protocol Year first Latest Transport-layer Congestion Multiple Example usage
developed Version protocol control connections

UDT 2004 4.7 UDP DAIMD Supported Transfer data between CERN and MANLAN
GridFTP 2001 5.2.3 TCP TCP AIMD Supported Remote access to simulation data
FDT 2006 0.18.0 TCP TCP AIMD Supported Hybrid TCP
Tsunami 2002 1.1 UDP Rate Control Not Supported Radio astronomy data transfer

[4] is another UDP-based high-speed data transfer protocol with
rate control and adjustable error threshold.

III. RELATED WORK

High-speed data transfer protocols have been evaluated in
theory and in simulated environments previously, however
they have not been analyzed in an experimental setting. An
analytical and simulation-based study on these protocols may
not reflect realistic performance of each protocol. Using a
testbed, we can observe the protocols themselves rather than
their models.

Suresh et al. [9] evaluated throughput, fairness and CPU
usage of GridFTP, GridCopy and UDT with a 2 Gb/s network.
They found that UDT performed well compared to the other
protcols. GridFTP also performed well, except when transfer-
ring smaller files. Weston et al. [10] transferred astronomy
data from New Zealand to Germany and Finland using two
UDP-based protocols, UDT and Tsunami, via the New Zealand
Research and Education network. They found that UDT showed
better performance and fairness than Tsunami, but also iden-
tified fairness issues in Tsunami. This study, however, did not
evaluate any TCP-based protocols. Yue et al. [11] compared
four UDP-based protocols, RBUDP, Tsunami, PA-UDP and
UDT in terms of throughput, round trip times, loss rate, fairness
and CPU utilization using a 1 Gb/s link. They found that PA-
UDP got optimal performance. UDT was most convenient to
use due to its parameterless setup.

Our work complements previous work by performing an
experimental analysis of four well-known protocols for trans-
ferring big data over LFNs including TCP-based and UDP-
based protocols. We also analyze individual protocol behaviour
under varying levels of congestion inducing TCP and UDP
background traffic.

IV. METHODOLOGY

A. Testbed setup

We built a testbed network in our lab with four machines to
measure behaviour of a selection of high-speed data transfer
protocols. Two machines act as receiver and sender of the
transfer. There are two switches, each is connected to sender
and receiver and the switches are connected each other with
Directed Attach Copper cables allowing 10 Gb/s transfer rate.
Based on our initial experiments, we decided to measure per-
formance of GridFTP with TCP, GridFTP with UDT, Tsunami,
and FDT.

Since we did not have access to a hardware traffic generator,
we chose to use an existing application program to generate

(congestion-inducing) background traffic from sender to re-
ceiver. We used nuttcp to generate TCP and UDP traffic.
To observe their behaviour with various RTTs, we decided
to use netem1 to emulate different delays in the testbed.
We tuned the test machine’s TCP parameters by following
ESnet’s Linux Tuning guide.2 To keep our comparisons fair,
we did not use concurrent connections for any of the protocols,
although GridFTP with TCP and UDT, and FDT support
concurrent connections for better link utilization. Tsunami does
not support multiple simultaneous connections, and GridFTP
with UDT did not work well with concurrent connections in
our testbed.

B. Factors that influence transfer rate

1) Round trip times: High-speed data transfer protocols
behave differently with varying RTTs. We analyzed the per-
formance of the protocols in our testbed with RTT values in
the range 0 ms (local hosts) to 200 ms (US Midwest).

2) Background traffic: We used nuttcp to generate TCP
and UDP background traffic for a scenario involves data
transfer between New Zealand and Western Australia where
Murchison Radio-Astronomy Observatory located. An RTT of
75 ms is chosen to represent the link between the sites.

To induce congestion, a number of concurrent TCP flows
were run alongside each protocol to observe their behaviour
when there is a significant amount of TCP traffic. Since TCP
congestion control decides the transfer rate at a given time, we
chose to increase the number of background TCP flows rather
than increasing the background TCP data rate.

For UDP, we generated 10, 000 − 40, 000 packets of 1, 250
byte datagrams to induce congestion on the link with an
emulated 75 ms RTT. The packet size and number of packets
per second were selected according to the level of congestion
likely to be induced. For 10, 000 packets per second, we hardly
saw packets dropped by congestion while with 40, 000 packets
per second we observed about 33% of UDP datagrams being
dropped due to congestion. With TCP background traffic, we
were investigating congestion events induced by TCP AIMD.
With UDP background traffic, we were interested in observing
congestion events induced with constant rate UDP.

V. PERFORMANCE EVALUATION

We measured throughput of each protocol when they were
used to transfer data in our testbed network with varying
RTTs as well as varying levels of TCP and UDP background

1http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
2http://fasterdata.es.net/host-tuning/linux/

38th Annual IEEE Conference on Local Computer Networks

293

traffic. We also measured the time for each protocol to achieve
its initial throughput, and the CPU resource they used. The
results were gathered by repeating 10 sets of experiments, after
removing outliers due to malfunctioning of nuttcp or the data
transfer protocols. We use statistical measures such as mean,
15th percentile, and 85th percentile to present our results.

A. Impact of increasing distance

Figure 1 shows the throughput (in Gb/s) when there was no
background traffic, and therefore no serious congestion. Over-
all, performance of FDT and GridFTP with TCP was better than
GridFTP with UDP or Tsunami in this environment. Although
the transfer rate decreases more rapidly as RTT increases,
FDT and GridFTP with TCP showed better performance over
GridFTP with UDT and Tsunami, at least for RTTs of 200 ms
or less.

For increasing RTT, TCP-based protocols performed much
better than UDP-based protocols. Performance of FDT for less
than 100 ms RTT were the best among all four protocols. The
highest throughput of FDT was 2.34 Gb/s with a 1 ms RTT.
However, the throughput of FDT decreased faster compared to
GridFTP with TCP for RTTs greater than 100 ms. For RTTs
greater than 100 ms, GridFTP with TCP performed the best.

UDP-based protocols did not perform well for most of the
RTTs we tested. GridFTP with UDT performed poorly for
most of the RTTs. Although its author claims that UDT is
more efficient for increasing RTT [3], the rate of decreased
throughput for increasing RTT from 0 ms to 100 ms was the
fastest among all protocols tested. At RTT 200 ms, UDT was
the slowest among all the protocols.

Throughput of Tsunami did not decrease much as RTT
increased, however its throughput was the lowest among all
four protocols for RTTs less than 200 ms. Tsunami showed
throughput of 0.55 Gb/s across all the RTTs we tested.

B. Impact of background traffic

We emulated a network path between New Zealand and
Western Australia in our testbed network by using an RTT of
75 ms. Then, we generated different levels of TCP background
traffic and UDP background traffic. To generate this cross-
traffic, we created an nuttcp process that generates multiple
TCP flows or multiple UDP packets per second so as to
generate increasing volumes of background traffic.

Figure 2 shows the throughput for each protocol over a path
with 75 ms RTT and increasing volumes of TCP cross-traffic.
The throughput of TCP-based protocols became unreliable
with increasing volumes of TCP background traffic. Even with
a small amount of TCP background traffic, FDT becomes
unusable due to the induced congestion. The throughput of
GridFTP with TCP decreased rapidly as number of TCP flows
increases. On the other hand, GridFTP with UDT and Tsunami
showed stable performance over background TCP flows.

FDT showed its highest performance when there was no
background traffic, but as soon as we added some back-
ground traffic, the application collapsed and become unusable.

GridFTP with TCP suffered a progressive decrease in through-
put with increasing TCP background traffic. Moreover, it be-
came unstable and its overall throughput decreased compared
to the UDP-based protocols.

The throughput of GridFTP with UDT shows good perfor-
mance with increasing TCP background traffic. After having 3
TCP flows at the background, it starts to outperform TCP-based
protocols, and the throughput did not vary much.

Tsunami’s performance was slowest with increasing TCP
background traffic, but it seemed to be very stable against
background traffic. Increasing background traffic did not affect
its throughput significantly.

Figure 3 shows the throughput for each protocol over a
path with 75 ms RTT and increasing volumes of UDP back-
ground traffic. With UDP background traffic, the throughput
of GridFTP with TCP and FDT decreased rapidly after some
level of congestion was induced by increasing UDP background
traffic. GridFTP with UDT was also affected by tha traffic, but
the decrease in throughput was small compared to the TCP-
based transfer protocols. Tsunami was less affected by the UDP
background traffic during the experiments.

Our results suggest that using GridFTP with UDT may work
best for transferring big data over moderate distances. If the
network is not likely to be congested during the transfer, using
GridFTP with TCP is clearly faster. If we can use a dedicated
path between two hosts where there is no possible congestion,
FDT will be the best choice for data transfer.

VI. DISCUSSION

1) Experimental Challenges: To have more control over the
many factors in the experiments while still approximating real-
world situations, we used decided to create a testbed rather than
doing a simulation. On the other hand, we are well aware that
we are testing the implementation of protocols, not protocols
themselves.

The focus of this study is not on the optimization of through-
put of each protocol using careful protocol tuning. Rather, we
wanted to observe their behaviour with various environmental
limitations that they are likely to encounter, including different
RTTs and levels of background traffic, with limited transmit
queue sizes. The stability in paths with background traffic, and
the need to not disrupt too much other traffic on those paths,
are important to demonstrate that the protocols can be used in
real-world situations. During our experiments, we found that
nuttcp become unstable when it is used to create too many
tcp sessions in a long RTT link. This may have particularly
affected the average throughput of the protocols where they
are used with more than four TCP background traffic flows.
We tried repeating experiments to reduce uncertainty in our
results, but we were not able to stabilize nuttcp behaviour
or that of other traffic generators. This could be improved by
using a dedicated traffic generator, which we will explore in
future work.

With no background traffic, we could observe a slightly
lower throughput of GridFTP with UDT at short RTT region.

38th Annual IEEE Conference on Local Computer Networks

294

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

T
h
ro

u
g
h

p
u
t

(G
b
/s

)

Delay (ms)

Tsunami
GridFTP with UDT
GridFTP with TCP

FDT

Fig. 1: Throughput of the protocols with
varying RTT, with no background traffic

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6

T
h
ro

u
g
h

p
u
t

(G
b
/s

)

Number of TCP flows

GridFTP with UDT
GridFTP with TCP

Tsunami
FDT

Fig. 2: Throughput of the protocols with
TCP background flows with RTT 75 ms

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40

T
h
ro

u
g
h

p
u
t

(G
b
/s

)

Background Traffic (kp/s)

GridFTP with TCP
FDT

GridFTP with UDT
Tsunami

Fig. 3: Throughput of the protocols with
UDP background traffic, RTT 75 ms

We suspect this effect is due to its implementation rather than
the protocol itself.

2) Result Implications: From our results, using TCP-based
protocols for transferring big data would be beneficial espe-
cially when the links used have relatively short RTTs and where
there is no significant background traffic. On the other hand,
with significant background traffic, TCP-based protocols may
not perform well due to the lack of stability. Using GridFTP
with UDT may give better performance with smaller RTT links.
Tsunami is only recommended for a high-RTT link, and when
there is significant background traffic on the link.

VII. CONCLUSIONS

We presented a comparative performance analysis of four
well-known transfer protocols for big data, namely, GridFTP,
FDT, UDT, and Tsunami. Our results show that using GridFTP
with TCP or FDT gives higher throughput over a 10 Gb/s
network link. Unless there is a significant background traffic
inducing congestion, using GridFTP with TCP may be the
best choice for data transfer between distant hosts. On the
other hand, with significant level of congestion on the link,
the TCP-based protocols show a tendency to be unstable, hence
using GridFTP with UDT may give more stable throughput. We
recommd using Tsunami only if there is significant background
traffic and the RTT between hosts is high.

In contrast, using a UDP-based protocol over links with
high background traffic is preferable, since it can provide more
reliable and efficient data transfer. The TCP-based protocols
were not stable, or efficient enough to compete against high
levels of TCP background traffic. Also, they took longer to
increase their initial throughput at the start of the transfer
compared to UDP based protocols.

VIII. FUTURE WORK

We plan to extend our testbed to test transfer protocols over
long Internet paths, such as between Auckland and Sydney.
Using this extended testbed, we will be able to understand how
the high-speed data transfer protocols behave on a longer-haul
link where there is realistic congestion causing variable round-
trip times. We are also looking into using software defined
networking concepts to improve performance of high-speed

data transfer. Using OpenFlow [14], we believe we can bypass
firewall and other obstructions between sender and receiver.

REFERENCES

[1] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High
Performance, ser. Request for Comments. IETF, May 1992, no.
1323, published: RFC 1323 (Proposed Standard). [Online]. Available:
http://www.ietf.org/rfc/rfc1323.txt

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and
S. Tuecke, “GridFTP: protocol extensions to FTP for the grid,” Global
Grid Forum GFD-RP, vol. 20, 2003.

[3] Y. Gu and R. L. Grossman, “UDT: UDP-based data transfer for high-
speed wide area networks,” Computer Networks, vol. 51, no. 7, pp. 1777
– 1799, 2007.

[4] M. Meiss, “Tsunami: A high-speed rate-controlled protocol for file
transfer,” 2009. [Online]. Available: www.evl.uic.edu/eric/atp/TSUNAMI.
pdf/

[5] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre,
A. Muraru, A. Costan, M. Dediu, and C. Stratan, “MonALISA: an
agent based, dynamic service system to monitor, control and optimize
distributed systems,” 40 YEARS OF CPC: A celebratory issue focused
on quality software for high performance, grid and novel computing
architectures, vol. 180, no. 12, pp. 2472–2498, Dec. 2009.

[6] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[7] F. Baccelli, G. Carofiglio, and M. Piancino, “Stochastic analysis of
scalable tcp,” in Proc. IEEE International Conference on INFOCOM,
Rio de Janeiro, Brazil, Apr. 2009, pp. 19–27.

[8] D. M. Lopez-Pacheco and C. Pham, “Enabling large data transfers on
dynamic, very high-speed network infrastructures,” in Proc. International
Conference on ICN/ICONS/MCL, 2006, pp. 40–40.

[9] J. Suresh, A. Srinivasan, and A. Damodaram, “Performance analysis of
various high speed data transfer protocols for streaming data in long
fat networks,” in Proc. International Conference on ITC, Kochi, Kerala,
India., Mar. 2010, pp. 234 –237.

[10] S. Weston, T. Natusch, and S. Gulyaev, “Radio astronomy data transfer
using KAREN network,” in Proc. General Assembly and Scientific
Symposium on IEEE URSI, Istanbul, Turkey, Aug. 2011, pp. 1 –4.

[11] Z. Yue, Y. Ren, and J. Li, “Performance evaluation of UDP-based high-
speed transport protocols,” in Proc. IEEE International Conference on
ICSESS, Beijing, China, Jul. 2011, pp. 69 –73.

[12] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster, “Gridftp
pipelining,” in Proc. TeraGrid Conference, Wisconsin, USA, Jun. 2007.

[13] A. Rajendran, P. Mhashilkar, H. Kim, D. Dykstra, G. Garzoglio, and
I. Raicu, “Optimizing large data transfers over 100Gbps wide area net-
works,” in Proc. IEEE/ACM International Symposium (CCGrid), Delft,
Netherlands, Nov. 2012.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
p. 69–74, Mar. 2008.

38th Annual IEEE Conference on Local Computer Networks

295

