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Abstract—We introduce two congestion metrics to guide emer-
gency evacuations using sensing and local area networks, that
use current congestion and congestion forecasts, together with
the Cognitive Packet Network (CPN), a routing algorithm which
intelligently discovers paths. Using simulations we find that CPN
performs well for emergency evacuation with such metrics, and
also reveal the dynamics that these schemes can create.

I. INTRODUCTION

In emergency evacuation and management [1], [2], exit

signs in built environments can be replaced by smart dy-

namic networked signs which are controlled by computerized

decisions based on current conditions during an emergency,

acquired through a sensor network. Such dynamic sings can

optimize the flow of evacuees and ultimately improve the

evacuation outcome, as evacuees otherwise tend to exit through

what they perceive as the shortest path, which often leads

to congestion. While congestion is bound to occur when

all building occupants rush towards the exits, this may nev-

ertheless be alleviated by directing some evacuees towards

less congested safe exits or paths. Thus we present evacuee

routing methods that optimize evacuee flows and minimize

evacuation times. Most evacuee routing systems focus on

finding and guiding evacuees along the shortest safe egress

path. For instance, the concept of artificial potential fields [3],

[4] supports distributed route-finding and can be combined

with wireless sensors. Opportunistic communications [5] offer

a robust infrastructure-less method to exchange information

on the location and intensity of hazards among evacuees, even

when network attacks occur [6], while smart search techniques

[7], [8] together with hazard propagation prediction [9] can

also be used. Recent work [10] confirmed that the shortest-

path approach performs poorly in densely-populated areas. As

the search is focused on the best solution, users are inherently

guided towards the same path. This results in widespread

congestion along this shortest route – while other less optimal

(yet safe) paths will be idle throughout the evacuation.

A simple way to manage congestion is to incorporate it to

the routing algorithm’s cost metric. Instead of using distance

alone, using the path traversal time – including queuing

time – allows conventional shortest-path algorithms to solve

the flow-optimization problem by modeling the building as

a network of queues [11], [12]. However, congestion is a

routing-sensitive metric [13] which increases with the prob-

ability of routing traffic into the path. Given the presence

of a time-delayed feedback between congestion and routing

decisions, algorithms searching for the route with the lowest

cost will perform poorly, since they do not account for capacity

constraints and ignore the fact that routing evacuees through

the best route mechanically increases its cost. Transhipment

theory [14] also offers flow-oriented solutions to optimize

the throughput across capacity-constrained networks, using all

available routes. Transhipment theory is based on the concept

of “flow graphs” which, in its simplest form, represents the

available flow capacity at each edge; and is generally used to

calculate maximum achievable steady-state flow rates between

a set of nodes – regardless of the length of the paths used.

In contrast, emergency evacuation problems feature a finite

number of evacuees, a strong time-minimization constraint,

and often dynamic edge capacities. Thus, the steady-state

solution offered by flow graphs is of limited relevance for

such a dynamic problem. This steady-state limitation can be

overcome by performing a time-expansion of the flow graph

[15], where dynamic flows can be represented at each time

step. However this time expansion comes with a very high

memory and processing cost, since the entire graph is essen-

tially replicated for each time-step. In [16], [17], improvements

to the time-expanded graph model are proposed in the form

of time-aggregated flow graphs, where the flow rate along

each edge is a time series. Their Capacity-Constrained Route

Planner (CCRP) determines when a flow reaches any given

edge of a path, and preemptively reserves capacity on each

edge from the expected arrival time to the expected time of

departure. While the complexity of CCRP is lower compared

to algorithms based on time-expanded flow graphs [18], the

CCRP algorithm requires a Dijkstra shortest-path algorithm

to be run at each step, which is a very resource-consuming

process. Efficient “self-aware” routing algorithms which are

nature-inspired [19] such as the Cognitive Packet Network

[20], are therefore considered in this paper to route evacuees.

II. CPN AND CONGESTION-AWARE PATH METRICS

The Cognitive Packet Network concept aims at solving the

problems experienced by large and fast-changing networks,

where the convergence time of “overall” routing schemes even-

tually becomes prohibitive. CPN alleviates this issue by letting

each network node send a small flow of “Smart Packets”
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(SP) which are dedicated to network condition monitoring and

new route discovery. In our implementation, these SPs reside

in the application server and behave like virtual evacuees,

exploring both new and known paths, and gathering network

condition information as they progress. Every node in the

network hosts a Random Neural Network (RNN) which is

used to direct incoming SPs towards their next hop. SPs are

also allowed to “drift” away from the RNN’s recommendation

and explore new paths randomly – in a manner comparable to

“ant colony” algorithms. Each time an SP reaches its intended

destination, an acknowledgement (ACK) message containing

all measurements made by the SP travels back to the source

along the original path – with loops removed – and updates

all nodes visited with fresh measurements. Every node along

the path uses the measurements carried by SP ACKs to adjust

their RNN by performing Reinforcement Learning (RL), they

also store this information in a table used to source-route the

evacuees. This routing table stores a fixed amount of optimal

paths discovered by SPs and allows any node to instantly

switch to an alternate path if ACKs indicate that the best path

is no longer optimal. An overview of CPN performance can

be found in [20].

We introduce two congestion-oriented path metrics to use with

the CPN routing: (a) current congestion values to calculate

path traversal times for “reactive” control, and (b) future

or “proactive” resource allocation to calculate path traversal

times, which allows the routing algorithm to account for future

increases in congestion when comparing routes. Both metrics

use a graph-based representation, where edges represent paths,

and nodes represent physical areas. The graph provides the

following information

• Edge distance, so that a transit time Tv can be calculated

for each edge v based on the evacuees’ average walking

speed, and

• Edge’s capacity Cv , defined as the number of evacuees

which can concurrently travel along an edge.

The reactive path metric is based upon the assumption that

the queue levels in the building reach a steady-state value (as

defined in the context of queuing networks). Since the queue

levels remain stable, the complete path traversal time can be

calculated using queueing network theory based on current

congestion observations. For a given path p composed of a

collection of edges V, the path traversal time T is estimated

as follows:

Tt,p =
∑

V

(N(v, t) + 1)

Cv

· Tv, (1)

where N(v, t) is the number of evacuees queueing in the area

at the instant t. The feedback loop between the path metric

and path assignment can create path oscillations. These do

not concern a given evacuee but distinct evacuees only. The

reactive metric requires a sensor system that measures queue

length. While vision-based, proximity or presence detection

systems can perform this task, the associated deployment

costs, and the potential for issues related to robustness and

accuracy of the infrastructure are the main drawbacks of this

metric.

The proactive metric keeps track of capacity reservations by

dividing the evacuation time in N steps of interval Tinterval

and assigning as many “time-bins” Bn(v) to every edge. The

time span of a bin Bn(v).T imeSpan is from the instant

Bn(v).startT ime = n× Tinterval up to, but not including,

Bn(v).endT ime = (n+ 1)× Tinterval.

To enforce the edge’s maximal flow capacity, time bins have

a maximum capacity Bmaxv
(eq.2) which is a “discretization”

of the edge’s maximal flow ( 1

Tv

· Cv) over the time-period

Tinterval. Put simply, Bmaxv
is the maximum number of

evacuees that can transit through v within Tinterval.

Bmaxv
=

Tinterval

Tv

· Cv (2)

Once an evacuee is assigned a path, the reservation process

iterates through every edge along the path, and reserves

capacity on the relevant bins. A full bin at the expected

time of arrival signifies that other evacuees will already be

occupying this edge and that the user will have to wait in

line. The algorithm will then search for the earliest bin with

spare capacity and reserve a space. The user is not expected to

depart the edge earlier than the time associated to the bin he

was allocated to (plus his own service time). The algorithm

is detailed in Algorithm 1. If the algorithm is simply used

to assess the traversal time of a path, line 8 (where the flow

capacity is reserved) is skipped. The algorithm successively

assigns a route to a user, then performs a routing update until

every user has a route. No particular order or priority regime

is applied when paths are being assigned to evacuees.

III. SIMULATIONS

We use the Distributed Building Evacuation Simulator

(DBES) [21], a discrete-event simulator to evaluate the

effectiveness of both metric and the ability of CPN to

route users. At this stage, we assume the evacuees can be

individually routed by means of a communication device

which displays the path. In later stages of this research

project, we intend to adapt the routing algorithm so that

path recommendations can be displayed on dynamic exit

signs in the building. The routing algorithm’s parameters are

configured as follows:

Reactive metric: the CPN algorithm allows each node to

send a batch of 5 SP every ten seconds throughout the

simulation. Evacuees also receive updates every ten seconds,

but not all at the same time, as updates are not synchronized

across all evacuees.

Proactive metric: CPN allows each node to send one SP

each time a path is allocated to an evacuee. The time bins’

interval Tinterval is set to 15 seconds: this corresponds to the

time it takes to walk through the longest edges in the building

(staircases). This value provides a good time resolution for

the main bottleneck, which are also the staircases.

For comparison purposes, we conduct a third set of ex-

periments without evacuee flow optimization, where evacuees
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Data: Departure time Tdeparture; Path P

Result: Path Traversal Time and Capacity Reservations

1 Tarrival ← Tdeparture;

2 forall the Edges v ∈ Path P do

/* Find earliest free time bin */

3 forall the Bn(v) of edge v do

4 Find min(n) so that:

5 ·Bn(v).reservations < Bmaxv

6 and

7 ·Bn(v).T imeSpan is on or after Tarrival

8 end

9 Bn(v).reservations← Bn(v).reservations+ 1

10 if Tarrival < Bn(v).startT ime then

/* Edge is available at the

projected arrival time */

11 Tarrival ← Tarrival + Tv

12 else

/* Evacuee expected to queue until

Bn(v).startT ime at best */

13 Tarrival ← Bn(v).startT ime ∗ Tarrival + Tv

14 end

15 end

16 return Tarrival

Algorithm 1: Capacity reservation algorithm

exit through the shortest path. The total number of evacuee

at the beginning of the simulation is set to {25, 50, 75,

100}. Evacuee’s walking speeds are randomized (Gaussian

distribution) and we use the distribution’s average (1.5m/s) to

calculate edge transit times (Tv). The featured graph (Figure 3)

represents the three lower floors of Imperial College London’s

EEE building. Each floor has a surface area of approximately

1000 m2. The building combines office and classrooms with

a large lobby area on the ground floor, where the two exits

are located. Overall, the graph consists of approximately 250

nodes and 400 edges. The users’ initial locations are also

chosen at random at the beginning of each simulation, from

a pool of nodes on the middle floor. We purposefully select

starting locations which will result in an uneven initial user

distribution, to ensure that the flow optimization problem is

not trivial. Finally, each configuration is simulated five times

to allow for some initial location and evacuee speed variations,

and average results are presented.

IV. DISCUSSION AND CONCLUSIONS

Figure 1 summarizes the total evacuation times of each

configuration. A detailed analysis of the simulation results

reveals that the largest bottlenecks occur at the staircases –

especially those leading to the ground floor – due to their

low capacity and longer transit times. The routing algorithm’s

ability to optimally distribute the flow of evacuees among the

staircases (based on their maximum flow and transit time)

largely determines how long the evacuation will take. As
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Fig. 1. Total evacuation time, arbitrary time units. The results are the average
of 5 randomized simulation runs, and error bars shows the min/max result
observed in any of the 5 simulation runs.
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Fig. 2. Distribution of staircases used to reach the ground floor from the
first floor. Bar order: [SP Routing | Proactive Metric | Reactive Metric]

expected, the shortest path algorithm performs poorly. Because

most users are on the southern or western area of the second

floor, the central staircase is part of most of the evacuees’

shortest egress path, and therefore overused by the SP algo-

rithm (Fig. 4(a)). On the other hand, Figure 2 shows that the

Eastern staircase is used only by 20-25% of evacuees. The

simulations where CPN is used with congestion-management

metrics reduce the building evacuation time by approximately

30%. Figure 2 confirms that both algorithms evenly distribute

evacuees through the building’s bottlenecks. We conclude that

CPN was able to carefully monitor the busiest paths and

closely adjust the flow rates to optimize the flows. Figures

5.(b,c) also show that the Smart Packets performed a thorough

network exploration, since they discovered a non-trivial path

going up though the top-floor to bypass the congestion on the

middle floor.

Both metrics achieve comparable evacuation times, with a

slight advantage to the reactive metric owing to its high update

frequency and its ability to correct in real-time errors which

arise from variations in individual walking speeds. However,

the evacuation process and dynamics shows significant dif-

ferences. Since the proactive metric allows source-routing,

evacuees follow the same path until they reach an exit. A

close inspection of Figure 4(b) reveals that the edges visited

form a tree, where evacuees start from their initial location

(leaf nodes), and follow the local branches towards one of the

two staircases (trunks) and eventually reach the exit (tree’s

root node). Overall, it appears to be a well-ordered evacuation
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Fig. 3. Trace of one of the evacuees’ egress path (highlighted in Red) routed
using the reactive metric. The user starts from the path endpoint closest to
the left of the illustration. The trace shows that the user has backtracked
several times between the two staircases, as a result of the routing algorithm’s
oscillations, before eventually exiting through the central staircase.

where evacuees join the right queue and wait for their turn

to clear the bottleneck. On the other hand, the same Figure

for the reactive metric (4(c)) shows a very large number of

edges visited “upstream” of the staircases, and in particular in

the area located between the top of both staircases. Figure 3

shows a sample trace of the typical motion of reactive-routed

evacuees. These oscillations in the routing decisions should

therefore be mitigated as in [20] to achieve stable routing

decisions.
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