
Detecting Heap-Spray Attacks in Drive-by
Downloads: Giving Attackers a Hand

Van Lam Le, Ian Welch, Xiaoying Gao
School of Engineering and Computer Science

Victoria University of Wellington
P.O. Box 600, Wellington 6140, New Zealand

{van.lam.le, ian.welch, xiaoying.gao}@ecs.vuw.ac.nz

Peter Komisarczuk
School of Computing and Technology

University of West London
St Mary’s Road, Ealing, London W5 5RF

peter.komisarczuk@uwl.ac.uk

Abstract—In the anatomy of drive-by download attacks, one of
the key steps is to place malicious code (shellcode) in the memory
of the browser process in order to carry out a drive-by download
attack. There are two common techniques to carry out this task:
stack-based and heap-based injections. However, introduction of
stack protection makes the stack-based injection harder to carry
out successfully. The heap-based injections become common
methods to deliver shellcode to the heap memory of the web
browsers. This paper presents the role of heap-spray in drive-by
download attacks. We propose a new detection mechanism which
makes shellcode in heap-spray executed in order to detect drive-
by download attack. The solution not only benefits detection of
drive-by download attacks but also analysis of malware behavior.

Keywords-Internet Security; Drive-by-download; malicious
web page;

I. INTRODUCTION

When an Internet user visits a malicious web page, a
malicious web server delivers a HTML document including
malicious content to the user’s computer system. The mali-
cious content then exploits vulnerabilities on the system. The
exploitation leads to executing malicious code (shellcode) in
memory that takes control over the system, and install malware
on it. This process happens without the Intenet user’s consents
or notices. This type of attacks is called drive-by download
attack [6] [10].

In our previous work [8], we presented the anatomy of drive-
by download attack which consists of four stages. In the third
stage, the malicious contents are executed by web browsers
at the visitors’ computer system. There are two steps in the
execution as follows:

1) The malicious contents exploit vulnerabilities on OS,
web browsers, and plug-ins.

2) A successful exploit will let the malicious contents
control the EIP register (Extended Instruction Pointer)
to point to malicious shellcode in memory which is set
up by attackers.

The third stage - executing malicious contents - is critical
to the success of a drive-by download attack. Two conditions
must hold for the success of this stage: available vulnerabilities
on the visitors’ computer system, and shellcode in the memory.
The availability of vulnerabilities is out of control of attackers.
Further, the attackers can not influence the availability of

vulnerabilities on the user’s computer. However, the attackers
can control the layout of shellcode in the memory during
visitation to increase the chances of executing the shellcode.
One of the common techniques is a heap-spray attack which
sprays a huge number of heap objects (containing shellcode)
in the memory. When shellcode exists in many areas in the
memory, there are more chances for attackers to control the
EIP register to land in one of these areas to trigger an execution
of shellcode.

In terms of detecting a drive-by download using heap-spray
attacks, there are two following issues which prevent the attack
happen:

1) There is no targeted vulnerability on the visitors’ com-
puter system. Any drive-by download attack usually
targets a specific vulnerability. Without the vulnerability,
the exploit can not happen. Therefore, shellcode in the
memory can not be reached and executed.

2) The locations of heap-objects (containing shellcode)
in memory are usually hard to predict. Therefore, the
attackers usually estimate a "good" location of heap-
objects that they can use to let EIP land after a successful
exploit. However, the estimation is not always correct.
Wrong estimation will make EIP point to an invalid
address or invalid instruction and the system will crash.

In both cases, the shellcode is not executed and the drive-
by download attacks never happen. Therefore, there is no
malicious activity which can take place. Any detector based
on malicious activities will miss the attack. This prevents
researchers from collecting malware for their studies even
though their detection tool has visited websites containing
malware.

In this paper, we propose a solution to make shellcode
in heap-spray attacks being executed even when there is no
available vulnerability, or when the attackers mis-estimate the
wrong locations of heap-objects containing the shellcode.

This paper makes the following contributions:
• It improves the detection rate for heap-spray attacks as

well as drive-by download attacks. By making shellcode
be executed, we make a drive-by download attack per-
form malicious activities that are monitored by some
types of detectors to identify malicious web pages.

38th Annual IEEE Conference on Local Computer Networks

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 300

• It provides a very useful method for collecting web-based
malware and malware behaviour in realtime environment
where the context of being infected and affected is not
altered.

II. RELATED WORK

The mostly related work to ours are studies [6], [7], [11]
that focus on detecting malicious code (shellcode) written to
memory by exploits for later execution. These studies are
based on the fact that memory corruption like heap-spray is
one of the common methods to exploit web browsers. Non
of these work has a capability to execute shellcode in a real
environment in order to detect drive-by download attacks.
Another work that proposed a detector to execute heap objects
in real environment is from Choi et al. [3]. The authors
created a detector called HERAD (HEap spRAying Detector).
Its Tracker saved potential heap objects into a log file, and then
its Scanner checked for valid instructions in the heap objects.
Its Executor loaded the log file containing the heap objects
with valid instruction into memory for execution. However, the
context of the attack and malware executions might be changed
because the heap objects were stored in a log file and then
reloaded into memory for execution. Moreover, it took time
for its Scanner to scan for valid instruction in heap objects
before executing them. In this paper, we propose a detection
mechanism to keep heap objects in the locations where they
should be. We use a high interaction client honeypot to visit
a web page while we monitor allocations of the heap objects
created during the visit of the web page. By analysing the
way attackers usually setup shellcode in JavaScript code and
the characteristics of heap-spray attacks, we identify potential
malicious heap objects and execute them. To handle exception
thrown by invalid instruction or invalid address (from our
executions or from attacks’ executions), we create a exception
handler.

III. A DETECTION MECHANISM

The main concept of the detection mechanism is to execute
shellcode in heap-spray attacks in order to let drive-by down-
load attacks happen successfully. To do this, we firstly track
the process of heap allocations during visitation to identify
potential malicious heap objects. At the end of visitation
process, we control the EIP register of browser process to point
to the potential malicious heap objects and execute them. This
approach lets shellcode in heap objects executed in the way
that attackers plan to do. Therefore, the context of the attack
is not altered.

We proposed a detection mechanism which consists of
four components: High Interaction Client Honeypot, Memory
Monitor, Exception Handler, and Shellcode Executor.

We implemented our detection mechanism in Windows XP
operating system which has Internet Explorer 6.0 and service
pack 2. The instance of Windows XP SP2 is installed in a
VMWare Server environment which runs on Fedora 10 (Figure
1). We implemented its components as described below.

FEDORA 10

WINDOWS XP SP2 – INTERNET EXPLORE 6.0

CAPTURE-HPC

DEFAULT
MONITORS

PYDBG

EXCEPTION
HANDLER

EXECUTOR

MEMORY
MONITOR

Fig. 1. Layout of Implementation

A. High Interaction Client Honeypot

We used our Capture-HPC v3.0 [12] for visiting web
pages, monitoring changes in the system in order to deter-
mine whether a drive-by download attack happens or not. In
addition, we limit our heap-spray carried out by JavaScript
code only. The code written in other script languages is not
considered in this paper.

B. Memory Monitor

To implement Memory Monitor we created a new mod-
ule to add to Capture-HPC in order to monitor heap al-
locations. In order to track locations of heap objects, we
hooked the API calls for allocating them in memory. In
our initial implementation, we hooked the memory API calls
in MSVCRT.DLL, OLEAUT32.DLL, KERNEL32.DLL, and
JSCRIPT.DLL. However, hooking all of memory API calls in
these libraries can make the number of system events increase.
Capture-HPC spends more time to process the system events
from the Memory Monitor and it can slow down the system.
Therefore we aimed to reduce the number of hooked APIs in
order to reduce the slowdown by identifying the minimal set
that intercepts all API calls relevant to a heap-spraying attack.
When analysing a heap-spray attack and monitoring the called
API during the attack, we found the following interesting
characteristics:

• Our previous analysis shows that shellcode is usually
stored in a string. In order to avoid the shellcode string
being changed to Unicode during memory allocation,
attackers usually use unescape fuction in JavaScript to
assign shellcode to a string object in memory.

• When we follow up the unescape function, it will call
PvarAllocBstrByteLen function in JSCRIPT.DLL library.
The PvarAllocBstrByteLen function, in its turn, will call
SysAllocStringByteLen function in OLEAUT32.DLL li-
brary. The interface of the SysAllocStringByteLen func-
tion is BSTR SysAllocStringByteLen(char FAR* psz,
unsigned int len). We can get the location of a heap
object from the pointer psz and the size of the heap object
from the len argument. Based on these arguments, we can
measure the size of heap-spray areas in memory.

38th Annual IEEE Conference on Local Computer Networks

301

From this analysis, we can see that a heap object from
JavaScript code is allocated by a sequence of {PvarAllocBstr-
ByteLen, SysAllocStringByteLen} calls. To track allocations
of heap objects, we need to hook these API calls.

In addition, a heap-spray attack usually sprays a number
of the-same-size heap objects into memory. The question is
whether we have to execute all of them? To answer these
questions, we classified heap-spray attacks into two types: tra-
ditional heap-spray and optimized heap-spray. The heap-spray
discussed in the previous section is considered as a traditional
heap-spray because typically there are many NOP instructions
placed in front of the shellcode. An optimized heap-spray
attack [5] attempts to reduce the number of NOP instructions
in the sled before the shellcode to evade the detection tools
[1] [11]. They achieve this by analyzing memory allocation
and manage to reduce the number of NOPs required for the
sled. While a traditional heap-spray has full shellcode in each
heap object, an optimized heap-spray, in some cases, divides
shellcode into smaller parts and put them in different heap
objects. Therefore, choosing the first heap object to execute is
a good choice in order to execute the whole shellcode in both
cases.

During monitoring heap object allocation, we may discover
more than one heap-spray area. The question is which one is
more likely to contain malicious shellcode? In fact, a heap
object from a heap-spray attack is usually larger in terms of
size and much bigger in terms of quantity in comparison to a
normal heap object. Therefore, the heap area with larger size
gets higher priority for us to execute.

C. Exception Handler and Shellcode Executor

These two components are responsible for handling excep-
tion from invalid addresses or instructions, and executing shell-
code in a potential malicious heap object. To implement these
components, we used PyDbg debugger written in Python. The
following tasks were implemented based on PyDbg debugger:

1) We set up a callback function to handle the EXCEP-
TION_ACCESS_VIOLATION event to handle excep-
tion thrown when the EIP register points to an invalid
address due to an incorrect guess by the attackers of the
location of the heap objects containing the shellcode.

2) After the process of visiting a web page finishes, we
change the EIP register to point to a potential malicious
heap object in order to execute it.

IV. EVALUATION

To evaluate our detection mechanism, we implemented it on
a PC running Fedora 10 with Intel R©CoreTM2 Duo Processor
3.00 GHz and 4GB of RAM. VMWARE server was installed
on this PC and Windows XP SP2 with Internet Explorer
6.0 was installed on VMWARE environment. The detection
mechanism was setup on the Windows XP station. We evaluate
it by using three criteria: False positive rate, false negative rate,
and overhead time.

False positive: There is no false positive caused by this
model itself. When this detection mechanism visit a benign

web page, there are two possible cases. In the first case, the
model does not find any potential malicious heap object from
the web page. The model does not take any further action so
the web page will be classified as benign (as Capture-HPC
job). In the second case, the detection mechanism finds a
potential malicious heap object from the benign web page.
It will execute the potential malicious heap object. Because
the benign web page does not have any malicious shellcode
on its heap objects, the result of execution of heap object is to
trigger an EXCEPTION_ACCESS_VIOLATION event which
is handled by our model. As a result, there is no false positive
in both cases.

False negative: To evaluate false negative rate, we need a
set of drive-by download attacks with involved heap-spray. We
used Metasploit [9] for generating a number of drive-by down-
load attacks with involved heap-spray. In order to evaluate our
detection mechanism, we need to choose a heap-spray attack
that can not be successful at the Windows XP workstation.
When analysing heap-spray from Metasploit, we found that
"‘Internet Explorer Tabular Data Control ActiveX"’ attack can
not execute in our implemented Windows XP workstation.
We chose it as a base of drive-by download attack. Further,
Capture-HPC v3.0 monitors four events in order to determine
the success of a drive-by download attack: file, process,
registry, and network connection events. In terms of choosing
shellcode for our evaluation, we have to choose the shellcode
that makes anomalous activities being monitored by Capture-
HPC in order to know the success of our detection mecha-
nism. We choose "windows/meterpreter/reverse_tcp" shellcode
because it has anomalous activities including network connec-
tions and storing a file (given by us) in the system. We would
like to have the various layouts of heap objects in memory
randomly. To do this, for each test, we adjust two factors as
follows:

1) Number of NOP strings: By the default, the number of
NOP strings in the front of heap objects in the "‘Internet
Explorer Tabular Data Control ActiveX"’ attack is 16384
(0x4000). We randomly choose this number from 1 to
16384.

2) Number of heap objects: The default number of heap
objects in this attack is 150. We randomly choose this
number of 1 to 150.

By adjusting these factors, the size of heap objects and
heap areas, and their locations are unpredictable. We generate
100 URLs containing the "‘Internet Explorer Tabular Data
Control ActiveX"’ exploit with various heap-spray objects. We
controlled our detection mechanism to visit these URLs. The
result shown that our detection mechanism handled exception
thrown and made the shellcode in heap objects being executed.
The anomalous activities in network connections and file
system from the result of the executing the shellcode were
detected. There were 100 given URLs successfully carrying
out drive-by download attacks.

Overhead time: To evaluate the overhead time of our
detection mechanism, we compared our detection mechanism

38th Annual IEEE Conference on Local Computer Networks

302

to the original Capture-HPC. We controlled our detection
mechanism and the original Capture-HPC to visit the top 250
websites from Alexa [2]. The result shown that the original
Capture-HPC spent 11.33 seconds in average for scanning an
URL while our detection mechanism needed 20.31 seconds
in average to scan an URL. Its overhead time is nearly 9
seconds. To analyze the reason for quite large overhead time,
we tracked down the performance of our detection mechanism.
While following up the performance of Memory Monitor, we
found that it got busy with logging information of allocations
of heap objects. We did not set the threshold (in the size of
heap objects) in the hooking API functions. We leave this work
as future work to improve the overhead time.

V. DISCUSSION

The technique presented in this paper is to improve the de-
tection of drive-by-download attacks by increasing the chances
of a heap-spray attack succeeding. There are some limitations
of this concept we would like to discuss in this section
as future work. Firstly, this work focuses on heap-spray on
drive-by download attack carried out by JavaScript code only
(Although JavaScript code is commonly used to carry out
drive-by download attack [4]). Secondly, this work assumes
that the same-size heap objects appearing continuously belong
to the same heap-spray attack. Attackers can change their
mechanism to make each heap object in different size in
order to evade the detection mechanism. Thirdly, the Exception
Handler and Executor were implemented by using Pydbg and
not convenient for setting up. Integrating them into Capture-
HPC should be a good improvement in terms of setting up
and operation.

VI. CONCLUSION

The paper presents a new detection method to detect drive-
by download with involved heap-spray attacks. The main
concept of this work is to improve the chances of a heap-spray
attack being successful and leading to successful drive-by-
download attacks. The benefit from this work is the avoidance
of system crashes or lack of local vulnerabilities leading
to false negatives. It allows high-interaction honeyclients to
collect more malware and observe their behaviours in a real
system.

The detection mechanism has successfully been imple-
mented and added to Capture-HPC - a common high in-
teraction client honeypots used in research. Based on our
evaluation, the detection mechanism shows its effectiveness
on carrying out heap-spray attacks and detecting drive-by
download attacks. Although the detection mechanism has been
implemented and evaluated in Windows XP SP2, it can be
implemented in other Windows systems by adapting API
hooking techniques and investigating appropriate API calls in
specific Windows operating system.

REFERENCES

[1] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis,
“Stride: Polymorphic sled detection through instruction sequence anal-
ysis,” in In 20th IFIP International Information Security Conference,
2005.

[2] Alexa, “Alexa top 500 global sites,” 2012, available from http://www.
alexa.com/topsites; accessed on 8 November 2012.

[3] Y. Choi, H. Kim, and D. Lee, “Detecting heap-spraying code injection
attacks in malicious web pages using runtime execution,” IEICE Trans-
actions, vol. 95-B, no. 5, pp. 1711–1721, 2012.

[4] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-
download attacks and malicious javascript code,” in WWW2010, Raleigh
NC, USA, 2010.

[5] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou, “Heap taichi: exploiting
memory allocation granularity in heap-spraying attacks,” in Proceedings
of the 26th Annual Computer Security Applications Conference, ser.
ACSAC ’10. New York, NY, USA: ACM, 2010, pp. 327–336.

[6] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection at-
tacks,” in Proceedings of the 6th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 88–106.

[7] F. Gadaleta, Y. Younan, and W. Joosen, “Bubble: a javascript engine
level countermeasure against heap-spraying attacks,” in Proceedings of
the Second international conference on Engineering Secure Software and
Systems, ser. ESSoS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
1–17.

[8] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of drive-
by download attack,” in Australasian Information Security Conference
2013 (ACSW-AISC 2013), Adelaide, Australia, 2013.

[9] Metasploit, “Meatasploit: Penatration testing software,” 2012, available
from http://www.metasploit.com; accessed on 22 February 2012.

[10] J. Narvaez, C. Seifert, B. Endicott-Popovsky, I. Welch, and P. Komisar-
czuk, “Drive-by-download,” Victoria University of Wellington, Welling-
ton, Tech. Rep., 2008.

[11] P. Ratanaworabhan, B. Livshits, and B. Zorn, “Nozzle: a defense
against heap-spraying code injection attacks,” in Proceedings of the
18th conference on USENIX security symposium. Montreal, Canada:
USENIX Association, 2009.

[12] C. Seifert, R. Steenson, and V. L. Le, “Capture-hpc v3.0 beta,” 2009,
available from https://projects.honeynet.org/capture-hpc/wiki/Releases;
accessed on 22 Feburary 2010.

38th Annual IEEE Conference on Local Computer Networks

303

