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Abstract—The most important thing of service composition (SC) 
is to select optimal candidate service instances compliant with 
non-functional requirements (e.g. QoS and load balance 
constraints). Particle swarm optimization (PSO) is known as an 
effective and efficient algorithm, which is widely used in this 
process. However, the premature convergence and diversity loss 
of PSO may result in suboptimal solutions. In this paper, we 
propose an accurate sub-swarms particle swarm optimization 
(ASPSO) algorithm which locates optimal solutions by using sub-
swarms searching grid cells in which the density of feasible 
solutions is high. Simulation results demonstrate that the 
proposed algorithm improves the accuracy of the standard PSO 
algorithm in service composition. 

Index Terms—service composition, service selection, clustering 
method, particle swarm optimization 

I. INTRODUCTION 

Services are implemented and distributed independently, 
duplicated service instances (SIs) are inevitable. Duplicated 
implies that SIs with the same function are implemented by 
different developers. Consequently, for a composite application, 
multiple SIs with different non-functional parameters exist for 
each service. The selection of optimal service instance for each 
service can barely guarantee the optimal QoS parameters of the 
whole composite application. Therefore, it is a challenge to 
select optimal SIs compliant with the requirements of whole 
composition request. 

Particle swarm optimization (PSO) is known as an effective 
and efficient algorithm which can support multi-constraint 
multi-objective problems, whatever linear or nonlinear. In 
previous literatures [1-3], PSO has been proposed to solve the 
service selection problem properly. However, PSO’s premature 
convergence and diversity loss may result in suboptimal 
solutions regardless of true optimal solutions. Sub-Swarm 
techniques have been proposed to improve the accuracy of PSO. 
However, these techniques all concentrate on the improvement 
of particles’ neighbor topology. They neglect the reason of 
premature convergence, i.e. suboptimal solutions near true 
optimal solutions form traps what pull particles to converge to 
them. Inspired by this phenomenon, we propose an accurate 
sub-swarms particle swarm optimization (ASPSO) algorithm 
which locates optimal solutions by using sub-swarms searching 
grid cells in which the density of feasible solutions is high. It 

compares suboptimal solutions found in diverse sub-swarms 
which also avoid diversity loss in PSO. Furthermore, it uses an 
exterior file to record feasible solutions found in the whole 
solution space. Simulation results reveal that the accuracy of 
proposed algorithm is higher than the ones compared in 
searching the optimal solution of service selection problem.  

The rest of paper is organized as follows. Section II 
presents the related work. The proposed algorithm is described 
in Section III. Section IV presents simulation results and 
analyses the performance of the proposed algorithm. Finally, 
Section V concludes this paper. 

II. RELATED WORK 

In researches on non-functional properties of service 
composition, there are some literatures using PSO. Fethallah et 
al. [4] adopted the local version of PSO to avoid local optima 
in service composition problems. In the local version of PSO, 
particles search for the optimum based on their inertias and 
optima which they have ever reached. This algorithm can be 
regarded as PSO with sub-swarms consisted of each particle. 
Although the adopted algorithm emphasizes PSO’s exploration, 
its nature based on randomness and local optima always lead to 
suboptimal solutions. Liao et al. [5] adopted the lbest PSO with 
ring topology [6] to find one true optimum from local optima in 
service composition. In this algorithm, every three adjacent 
particles constitute a sub-swam to select the best local optimum 
as their global optimum in the sub-swarm. Therefore, all 
particles form a ring topology which slows down the 
convergence procedure of the algorithm. Li proved that this 
algorithm outperforms most existing PSO algorithms. 
Although existing sub-swarm mechanisms improve the 
accuracy of algorithms, they ignore the direct factor of the 
premature convergence of PSO. Sub-optima around the true 
optimum are traps to all particles. In this paper, we propose a 
novel PSO algorithm which locates the optimal solution by 
using multiple sub-swarms to isolate and search candidate 
areas of sub-optima. Simulation results show that the proposed 
algorithm is more accurate than compared algorithms. 

III. ACCURATE SUB-SWARMS PSO 

Although previous research [1-3] adopt PSO to search for 
optimal solutions in SC problems, the premature convergence 
of PSO may result in suboptimal solutions in practical use. To 
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illustrate the impact of this feature, we inspect a solution space 
of MCOSCP. As shown in Fig. 1, points represent feasible 
solutions of a MCOSCP problem. Better the solution is, higher 
the value of point is. The value of points is indicated by the size 
and color of them. In Fig. 1, feasible solutions gather in almost 
four clusters. In addition, there may be better solutions in a 
cluster where crowded by more feasible solutions. But when a 
swarm establishes a suboptimal solution as its global optimum 
in the later stage of PSO, the suboptimal solution will draw all 
particles in. In problems full of suboptimal solutions just like 
MCOSCP, this feature of PSO could pull particles far away 
from true optima. 

To improve the accuracy of PSO, we propose a novel sub-
swarms algorithm named accurate sub-swarms particle swarm 
optimization (ASPSO). In the initialization stage, there is one 
swarm called the main-swarm in the ASPSO. With the 
increasing iteration number, sub-swarms are generated around 
the dense areas of feasible solutions and isolated from the 
main-swarm. In this process, the main-swarm still searches the 
remaining area in the solution space until the algorithm stops 
when the maximum iteration number is reached. ASPSO takes 
advantage of accurate sub-swarms construction method and 
competition mechanism to locate optima. 

The ASPSO utilizes the feature of solution space to 
establish sub-swarms in areas where densities of feasible 
solutions are high. Inspired by serial and parallel niching 
technique, ASPSO isolates main-swarm and sub-swarms 
updating all particles in each iteration. Below, we specify 
procedures of ASPSO different from the standard PSO. 

Grid cell file (GCF) and feasible solution file (FSF) are 
total new modules in ASPSO. In ASPSO, sub-swarms 
construction is based on the knowledge of the dense areas of 
feasible solutions. Hence, ASPSO use a FSF to store 
coordinates of feasible solutions which particles ever reach and 
grid cell identifiers which feasible solutions belong to. To 
locate the dense areas of feasible solutions, ASPSO adopts a 
simple clustering method which requires dividing each 
dimension of solution space to grids. Thus grid cells are high 
dimensional units with the same length with particles. There 
are two terms in one record of GCF: grid cell identifier and 
feasible solution amount. Grid cell identifier is a vector with 
the same dimension as particles. Maximum value of its each 
dimension is determined by grid cell factor. And the feasible 
solution amount could increase when the algorithm finds a new 
feasible solution in this grid cell. 

In the input of ASPSO, SwarmSize is the total number of 
particles used in the algorithm. ParticleScope is the value range 
of solutions in all dimensions which is determined by the 
service composition problem. GridCellFactor is a multi-
dimensional value which determines to how many grids each 
dimension of the solution space is divided. Each grid cell’s 
range can be acquired by calculation of ParticleScope, 
GridCellFactor and grid cell identifier. Tmax is the total iteration 
time of the algorithm. The sub-swarms update period (SUP) is 
the period in which sub-swarms are updated. When the 
iteration time is one, all particles are initialized. Then iteration 
time increases until the maximum iteration is reached. In each 

iteration, the algorithm first checks whether iteration time 
reaches SUP. If so, the algorithm first finds dense areas of 
feasible solutions, and then updates sub-swarms based on them. 
Then, the algorithm updates particles’ velocities and positions. 
A solution with the best fitness value is selected from global 
optima of all swarms as the final result for the service 
composition. 

 
Algorithm 1. Initialization function of ASPSO 

 
1   input: SwarmSize, ParticleScope, GridCellFactor; 
2   for each particle in the main-swarm do 
3      initialize positions and velocities randomly; 
4      restrict positions and velocities according to the ParticleScope; 
5      initialize particles’ local optima to be their corresponding positions; 
6   end for 
7   select global optimum to be the one with best fitness value in local optima; 
8   Initialize GCF according to the ParticleScope and GridCellFactor; 
9   for position of each particle do 
10     FSF.check_insert(position); 
11  end for 
12  for feasible solution amount of each grid cell in GCF do 
13     Increase feasible solution amount according to the number of feasbile 
solutions found in this grid cell; 
14  end for 
15  output: MainSwarm,GCF, FSF; 

 
In the initialization function as shown in Algorithm 1, all 

particles belong to the main-swarm. First, the algorithm 
initializes particles scattering randomly in the solution space. 
Particles’ velocities are set the same with their positions. 
Second, positions and velocities are restricted according to the 
range of solution space. Position bounds of each particle are the 
same with the range of solution space. The extreme velocity is 
plus or minus difference between maximum and minimum 
value of solution space. Local optima of particles are defined as 
their positions at this time. The global optimum is selected 
from local optima based on their fitness value in line 7. Then, 
the GCF is initialized to get ready for the division of feasible 
solutions in line 8. Finally, each particle’s position is evaluated 
to decide whether it is a feasible solution in line 9-11. Feasible 
solutions will be inserted into the FSF for the clustering 
method. Meanwhile, feasible solution amounts of 
corresponding grid cells in which feasible solutions reside will 
increase accordingly in line 12-14. 

If iteration time occurs to be the sub-swarms update period 
(SUP), ASPSO first evaluates dense areas of feasible solutions 
and updates sub-swarms before updating velocities and 

Fig. 1.  Optimal and feasible solutions in a MCOSCP solution space 

38th Annual IEEE Conference on Local Computer Networks

345



positions of particles. ASPSO adopts a simple clustering 
method to generate sub-swarms from grid cells in which 
densities of feasible solutions are higher than surroundings. 
The dense areas evaluation and sub-swarms update process is 
presented in Algorithm 2-3. 

 
Algorithm 2. Find_dense_areas function of ASPSO 

 
1   input: ParticleScope, GCF, FSF; 
2   for each grid cell in GCF do 
3      if FeaSolAmount/AveDense >1 then 
4        GridCellCheck.insert(grid cell); 
5      end if 
6   end for 
7   for each GridCell(k) in GridCellCheck do 
8      if GridCell(k) is unchecked then 
9        mark GridCell(k) checked by GridCell k; 
10       initialize TempCheck = GridCell(k); 
11       for each unchecked GridCell(h) in GridCellCheck (h>k) do 
12          if GridCell(h) is adjacent to any grid cell in TempCheck then 
13            TempCheck.insert( GridCell(h) ); 
14            mark GridCell(h) checked as a neighbor of GridCell(k); 
15            h=h+1; 
16          end if 
17       end for 
18       calculate the number of feasible solutions and the total max and min 

ranges of all grid cells in TempCheck; merge these two terms to 
one record and insert it to CheckResult; 

19     end if 
20  end for 
21  output: CheckResult; 

 
In line 3 of Algorithm 2, FeaSolAmount means feasible 

solution amount found in this grid cell of GCF; AveDense is 
equal to total feasible solution amount divided by total grid cell 
amount. GridCellCheck in line 4 stores identifiers and 
corresponding feasible solution amounts of grid cells in which 
densities of feasible solutions found are higher than the average 
level. Line 7-20 is a simple clustering method which finds 
dense regions of feasible solutions using grid cells. For each 
unchecked GridCell(k) in GridCellCheck, the algorithm checks 
every GridCell(h) (h>k). If GridCell(h) is a neighbor adjacent 
to GridCell(k), it will be added to TempCheck. If there is none 
unchecked neighbor of GridCell(k) in GridCheck, TempCheck 
stores all direct and indirect adjacent grid cells of GridCell(k) 
including itself. Then in line 18, feasible solution amount and 
range of these cells are added to CheckResult. If all grid cells 
are checked, this function will return CheckResult. 

 
Algorithm 3. Update_sub-swarms function of ASPSO 

 
1   input: SwarmSize, ParticleScope, MainSwarm, FSF, CheckResult,GCF; 
2   if CheckResult != null then 
3    select the optimal solution as main-swam’s new global optimum from 

existing sub-swarms’ global optima and main-swarm’s global 
optimum; 

4     retrieve all particles and reconstruct sub-swarms according to 
CheckResult; 
5     update the range of main-swarm; 
6     initialize positions and velocities of sub-swarm particles randomly; 
7     restrict positions and velocities according to the sub-swarms’ range; 
8     initialize local and global optima of sub-swarm particles; 
9     for position of each particle in newly generated sub-swarms do 
10       FSF.check_insert(position); 
11    endfor 

12    for feasible solution amount of each grid cell in GCF do 
13       Increase feasible solution amount according to the number of feasbile 
solutions found in this grid cell; 
14    end for 
15  endif 
16  output: MainSwarm, SubSwarms, FSF,GCF; 

 
After all dense areas of feasible solutions are stored in 

CheckResult, sub-swarms are generated with a preference for 
denser and larger areas as shown in Algorithm 3. In each sub-
swarms update period, all particles are retrieved to generate 
new sub-swarms. Sub-swarms are reconstructed according to 
the feasible solution dense areas at this time. This method 
could keep the sub-swarms track up to date dense areas of 
feasible solutions. And the total particle amount is maintained 
to be SwarmSize. The particle amount assigned to each sub-
swarm is proportional to the ratio of its size in the whole 
solution space. The algorithm brings in none more particles and 
keeps the same particle density in the solution space with the 
basic PSO. Constant particle density is sufficient for MCOSCP 
problems. This mechanism could avoid greedily increasing 
particles which may induce heavy computational complexity. 
Before particles are retrieved, the algorithm selects main-
swarm’s new global optimum from existing sub-swarms’ 
global optima and the main-swarm’s global optimum to 
improve search result in line 3. The first step of a sub-swarm 
generation is to determine the search range of sub-swarm. The 
search range is mainly based on the corresponding dense area 
range in CheckResult. If the size of a dense area is not qualified 
to be searched by two particles, the algorithm will properly 
enlarge the search range of the sub-swarms to keep the particle 
density. Then the algorithm assigns corresponding amount of 
particles to this sub-swarm. The algorithm constructs sub-
swarms with preference for denser and larger areas in 
CheckResult until remaining particles are not enough for a sub-
swarm. In line 5, the range of main-swarm is updated to ensure 
main-swarm and sub-swarms are isolated. Once sub-swarms 
are generated, the algorithm initializes positions and velocities 
of particles randomly within the value of sub-swarms’ search 
ranges in line 6-7. Position bounds are the same with the 
corresponding sub-swarm’s search range. The extreme velocity 
is plus or minus difference between the maximum and 
minimum value of corresponding sub-swarm’s search range. In 
line 8, the algorithm initializes local and global optima just like 
that in main-swarm. Then if a position is a feasible solution, it 
will be inserted to the FSF in line 9-11. Feasible solution 
amounts of corresponding grid cells in which feasible solutions 
reside will increase accordingly in line 12-14. 

The secondary step of iteration stage is the update of 
particles. This process is quite similar with corresponding 
process presented above except updating positions and 
velocities. Before the selection of local and global optimum of 
each particle, its velocity and position must be restricted 
according to the range of swarm to which it belongs. At the end, 
positions are inserted to the FSF if they are feasible solutions. 
Feasible solution amounts of corresponding grid cells in which 
feasible solutions reside will increase accordingly. 
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IV. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of proposed 
ASPSO algorithm by comparing it with standard PSO and lbest 
PSO with ring topology [6]. The lbest PSO with ring topology 
(LPSO-RT) induces stable niching ability in finding one true 
optimal solution in the presence of massive suboptimal 
solutions [5]. Simulation results demonstrate that ASPSO 
improve the accuracy of PSO in MCOSCP problems. 

We use execution time and accuracy rate (the fitness value 
of the optimal SCP which the algorithm finds divided by the 
fitness value of the real optimal SCP) as metrics to evaluate the 
proposed algorithm.  

We compare the performance of three algorithms with 
increasing iterations when the service instance number is 
103,104 and 105 respectively. As shown in Fig. 2, the number of 
service sets and swarm size remain 10 and 20 respectively. In 
these scenarios, the accuracy of ASPSO surpasses the other 
two algorithms. When there are few service instances, the 
accuracy of these three algorithms are close. When there are 
enormous service instances, the accuracy of ASPSO is almost 
5% higher than LPSO-RT, 10% higher than PSO. Moreover, 
the performance of ASPSO is steadier than other algorithms. 
Fig. 2 (d-f) show the time consumption of these algorithms. 
When iterations are less than 200, ASPSO spends at most 2 
seconds more than other two algorithms. But with the iterations 
increase, the execution time of ASPSO rises quickly. This may 
result from the sub-swarms update consumption. The accuracy 
of ASPSO increases inconspicuously when the iterations are 
more than 200. In practical service composition problems, we 
could use ASPSO with less than 200 iterations. Therefore, 
ASPSO would induce more accurate results with just 1-2 
seconds more execution time. 

V. CONCLUSIONS 

It is a challenge to select optimal service instances 
considering multiple constraints in service composition. PSO is 
known as an effective and efficient algorithm for solving 
service composition problems. However, the premature 
convergence and diversity loss of PSO may induce particles 
trapped in local optima. In this paper, we propose an accurate 
sub-swarms particle swarm optimization algorithm (ASPSO) 
for the service composition problems. It constructs sub-swarms 
around areas where densities of feasible solutions are high. A 
simple clustering method is adopted to distinguish dense areas 
in the ASPSO algorithm. The algorithm adopted serial and 
parallel niching technique to isolate main-swarm and sub-
swarms searching different areas in the mean time. This 
mechanism could avoid particles converging to local optima by 
distributing search units more evenly than standard PSO. Also, 
this algorithm enhances the accuracy of result by fully 
searching areas where true optimum may probably exist. In 
simulations, we test PSO, LPSO-RT and ASPSO. Simulation 
results demonstrate that ASPSO is more resistant to local 
optima. ASPSO is more accurate than compared algorithms 
with acceptable increased time consumption. In the future, we 
will improve the dense areas identifying method to reduce 

ASPSO’s computation complexity. Moreover, we will research 
on service selection algorithms for multi-objective service 
composition. 
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