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Abstract—Body Area Sensor Networks (BASNs) for healthcare
applications have gained significant research interests recently
due to the growing number of patients with chronic diseases re-
quiring constant monitoring. Because of the limited power source
and small form factors, BASNs have distinguished design and
operational challenges, particularly focusing on energy optimiza-
tion. In this paper, an Energy-Delay-Distortion cross-layer design
that aims at minimizing the total energy consumption subject
to data delay deadline and distortion threshold constraints is
proposed. The optimal encoding and transmission energy are
computed to minimize the total energy consumption in a delay
constrained wireless body area sensor network. This cross-layer
framework is proposed, across Application-MAC-Physical layers,
under a constraint that all successfully received packets must
have their delay smaller than their corresponding delay deadline
and with maximum distortion less than the application distortion
threshold. Due to the complexity of the optimal-proposed solu-
tion, sub-optimal solutions are also proposed. These solutions
have close-to-optimal performance with lower complexity. In
this context, there is complexity/energy-consumption trade-off,
as shown in the simulation results.

Index Terms—Wireless healthcare applications, EEG signals,
BASNs, Convex optimization, Cross-layer optimization.

I. INTRODUCTION

The rapid increase in the number of people living for years
with chronic conditions, that require ongoing clinical man-
agement, has increased the importance of electrocardiogram
(ECG) and electroencephalogram (EEG) diagnosis systems.
Advances in wireless sensing and wearable sensors have made
body area sensor networks technology a promising solution,
to meet this growing demand, and surpassing opportunity
for ubiquitous real-time healthcare monitoring without con-
straining the activities of the patient [1]. Wireless body area
sensor networks consist of tiny nodes in, on, or around a
human body to monitor vital signs such as body temperature,
activity or heart-rate. These sensor nodes periodically send
sensed information to a coordinator node. To reduce energy
consumption, it is assumed that all these sensor nodes are in
standby or sleep mode until the centrally assigned time slot.
There is no possibility of collision within the network, as all
communication is initiated by the central node and is addressed
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uniquely to each node. The conventional wireless sensor
network technologies are typically bulky, power hungry and
based on MAC protocols such as Bluetooth and Zigbee/IEEE
802.15.4, which are inefficient for such BASNs applications
[2]. They also ignore the cross-layer design which optimizes
the performance by jointly considering multiple protocol lay-
ers. In the past few years, much of the research in the area
of BASNs has focused on issues related to wireless sensor
designs, sensor miniaturization, signal compression techniques
and low-power hardware design [3][4][5][6]. A good review
of state-of-the-art hardware, technologies, and standards for
BASN was presented in [7].

To the best of our knowledge, the cross-layer design of
energy minimization to address distortion constraints for delay
sensitive transmission of EEG traffic in BASNs has not been
studied before. For example, the authors in [8] investigate
the properties of compressed ECG data for energy saving
using a selective encryption mechanism and a two-rate unequal
error protection scheme. Other researches focus on reducing
power consumption at MAC layer by avoiding idle listening
and collision [9], or by presenting latency-energy optimization
[10]. The authors in [11] developed a MAC model for BASNs
to fulfill the desired reliability and latency of data trans-
missions, while simultaneously maximizing battery lifetime
of individual body sensors. For that purpose, a cross-layer
fuzzy-rule scheduling algorithm was introduced. However,
they ignored the encoding energy and source coding distortion
in their model. Security of BASNs also becomes one of the
attractive research points [12], due to medical data regulations.

In our model, the sensor nodes transmit the sensed in-
formation with dynamic power adaptation technique to their
coordinator. This is because the wireless link quality can
change rapidly in body area networks, and a fixed transmit
power results in either wasted energy (when the channel state
is good) or low reliability (when the channel state is bad)
[13]. This model is distinct from [14], which assumes that the
sensor nodes transmit their information at a constant power
to their coordinator. Furthermore, the authors in [14] did not
take the source coding distortion nor the encoding energy into
consideration.

In this paper, to anatomize, control, and optimize the
behavior of the wireless EEG monitoring system under the
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energy constraint, we develop an Energy-Rate-Distortion (E-
R-D) analysis framework. This framework extends the tradi-
tional distortion analysis by including the energy consump-
tion dimension [4][15]. Using this framework, an Energy-
Delay-Distortion cross-layer design that aims at minimizing
the total energy consumption subject to data delay deadline
and distortion threshold constraints is proposed. This paper
proposes cross-layer algorithms that optimize and adapt the
transmission energy in physical layer and the encoding energy
in application layer, with constraints on the delay, Bit error rate
(BER) and application layer distortion. The goal of this paper
is to minimize the total energy consumption for healthcare ap-
plications in a wireless body-area sensor network. To achieve
this goal, different control parameters are optimized across
the protocol layers (application, MAC and physical layers). An
optimum algorithm to determine the optimal parameters, under
a predetermined application distortion threshold and delay
deadline for each packet, is first proposed. A less complex,
sub-optimal algorithms are also proposed. Based on these
algorithms, the optimization problem complexity is reduced
by decreasing the number of optimization variables and the
number of iterations to solve the optimization problem.

The rest of the paper is organized as follows. Section II de-
scribes the system model. Section III introduces the proposed
cross-layer design. Section IV introduces the proposed opti-
mization problem and explains the proposed optimum cross-
layer algorithm. Section V describes the proposed sub-optimal
algorithms. Section VI presents the simulation environment
and results. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In this paper, wireless EEG monitoring system, as shown
in Figure 1, is considered. We are mainly focusing on the
data gathering process from the low-power sensor nodes
to the coordinator. Each sensor node is miniature, battery
powered and needs to run ideally for days using very low
capacity batteries. It is assumed that there are N sensor nodes
communicate with a coordinator by using a single-transmit and
a single-receive antenna. Although the proposed framework
utilizes encoding model for EEG signals, it can be extended to
a range of vital signs which are typically at a low data rate e.g.,
temperature, pressure or heart-rate reading, or at higher data
rate such as streaming of electrocardiogram (ECG) signals. We
use Time Division Multiple Access (TDMA), which eliminates
interference, as a multiple access scheme. At the MAC layer,
the coordinator determines the scheduled sensor node and the
assigned slots length, according to the requirements of the
applications and the channel state, to minimize the total energy
consumption.

The general structure of the typical-used EEG encoder is
illustrated in Figure 1. The main modules considered are
amplifier and sampling, Discrete Wavelet Transform (DWT),
quantization and encoding of the quantized DWT coefficients.
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Fig. 1. System Model.

III. CROSS-LAYER DESIGN

As the wireless sensor nodes are resource constrained
(i.e. they have low processing power and limited memory),
the gathered data by these nodes is forwarded to a central
master node (coordinator) for processing. This central node is
significantly less resource and power constrained relative to the
wireless sensor nodes. In the proposed cross-layer architecture,
different parameters are captured from different layers and
passed to the coordinator to find the optimal system parameters
for each node, as shown in Figure 2.
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Fig. 2. Cross-layer architecture.

A. Physical Layer

At the physical layer, the coordinator receives, from each
transmitter, the application layer constraints (distortion thresh-
old and delay deadline). At the same time, it receives the
channel conditions from the receivers. After that, for each
scheduled sensor node, it determines the optimal transmitted
rate, modulation and transmitted energy. To optimally allocate
resources and maintain certain BER, whatever the channel
conditions were, adaptive modulation is used where each node
can change its transmission power and modulation scheme
according to the channel conditions.

It is assumed that the wireless link between the sensor nodes
and the coordinator is characterized by a flat fading channel,
where |hi| is the fading channel magnitude for link i. The
channel state remains unchanged during each frame period,
but varies from frame period to another. The channel state can
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be characterized by the received signal to noise ratio (SNR),
denoted by γ, which defined as

γ =
Pr

N0 · w
(1)

where N0 is the noise spectral density, w is the bandwidth
and Pr is the received power. It is assumed that each sensor
node and the coordinator are separated by a distance d, and
connected by a direct link. A deterministic path loss model is
used [16], where

Pr = Pt
gt · gr · λ2

(4πd)2
= Pt · α (2)

where Pt is the transmitted power, gt is the transmit antenna
gain, gr is the receive antenna gain, λ is the wavelength and
α is the overall path loss. For a single link i with bandwidth
w, the data rate that can be transmitted is

ri = w log2(1 + kγ) (3)

where k = −1.5/(log(5BER)) as in [17]. By Substituting
from (1) in (3), we can get the received power, as in [18]

Pr =
N0 · w
k

(2ri/w − 1). (4)

The channel gain xi is defined as in [18], where

xi =
k · α
N0 · w

|hi|2. (5)

From (2), (4) and (5), the required transmission energy to send
a data of length lt with rate ri is

Et =
Pt · lt
ri

=
lt

ri · xi
(2ri/w − 1) (6)

B. MAC Layer

It is assumed that each sensor node i generates data with
length li bits, and the delay deadline for all sensor nodes is
the same and equal to Dl. Variable-length TDMA scheme is
used [19], where the slots’ lengths are optimally assigned to
the sensor nodes according to its application requirements and
channel state, while minimizing the total energy consumption
across the network. In our model, it is assumed that there is
only one active link at a time, for a period of time ti = li/ri,
to transmit the data of sensor node i.

It is assumed that the network is static or changing very
slowly, thus, the optimization can be done in a central node.
The optimal slots assignment and scheduling information is
then broadcasted to the network. To make it easily imple-
mented in a TDMA scheme, the optimal slot lengths are
quantized according to a reference slot length ∆ , as in [20].
The whole TDMA frame is slotted into T/∆ slots, and then the
number of slots for each sensor node i is assigned by rounding
ti/∆. As long as the reference slot length ∆ is sufficiently
small, the performance deviation due to rounding is negligible
[21]. Accordingly, in this paper, the requirements of the MAC
layer is to get the optimal ti’s for all sensor nodes. The length
of the assigned slots is adaptive to the requirements of the
application and the channel state to minimize the total energy
consumption. Because of using TDMA scheduling, the delay
deadline constraint Dl can be satisfied if

∑N
i=1 ti ≤ Dl. There

are no queues in the network.

C. Application Layer

There is a distortion/energy consumption trade-off because
of using EEG compression techniques. When the EEG com-
pression ratio increases, the amount of data to be transmitted
decreases significantly. This will lead to less transmission
energy, at the cost of increasing source coding distortion.
Therefore, to find the best trade-off solution, we need to
develop an analytic framework to model the Energy-Rate-
Distortion (E-R-D) behavior of the EEG monitoring system.

1) Encoder Energy Consumption: According to the struc-
ture of the typical EEG encoder in Figure 1, the main
encoding modules are the Discrete Wavelet Transform (DWT),
quantization and encoding of the quantized DWT coefficients.
Consequently, the encoding energy consumption is evaluated
as

Ep = EDWT + EQ (7)

where EDWT is the energy consumed in DWT and EQ is the
quantization-encoding energy consumption.

Regarding the thresholding-based DWT compression, it is
applied using one of the wavelet families, categories and
decomposition levels as in [22]. For N-dimensional EEG signal
x

x = Ψαw (8)

where Ψ is the wavelet family basis, and αw is the wavelet
domain coefficients. The wavelet series expansion f(x) is
obtained as

f(x) =
∑
k

cj0(k)ϕj0,k(x) +

∞∑
j=j0

∑
k

dj(k)Ψj,k(x) (9)

where cj0(k) is the approximation coefficients, dj(k) is the
details coefficients, f(x) ∈ L2(R) and L2(R) is relative to
the wavelet family Ψ(x) and the scaling function ϕ(x) [23].
The approximation coefficients cj0 are obtained as

cj0(k) = 〈f(x), ϕj0,k(x)〉 (10)

These coefficients use scaling function ϕ(x) to provide an
approximation of f(x) at scale j0, where j0 is an arbitrary
starting scale. To add more details to the approximation of
f(x), the details coefficients dj(k) is used. These coefficients
use the wavelet function Ψ(x) to provide details of f(x) and
are obtained as

dj(k) = 〈f(x),Ψj,k(x)〉. (11)

Using thresholding-based DWT, the coefficients that are
below the predefined threshold can be zeroed without much
signal quality loss. According to this threshold, we can control
in the number of output samples generated from DWT and
thus the compression ratio of the DWT, where the compression
ratio is evaluated as

CR = 1− M

Ns
(12)

where Ns is the length of the original signal and M is the
number of output samples generated after DWT.
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In order to calculate EDWT , the computational complexity
that is defined as the number of computations needed in
the compression process, for N-dimensional EEG signal x, is
calculated as

CDWT = F ·Ns

l=L∑
l=0

1

2l
(13)

where L is the number of decomposition levels and F is
the wavelet filter length of the utilized wavelet family that is
obtained as F = 2κ, where κ is the wavelet family order.
Therefore, using this computational complexity, the energy
consumed in the DWT-based encoding can be evaluated as

EDWT = CDWT (F,N,L) · Ecomp (14)

where Ecomp is the energy consumed per computation, which
heavily depends on the particular hardware in use [24].

For the sampling, quantization and encoding, the energy
consumption depends on the number of conversion steps (to
convert the input samples into bits), which in turn depends
on the number of input samples to the quantization and
encoding modules. Therefore, the total energy consumption
in the sampling, quantization and encoding can be obtained as
follows,

EQ = Ns(1− CR) · ECS (15)

where ECS is the energy consumption at each conversion step,
which can be obtained as in [25].

Consequently, from (14) and (15), the encoding energy
consumption is evaluated as

Ep = F ·Ns

(
l=L∑
l=0

1

2l

)
· Ecomp +Ns (1− CR) · ECS . (16)

2) Encoder Distortion Calculation: The encoding distor-
tion is measured by the percentage Root-mean-square Differ-
ence (PRD) between the recovered EEG data and the original
one, as follows

Dp =
‖x− xr‖
‖x‖

∗ 100, (17)

where x is the original signal and xr is the reconstructed
signal. As shown in Figure 3, the main parameters that affect
the encoding distortion are the compression ratio (CR) and the
wavelet filter length (F ) [23]. The simulation results suggest
the following relation between the encoding distortion Dp, CR

and F

Dp = c1e
−c2·CR + c3e

c4·CR − c5ec6·F − 2 (18)

where the model parameters c1, c2, c3, c4, c5 and c6 are
estimated by the statistics of the typical EEG encoder used.
According to the healthcare application requirement, we have
a constraint that Dp ≤ Dth(i), ∀i ∈ N . This constraint
ensures that the encoding distortion, for each sensor node i,
is below certain distortion threshold Dth(i).

IV. ENERGY-AWARE OPTIMUM ALGORITHM

A. Optimization Problem

Our goal is to minimize the overall energy consumed by
all sensor nodes that cooperate to transfer a known number of
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Fig. 3. The relation between the encoding distortion, the compression ratio
and the wavelet filter length.

packets from these nodes to their coordinator. Therefore, the
proposed cross-layer optimization problem can be formulated
as an Energy-Delay-Distortion optimization problem, where
the design objective is to minimize the total energy consump-
tion under given delay and distortion constraints. In general,
the total energy dissipation at node i (i ∈ N ) consists of
the encoding and the transmission energy consumptions. It is
given by

Ei = Et + Ep (19)

The objective of the optimization problem is to minimize
the total energy consumption at the system

(∑i=N
i=1 Ei

)
under

a constraint that the transmitted data must be received at the
coordinator before its delay exceeds the delay deadline Dl and
with maximum distortion less than the application distortion
threshold Dth. Therefore, the problem of minimizing the total
energy consumption can be written as

min
CRi,Fi,ri

(
i=N∑
i=1

li (1− CRi)

ri · xi

(
2ri/w − 1

)
+ Ep

)
such that

c1e
−c2·CRi + c3e

c4·CRi − c5ec6·Fi − 2 ≤ Dth(i), ∀i ∈ N
i=N∑
i=1

li (1− CRi)

ri
≤ Dl.

(20)
This optimization problem is a function of the channel gain

xi, link bandwidth w, compression ratio CRi, wavelet filter
length Fi, data length li, application layer distortion threshold
Dth and delay deadline Dl. The last three variables are im-
posed by the application layer. Consequently, the unknowns in
this problem are the transmission rates ri, compression ratios
CRi and wavelet filter lengths Fi. By knowing the transmission
rates, the required transmission energy from different nodes
can then be obtained from (6). Similarly, by knowing the
compression ratios and wavelet filter lengths, the required
encoding energy can then be obtained from (16).
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B. Joint Cross-Layer Optimum Algorithm (JCLO)

To solve the optimization problem in (20), the objective
of the optimization problem is divided into two parts. The
first part is related to the transmission energy and the second
part is related to the encoding energy. Regarding the first part,
for higher-order modulation, the (−1) term can be neglected
with respect to 2ri/w to have a convex problem, as in [18].
Regarding the second part, the relation between encoding
energy and wavelet filter length Fi is concave. In addition
to that, due to practical constraints the wavelet filter length
must be an even number [23]. Therefore, we will solve
the optimization problem in (20) iteratively for all possible
values of wavelet filter length NWFL (e.g. 2, 4, 6 ... 20).
Accordingly, for each value of the wavelet filter length, the
convex optimization problem will be solved, using the interior-
point methods [26], as shown in Algorithm 1.

Algorithm 1 is considered optimum because we take into
consideration all possible values for all variables and choose
the optimal values that give the minimum energy and satisfy
the distortion and delay constraints.

Algorithm 1 Joint Cross-Layer Optimum algorithm (JCLO)
1: Calculate channel gain xi using (5).
2: for j = 1→ NWFL do
3: Solve the optimization problem in (20), get CRi’s and

ri’s.
4: Calculate

∑i=N
i=1 Ei(j).

5: end for
6: Choose the optimum Fi’s that give min

(∑i=N
i=1 Ei

)
and

the corresponding CRi’s and ri’s.
7: End

The main step of this algorithm involves the solution of the
convex optimization problem in (20) multiple times, equal to
the number of wavelet filter length values NWFL. This step
makes the optimum algorithm complex to implement.

V. ENERGY-AWARE SUB-OPTIMAL ALGORITHMS

A. Disjoint Cross-Layer Algorithm (DCL)

To decrease the complexity of the joint cross-layer optimum
algorithm (JCLO), a disjoint cross-layer algorithm is proposed.
In this algorithm, the complex optimization problem in (20) is
divided into two less-complex disjoint optimization problems.
The first one is the application layer optimization. The objec-
tive of this problem is to minimize the encoding energy under
certain distortion threshold constraint Dth. It can be written
as

min
CRi,Fi

(
i=N∑
i=1

Ep

)
, S.t. Dp ≤ Dth(i), ∀i ∈ N (21)

The optimization variables in (21) are the compression
ratios CRi and the wavelet filter lengths Fi. It can be solved
iteratively for all possible values of wavelet filter length. By
knowing the compression ratios and wavelet filter lengths,
the required encoding energy at different nodes can then

be obtained from (16). The second optimization problem is
the joint MAC-Physical optimization. The objective of this
optimization problem is to minimize the transmission energy
under certain delay deadline constraint Dl. It can be written
as

min
ri

(
i=N∑
i=1

li (1− CRi)

ri · xi
2ri/w

)
S.t.

i=N∑
i=1

li (1− CRi)

ri
≤ Dl.

(22)

The optimization variables in (22) are the transmission rates
ri. It can be solved using the conventional convex optimization
methods [26]. According to the optimization problem in (21),
we get the optimum application layer parameters that minimize
the encoding energy only not the total energy consumption.
Therefore, there is a degradation in the performance of this
algorithm compared to the JCLO algorithm’s performance, as
shown in the simulation results.

Algorithm 2 Disjoint Cross-Layer Algorithm (DCL)
1: Calculate channel gain xi using (5).
2: Solve the optimization problem in (21), get CRi and Fi.
3: Solve the optimization problem in (22), get ri.
4: Calculate the total energy consumption from (19).
5: End

B. Joint Cross-Layer With Arbitrary Filter Length Algorithm
(JCL-AFL)

The main step that increases the complexity of the other
algorithms is solving the convex optimization problem in (20)
multiple times, equal to the number of wavelet filter length
values NWFL. Accordingly, to decrease number of solving
this optimization problem, we will find a relation between
distortion threshold constraint Dth and wavelet filter length.
From (18), it is noted that Fi ∝ 1

Dp
. Consequently, we define

a relationship between the distortion threshold constraint Dth

and the corresponding wavelet filter length Fi. As a result,
instead of solving the convex optimization problem multiple
times to get the wavelet filter lengths, we will use this relation
to calculate them. Then, solve the optimization problem (20)
only once to get CRi and ri, as shown in Algorithm 3.
Therefore, the complexity will decrease. On the contrary, there
is a degradation in the performance compared to the JCLO
algorithm’s performance, as will be shown in the simulation
results. Because the calculated Fi, using the defined relation, is
not equal to the optimum Fi that is found by JCLO algorithm.
Algorithm 3 summarizes the main steps of this algorithm.

C. Joint Cross-Layer With Equal Slot Length Algorithm (JCL-
ESL)

The main idea of this algorithm is solving a less com-
plex optimization problem than the optimization problem in
(20). To achieve that, a distributed cross-layer algorithm is
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Algorithm 3 Joint Cross-Layer With Arbitrary Filter Length
Algorithm (JCL-AFL)

1: From the required application distortion threshold, calcu-
late wavelet filter length as

Fi =
Fmax

Dth(i)
(23)

where Fmax is the maximum wavelet filter length.
2: Calculate CRi from distortion threshold constraint (18).
3: Calculate channel gain xi using (5).
4: Solve the optimization problem in (20), get ri
5: End

proposed. In this algorithm, each sensor node will solve its
own optimization problem to get its parameters. Therefore,
we will distribute the total delay deadline equally between
sensor nodes. As we use TDMA scheduling, each sensor node
will send its data on time Dl/N , where N is the number of
sensor nodes. The main steps of this algorithm are the same as
JCLO algorithm except step 3. In this step, instead of solving
the optimization problem in (20), we will solve the following
simple optimization problem

min
CRi,Fi,ri

(
i=N∑
i=1

li (1− CRi)

ri · xi
2ri/w + Ep

)
such that

c1e
−c2·CR + c3e

c4·CR − c5ec6·F − 2 ≤ Dth(i), ∀i ∈ N
li (1− CRi)

ri
≤ Dl

N
, ∀i ∈ N.

(24)
It should be noted that, with increasing the number of

sensor nodes, there is a complexity/energy-consumption trade-
off. Because as the number of sensor nodes increases, the
complexity of this algorithm decreases compared to the JCLO
algorithm. On the other hand, the assigned slot length for each
sensor node will decrease, as the total delay is distributed
equally between sensor nodes. In this case, the sensor nodes
who have bad channel conditions should increase their trans-
mitted energy significantly to maintain the required constraints
(delay deadline and distortion threshold). Therefore, the total
energy consumption will increase compared to the JCLO
algorithm.

VI. SIMULATION RESULTS

In this section, the performance and the complexity are com-
pared for the different proposed algorithms. The simulation
results were generated using the network topology shown in
Figure 1. In the BASNs network considered, all the connected
nodes are assumed to be separated by the same distance d. It
is assumed that all sensor nodes’ data have the same length
l and the distortion threshold constraint is the same for all
sensor nodes. To model small scale channel variations, flat
Rayleigh fading is used, with Doppler frequency 0.1 Hz and
sampling time 0.1 sec. The simulation parameters used are
given in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
N0 -174 dBm λ 0.12 m
w 5 kHz d 5 m
l 6 kbyte BER 10−4

L 2 Ns 4029

Ecomp 96 nJ ECS 168 nJ/step
c1 4.01 c2 0.01

c3 0.353 c4 0.06

c5 1.17 c6 0.03

At first, in order to assess the importance of optimizing both
the transmission and encoding energy and to show the effect
of varying the wavelet filter length, Figure 4 is presented. This
figure illustrates the relation between the transmission energy
and encoding energy and their effect on the total energy con-
sumption. It was generated for different delay deadlines and
distortion threshold 5%. As shown in the figure, at low delay
deadline, the transmitted rate increases to satisfy the delay
deadline constraint. This will lead to significant increasing in
the transmitted energy. Therefore, the compression ratio must
be increased to decrease the number of bits to be sent. To
acheive that, the wavelet filter length will increase, to add more
details to the sampled signal, to decrease the distortion and
hence increases the compression ratio (as from (18) F ∝ 1

Dp

and CR ∝ Dp). Consequently, as the wavelet filter length
increases, the encoding energy will increase. On the contrary,
the number of bits to be transmitted will decrease. As a result,
the transmission energy will decrease. With increasing the
delay dealine, the transmitted rate decreases, so the wavelet
filter length and the encoding energy will decrease. Therefore,
in order to minimize the total energy consumption, it is
important to take into consideration both the transmission and
encoding energy together to get the best dominant control
parameters that affect both of encoding and transmission.
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and their effect on the total energy consumption.

In order to assess the performance of the proposed al-
gorithms, comparisons with varying distortion threshold and
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Fig. 5. A comparison between the total energy consumption using the proposed algorithms, (a) For different distortion thresholds, (b) With increasing the
number of sensor nodes and (c) For different delay deadlines.

delay deadline are presented. Figure 5-(a) illustrates the per-
formance of the proposed algorithms for different distortion
thresholds and with delay deadline 0.8 sec for three sensor
nodes. As shown in the figure, we can divide the figure
into two regions, low distortion threshold and high distortion
threshold. At low distortion threshold, the DCL algorithm
consumes more energy than other algorithms, because it finds
the optimum application layer parameters that minimize the
encoding energy only not the total energy. Accordingly, it
chooses small value for the wavelet filter length to minimize
the encoding energy in (16). This will lead to low compression
ratio, to maintain distortion threshold constraint, and large
transmission rate, to maintain delay deadline constraint. As
a result, the total energy consumption increases. Regarding
the JCL-AFL algorithm, it chooses the wavelet filter length
according to (23). Therefore, at low distortion threshold it
gets large wavelet filter length than DCL algorithm, but not
the optimum value as the JCLO algorithm. As a result, it
consumes energy less than DCL algorithm. Because as the
wavelet filter length increases the encoding energy increases
according to (16). However, at the same time, for high Fi, the
source coding distortion decreases, according to (18). There-
fore the CR will increase to maintain the distortion threshold
constraint. With increasing CR, the transmitted rate decreases
and the transmitted energy decreases. Therefore, the total
energy consumption decreases. In contrast, at high distortion
threshold, DCL algorithm converges to the JCLO algorithm’s
performance faster than JCL-AFL algorithm. Because the JCL-
AFL algorithm gets large Fi than DCL algorithm; and at high
distortion threshold, the effect of decreasing the transmitted
energy (due to large Fi) is less than the increasing in the
encoding energy.

For the JCL-ESL algorithm, it finds the optimum wavelet
filter length that minimizes the total energy consumption, as
the JCLO algorithm. However, it does not converge to the
JCLO algorithm with varying distortion threshold. Because it
mainly depends on the number of sensor nodes in the system,
as shown in Figure 5-(b). This figure shows the performance
of JCL-ESL algorithm compared to JCLO algorithm, with
increasing the number of sensor nodes in the system. It is clear
from the figure that increasing the number of sensor nodes will

result in increasing the performance deviation for the JCL-ESL
algorithm. On the other hand the complexity decreases with
respect to the JCLO algorithm. This figure was generated with
delay deadline 1 sec and distortion threshold 10%.

Regarding the effect of varying the delay deadline, Figure
5-(c) illustrates the performance of the different proposed
algorithms for different delay deadlines, and with distortion
threshold 8%. In this case, JCL-AFL algorithm does not
converge to the optimum performance with increaseing delay
deadline, as it mainly depends on the distortion threshold
to get the wavelet filter length, from (23). Meanwhile, with
incresing delay deadline, JCL-ESL algorithm converges to the
JCLO performance because the effect of equally slot length
assignment becomes less effective on the energy consump-
tion. For DCL algorithm, increasing delay deadline has the
same effect as increasing distortion threshold. This algorithm
always converges to the JCLO algorithm’s performance at soft
constraints (at high delay deadline or distortion threshold)
and diverges at tough constraints (at low delay deadline or
distortion threshold).

In our proposed algorithms, the main parameter that effects
the complexity is the number of wavelet filter length values
NWFL. To illustrate the complexity analysis of the proposed
algorithms, we compare between them experimentally as
shown in Table II. As in the JCLO algorithm, the optimization
problem in (20) is solved NWFL times to get the optimal
solution. Therefore, it has complexity CJCLO = NWFL · Ct,
where Ct is the complexity of solving the optimization prob-
lem in (20). For DCL algorithm, it solves the optimization
problem in (21) NWFL times to get the application layer
parameters, then solves the optimization problem in (22) once
to get the MAC-PHY layer parameters. Therefore, it has
complexity CDCL = NWFL · Cp + Cts, where Cp is the
complexity of solving the optimization problem in (21) and
Cts is the complexity of solving the optimization problem in
(22). Regarding JCL-ESL algorithm, it solves the optimization
problem in (24) NWFL times. Therefore, it has complexity
CJCL−ESL = NWFL · Cu, where Cu is the complexity
of solving the optimization problem in (24). For JCL-AFL
algorithm, it gets the wavelet filter length from (23), then
solves the optimization problem in (20) once. Therefore, it
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does not depend on NWFL.

TABLE II
COMPARISON OF NUMBER OF ITERATIONS TO GET THE SOLUTION, FOR

DIFFERENT PROPOSED ALGORITHMS EXECUTED ON THE SAME PLATFORM.

NWFL JCLO JCL-ESL DCL JGL-AFL
2 12 4 7 7
6 36 12 11 7
10 60 20 15 7
14 84 28 19 7
18 108 36 23 7
20 120 40 25 7

VII. CONCLUSION

In this paper, wireless EEG monitoring system is consid-
ered. In the proposed approach, transmission energy, encoding
energy, application quality of service (QoS) constraints, and
scheduling are jointly integrated into a cross-layer design
framework. This framework is used to dynamically perform
radio resource allocation for multiple sensor nodes, and to
effectively choose the optimal system parameters to adapt
to the varying channel conditions. This framework jointly
minimizes the total energy consumption and determines the
optimal transmitted rate at physical layer, assigned slots length
at MAC layer, wavelet filter length and compression ratio at
application layer. The minimization is performed under the
constraint that all successfully received packets must have a
delay smaller than their corresponding delay deadline while
maintaining the total distortion at a specific threshold dictated
by the application.

As the number of sensor nodes in the system increases,
the complexity of the optimum-proposed algorithm increases.
Therefore, in addition to the optimum-proposed solution, sub-
optimal solutions are presented to reduce the complexity
significantly with minimal performance degradation. The sim-
ulation results show that the proposed sub-optimal algorithms
make a trade-off between complexity and energy consumption.
This work is planned to be extend for different multiple access
techniques (like TDMA-FDMA and OFDMA).
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