
Accurate QoS-based Service Selection Algorithm for
Service Composition

Jianxin Liao, Yang Liu, Xiaomin Zhu, Jingyu Wang,Qi Qi
State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

EB Information Technology Co. Ltd., Beijing, China
E-mail: {liaojianxin, liuyang_5, zhuxiaomin, wangjingyu, qiqi}@ebupt.com

Abstract—The most important thing of service composition (SC)
is to select optimal candidate service instances compliant with
non-functional requirements (e.g. QoS and load balance
constraints). Particle swarm optimization (PSO) is known as an
effective and efficient algorithm, which is widely used in this
process. However, the premature convergence and diversity loss
of PSO may result in suboptimal solutions. In this paper, we
propose an accurate sub-swarms particle swarm optimization
(ASPSO) algorithm which locates optimal solutions by using sub-
swarms searching grid cells in which the density of feasible
solutions is high. Simulation results demonstrate that the
proposed algorithm improves the accuracy of the standard PSO
algorithm in service composition.

Index Terms—service composition, service selection, clustering
method, particle swarm optimization

I. INTRODUCTION

Services are implemented and distributed independently,
duplicated service instances (SIs) are inevitable. Duplicated
implies that SIs with the same function are implemented by
different developers. Consequently, for a composite application,
multiple SIs with different non-functional parameters exist for
each service. The selection of optimal service instance for each
service can barely guarantee the optimal QoS parameters of the
whole composite application. Therefore, it is a challenge to
select optimal SIs compliant with the requirements of whole
composition request.

Particle swarm optimization (PSO) is known as an effective
and efficient algorithm which can support multi-constraint
multi-objective problems, whatever linear or nonlinear. In
previous literatures [1-3], PSO has been proposed to solve the
service selection problem properly. However, PSO’s premature
convergence and diversity loss may result in suboptimal
solutions regardless of true optimal solutions. Sub-Swarm
techniques have been proposed to improve the accuracy of PSO.
However, these techniques all concentrate on the improvement
of particles’ neighbor topology. They neglect the reason of
premature convergence, i.e. suboptimal solutions near true
optimal solutions form traps what pull particles to converge to
them. Inspired by this phenomenon, we propose an accurate
sub-swarms particle swarm optimization (ASPSO) algorithm
which locates optimal solutions by using sub-swarms searching
grid cells in which the density of feasible solutions is high. It

compares suboptimal solutions found in diverse sub-swarms
which also avoid diversity loss in PSO. Furthermore, it uses an
exterior file to record feasible solutions found in the whole
solution space. Simulation results reveal that the accuracy of
proposed algorithm is higher than the ones compared in
searching the optimal solution of service selection problem.

The rest of paper is organized as follows. Section II
presents the related work. The proposed algorithm is described
in Section III. Section IV presents simulation results and
analyses the performance of the proposed algorithm. Finally,
Section V concludes this paper.

II. RELATED WORK

In researches on non-functional properties of service
composition, there are some literatures using PSO. Fethallah et
al. [4] adopted the local version of PSO to avoid local optima
in service composition problems. In the local version of PSO,
particles search for the optimum based on their inertias and
optima which they have ever reached. This algorithm can be
regarded as PSO with sub-swarms consisted of each particle.
Although the adopted algorithm emphasizes PSO’s exploration,
its nature based on randomness and local optima always lead to
suboptimal solutions. Liao et al. [5] adopted the lbest PSO with
ring topology [6] to find one true optimum from local optima in
service composition. In this algorithm, every three adjacent
particles constitute a sub-swam to select the best local optimum
as their global optimum in the sub-swarm. Therefore, all
particles form a ring topology which slows down the
convergence procedure of the algorithm. Li proved that this
algorithm outperforms most existing PSO algorithms.
Although existing sub-swarm mechanisms improve the
accuracy of algorithms, they ignore the direct factor of the
premature convergence of PSO. Sub-optima around the true
optimum are traps to all particles. In this paper, we propose a
novel PSO algorithm which locates the optimal solution by
using multiple sub-swarms to isolate and search candidate
areas of sub-optima. Simulation results show that the proposed
algorithm is more accurate than compared algorithms.

III. ACCURATE SUB-SWARMS PSO

Although previous research [1-3] adopt PSO to search for
optimal solutions in SC problems, the premature convergence
of PSO may result in suboptimal solutions in practical use. To

38th Annual IEEE Conference on Local Computer Networks

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 344

illustrate the impact of this feature, we inspect a solution space
of MCOSCP. As shown in Fig. 1, points represent feasible
solutions of a MCOSCP problem. Better the solution is, higher
the value of point is. The value of points is indicated by the size
and color of them. In Fig. 1, feasible solutions gather in almost
four clusters. In addition, there may be better solutions in a
cluster where crowded by more feasible solutions. But when a
swarm establishes a suboptimal solution as its global optimum
in the later stage of PSO, the suboptimal solution will draw all
particles in. In problems full of suboptimal solutions just like
MCOSCP, this feature of PSO could pull particles far away
from true optima.

To improve the accuracy of PSO, we propose a novel sub-
swarms algorithm named accurate sub-swarms particle swarm
optimization (ASPSO). In the initialization stage, there is one
swarm called the main-swarm in the ASPSO. With the
increasing iteration number, sub-swarms are generated around
the dense areas of feasible solutions and isolated from the
main-swarm. In this process, the main-swarm still searches the
remaining area in the solution space until the algorithm stops
when the maximum iteration number is reached. ASPSO takes
advantage of accurate sub-swarms construction method and
competition mechanism to locate optima.

The ASPSO utilizes the feature of solution space to
establish sub-swarms in areas where densities of feasible
solutions are high. Inspired by serial and parallel niching
technique, ASPSO isolates main-swarm and sub-swarms
updating all particles in each iteration. Below, we specify
procedures of ASPSO different from the standard PSO.

Grid cell file (GCF) and feasible solution file (FSF) are
total new modules in ASPSO. In ASPSO, sub-swarms
construction is based on the knowledge of the dense areas of
feasible solutions. Hence, ASPSO use a FSF to store
coordinates of feasible solutions which particles ever reach and
grid cell identifiers which feasible solutions belong to. To
locate the dense areas of feasible solutions, ASPSO adopts a
simple clustering method which requires dividing each
dimension of solution space to grids. Thus grid cells are high
dimensional units with the same length with particles. There
are two terms in one record of GCF: grid cell identifier and
feasible solution amount. Grid cell identifier is a vector with
the same dimension as particles. Maximum value of its each
dimension is determined by grid cell factor. And the feasible
solution amount could increase when the algorithm finds a new
feasible solution in this grid cell.

In the input of ASPSO, SwarmSize is the total number of
particles used in the algorithm. ParticleScope is the value range
of solutions in all dimensions which is determined by the
service composition problem. GridCellFactor is a multi-
dimensional value which determines to how many grids each
dimension of the solution space is divided. Each grid cell’s
range can be acquired by calculation of ParticleScope,
GridCellFactor and grid cell identifier. Tmax is the total iteration
time of the algorithm. The sub-swarms update period (SUP) is
the period in which sub-swarms are updated. When the
iteration time is one, all particles are initialized. Then iteration
time increases until the maximum iteration is reached. In each

iteration, the algorithm first checks whether iteration time
reaches SUP. If so, the algorithm first finds dense areas of
feasible solutions, and then updates sub-swarms based on them.
Then, the algorithm updates particles’ velocities and positions.
A solution with the best fitness value is selected from global
optima of all swarms as the final result for the service
composition.

Algorithm 1. Initialization function of ASPSO

1 input: SwarmSize, ParticleScope, GridCellFactor;
2 for each particle in the main-swarm do
3 initialize positions and velocities randomly;
4 restrict positions and velocities according to the ParticleScope;
5 initialize particles’ local optima to be their corresponding positions;
6 end for
7 select global optimum to be the one with best fitness value in local optima;
8 Initialize GCF according to the ParticleScope and GridCellFactor;
9 for position of each particle do
10 FSF.check_insert(position);
11 end for
12 for feasible solution amount of each grid cell in GCF do
13 Increase feasible solution amount according to the number of feasbile
solutions found in this grid cell;
14 end for
15 output: MainSwarm,GCF, FSF;

In the initialization function as shown in Algorithm 1, all

particles belong to the main-swarm. First, the algorithm
initializes particles scattering randomly in the solution space.
Particles’ velocities are set the same with their positions.
Second, positions and velocities are restricted according to the
range of solution space. Position bounds of each particle are the
same with the range of solution space. The extreme velocity is
plus or minus difference between maximum and minimum
value of solution space. Local optima of particles are defined as
their positions at this time. The global optimum is selected
from local optima based on their fitness value in line 7. Then,
the GCF is initialized to get ready for the division of feasible
solutions in line 8. Finally, each particle’s position is evaluated
to decide whether it is a feasible solution in line 9-11. Feasible
solutions will be inserted into the FSF for the clustering
method. Meanwhile, feasible solution amounts of
corresponding grid cells in which feasible solutions reside will
increase accordingly in line 12-14.

If iteration time occurs to be the sub-swarms update period
(SUP), ASPSO first evaluates dense areas of feasible solutions
and updates sub-swarms before updating velocities and

Fig. 1. Optimal and feasible solutions in a MCOSCP solution space

38th Annual IEEE Conference on Local Computer Networks

345

positions of particles. ASPSO adopts a simple clustering
method to generate sub-swarms from grid cells in which
densities of feasible solutions are higher than surroundings.
The dense areas evaluation and sub-swarms update process is
presented in Algorithm 2-3.

Algorithm 2. Find_dense_areas function of ASPSO

1 input: ParticleScope, GCF, FSF;
2 for each grid cell in GCF do
3 if FeaSolAmount/AveDense >1 then
4 GridCellCheck.insert(grid cell);
5 end if
6 end for
7 for each GridCell(k) in GridCellCheck do
8 if GridCell(k) is unchecked then
9 mark GridCell(k) checked by GridCell k;
10 initialize TempCheck = GridCell(k);
11 for each unchecked GridCell(h) in GridCellCheck (h>k) do
12 if GridCell(h) is adjacent to any grid cell in TempCheck then
13 TempCheck.insert(GridCell(h));
14 mark GridCell(h) checked as a neighbor of GridCell(k);
15 h=h+1;
16 end if
17 end for
18 calculate the number of feasible solutions and the total max and min

ranges of all grid cells in TempCheck; merge these two terms to
one record and insert it to CheckResult;

19 end if
20 end for
21 output: CheckResult;

In line 3 of Algorithm 2, FeaSolAmount means feasible

solution amount found in this grid cell of GCF; AveDense is
equal to total feasible solution amount divided by total grid cell
amount. GridCellCheck in line 4 stores identifiers and
corresponding feasible solution amounts of grid cells in which
densities of feasible solutions found are higher than the average
level. Line 7-20 is a simple clustering method which finds
dense regions of feasible solutions using grid cells. For each
unchecked GridCell(k) in GridCellCheck, the algorithm checks
every GridCell(h) (h>k). If GridCell(h) is a neighbor adjacent
to GridCell(k), it will be added to TempCheck. If there is none
unchecked neighbor of GridCell(k) in GridCheck, TempCheck
stores all direct and indirect adjacent grid cells of GridCell(k)
including itself. Then in line 18, feasible solution amount and
range of these cells are added to CheckResult. If all grid cells
are checked, this function will return CheckResult.

Algorithm 3. Update_sub-swarms function of ASPSO

1 input: SwarmSize, ParticleScope, MainSwarm, FSF, CheckResult,GCF;
2 if CheckResult != null then
3 select the optimal solution as main-swam’s new global optimum from

existing sub-swarms’ global optima and main-swarm’s global
optimum;

4 retrieve all particles and reconstruct sub-swarms according to
CheckResult;
5 update the range of main-swarm;
6 initialize positions and velocities of sub-swarm particles randomly;
7 restrict positions and velocities according to the sub-swarms’ range;
8 initialize local and global optima of sub-swarm particles;
9 for position of each particle in newly generated sub-swarms do
10 FSF.check_insert(position);
11 endfor

12 for feasible solution amount of each grid cell in GCF do
13 Increase feasible solution amount according to the number of feasbile
solutions found in this grid cell;
14 end for
15 endif
16 output: MainSwarm, SubSwarms, FSF,GCF;

After all dense areas of feasible solutions are stored in

CheckResult, sub-swarms are generated with a preference for
denser and larger areas as shown in Algorithm 3. In each sub-
swarms update period, all particles are retrieved to generate
new sub-swarms. Sub-swarms are reconstructed according to
the feasible solution dense areas at this time. This method
could keep the sub-swarms track up to date dense areas of
feasible solutions. And the total particle amount is maintained
to be SwarmSize. The particle amount assigned to each sub-
swarm is proportional to the ratio of its size in the whole
solution space. The algorithm brings in none more particles and
keeps the same particle density in the solution space with the
basic PSO. Constant particle density is sufficient for MCOSCP
problems. This mechanism could avoid greedily increasing
particles which may induce heavy computational complexity.
Before particles are retrieved, the algorithm selects main-
swarm’s new global optimum from existing sub-swarms’
global optima and the main-swarm’s global optimum to
improve search result in line 3. The first step of a sub-swarm
generation is to determine the search range of sub-swarm. The
search range is mainly based on the corresponding dense area
range in CheckResult. If the size of a dense area is not qualified
to be searched by two particles, the algorithm will properly
enlarge the search range of the sub-swarms to keep the particle
density. Then the algorithm assigns corresponding amount of
particles to this sub-swarm. The algorithm constructs sub-
swarms with preference for denser and larger areas in
CheckResult until remaining particles are not enough for a sub-
swarm. In line 5, the range of main-swarm is updated to ensure
main-swarm and sub-swarms are isolated. Once sub-swarms
are generated, the algorithm initializes positions and velocities
of particles randomly within the value of sub-swarms’ search
ranges in line 6-7. Position bounds are the same with the
corresponding sub-swarm’s search range. The extreme velocity
is plus or minus difference between the maximum and
minimum value of corresponding sub-swarm’s search range. In
line 8, the algorithm initializes local and global optima just like
that in main-swarm. Then if a position is a feasible solution, it
will be inserted to the FSF in line 9-11. Feasible solution
amounts of corresponding grid cells in which feasible solutions
reside will increase accordingly in line 12-14.

The secondary step of iteration stage is the update of
particles. This process is quite similar with corresponding
process presented above except updating positions and
velocities. Before the selection of local and global optimum of
each particle, its velocity and position must be restricted
according to the range of swarm to which it belongs. At the end,
positions are inserted to the FSF if they are feasible solutions.
Feasible solution amounts of corresponding grid cells in which
feasible solutions reside will increase accordingly.

38th Annual IEEE Conference on Local Computer Networks

346

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed
ASPSO algorithm by comparing it with standard PSO and lbest
PSO with ring topology [6]. The lbest PSO with ring topology
(LPSO-RT) induces stable niching ability in finding one true
optimal solution in the presence of massive suboptimal
solutions [5]. Simulation results demonstrate that ASPSO
improve the accuracy of PSO in MCOSCP problems.

We use execution time and accuracy rate (the fitness value
of the optimal SCP which the algorithm finds divided by the
fitness value of the real optimal SCP) as metrics to evaluate the
proposed algorithm.

We compare the performance of three algorithms with
increasing iterations when the service instance number is
103,104 and 105 respectively. As shown in Fig. 2, the number of
service sets and swarm size remain 10 and 20 respectively. In
these scenarios, the accuracy of ASPSO surpasses the other
two algorithms. When there are few service instances, the
accuracy of these three algorithms are close. When there are
enormous service instances, the accuracy of ASPSO is almost
5% higher than LPSO-RT, 10% higher than PSO. Moreover,
the performance of ASPSO is steadier than other algorithms.
Fig. 2 (d-f) show the time consumption of these algorithms.
When iterations are less than 200, ASPSO spends at most 2
seconds more than other two algorithms. But with the iterations
increase, the execution time of ASPSO rises quickly. This may
result from the sub-swarms update consumption. The accuracy
of ASPSO increases inconspicuously when the iterations are
more than 200. In practical service composition problems, we
could use ASPSO with less than 200 iterations. Therefore,
ASPSO would induce more accurate results with just 1-2
seconds more execution time.

V. CONCLUSIONS

It is a challenge to select optimal service instances
considering multiple constraints in service composition. PSO is
known as an effective and efficient algorithm for solving
service composition problems. However, the premature
convergence and diversity loss of PSO may induce particles
trapped in local optima. In this paper, we propose an accurate
sub-swarms particle swarm optimization algorithm (ASPSO)
for the service composition problems. It constructs sub-swarms
around areas where densities of feasible solutions are high. A
simple clustering method is adopted to distinguish dense areas
in the ASPSO algorithm. The algorithm adopted serial and
parallel niching technique to isolate main-swarm and sub-
swarms searching different areas in the mean time. This
mechanism could avoid particles converging to local optima by
distributing search units more evenly than standard PSO. Also,
this algorithm enhances the accuracy of result by fully
searching areas where true optimum may probably exist. In
simulations, we test PSO, LPSO-RT and ASPSO. Simulation
results demonstrate that ASPSO is more resistant to local
optima. ASPSO is more accurate than compared algorithms
with acceptable increased time consumption. In the future, we
will improve the dense areas identifying method to reduce

ASPSO’s computation complexity. Moreover, we will research
on service selection algorithms for multi-objective service
composition.

ACKNOWLEDGMENT

This work was jointly supported by: (1) the National Basic
Research Program of China (No. 2013CB329102); (2) National
Natural Science Foundation of China (No. 61271019,
61101119, 61121001, 61072057, 60902051); (3) PCSIRT (No.
IRT1049).

REFERENCES

[1] T. Guha and S. A. Ludwig, "Comparison of Service Selection
Algorithms for Grid Services: Multiple Objective Particle
Swarm Optimization and Constraint Satisfaction Based Service
Selection," in Proc. IEEE Int. Conf. of Tools with Artificial
Intelligence, 2008.

[2] H. Xia, Y. Chen, Z. Li, H. Gao, and Y. Chen, "Web Service
Selection Algorithm Based on Particle Swarm Optimization," in
Proc. IEEE Int. Conf. of Dependable, Autonomic and Secure
Computing, 2009.

[3] J. Cao, X. Sun, X. Zheng, B. Liu, and B. Mao, "Efficient Multi-
objective Services Selection Algorithm Based on Particle Swarm
Optimization," in Proc. of IEEE Asia-Pacific Services
Computing Conf., 2010.

[4] H. Fethallah, M.A. Chikh, M. Mohammed, and K. Zineb, "QoS-
aware service selection based on swarm particle optimization,"
in Proc. Int. Conf. of Information Technology and e-Services,
2012.

[5] J. Liao, Y. Liu, J. Wang, and X. Zhu, "Service Composition
based on Niching Particle Swarm Optimization in Service
Overlay Networks," KSII Trans. on Internet and Information
Systems, vol. 6, no. 4, pp. 1106-1127, 2012.

[6] X. Li, “Niching without niching parameters: particle swarm
optimization using a ring topology,” IEEE Trans. on Evol.
Comput., vol. 14, no. 1, pp. 150-169, 2010.

Fig. 2. Performance comparison with increasing iterations.

38th Annual IEEE Conference on Local Computer Networks

347

