
Resource Allocation and Request Handling for
User-Aware Content Retrieval in the Cloud

Boyang Yu and Jianping Pan
Department of Computer Science

University of Victoria
Victoria, BC, Canada

Email: {boyangyu, pan}@uvic.ca

Abstract—The user-aware content retrieval services are always
data-intensive and require much resource to satisfy the user de-
mand, which incurs the high cost of implementation. Considering
that they could largely exploit the pay-as-you-go paradigm and
the almost unlimited resource pool of the cloud, we investigate
the design issues of deploying the services to the cloud in a
cost-effective way. We formulate the resource allocation and
request handling problem which aims at lowering the deployment
cost and guaranteeing the service quality simultaneously. Due to
the hardness of obtaining an optimal solution, we design two
approximate algorithms with different points of emphasis and
analyze their approximation ratios as well. In addition, we discuss
the implementation issues in applying the proposed algorithms to
the practical systems. Finally, the algorithms are evaluated and
validated through both trace-based and synthesized simulations
where they show a large improvement in terms of the total system
cost.

Index Terms—resource allocation, data placement, request
handling, optimization problem, approximate algorithms

I. INTRODUCTION

The demand for content retrieval contributes to a large
portion of the Internet traffic [1], and the user-awareness or
personalized functions become important features in most of
the network services today, since they make a large improve-
ment of the user experience. We list some examples of the
user-aware functions as follows: 1) profiling: the showing of
personalized contents such as user icons or the personalized
recommendation results of videos/posts/advertisement when
the user opens a webpage of video-website/OSN/etc.; 2)
accounting: for some professional websites, such as e-learning,
the user access to webpages should be authenticated and
accounted for the purpose of access control and billing. In each
transaction of such user-aware functions, the access to system-
level-shared contents is always done along with the access to
the user-specific data. In the traditional design, the types of
data involved in each user transaction are not differentiated
which degrades the system performance to some extent. In this
paper, we investigate the design issues of user-aware content
retrieval services in the cloud to overcome it.

When the content retrieval services are in a large scale,
we have to distribute both the incoming requests and stored
data objects to a large number of serving machines, which
makes the cost-effective design necessary. Meanwhile, the
innovative cloud infrastructures [2] can provide computational
and storage resources to the services and even offer a high

flexibility in the allocation. Service providers may benefit from
the pay-as-you-go cost model and the elastic resources in the
cloud, if they can reconcile the needs from both resource
allocation and utilization.

The resource allocation should be optimized, in order to
minimize the monetary cost of the content retrieval service
provider. For example, the number of Virtual Machines (VM)
to support the whole service should be minimized and each one
of them has a limited maximum service rate. In this paper, the
costs of VMs and storage in the system are both considered.
In terms of resource utilization, the replication of data objects,
the data object location, and the handling of requests are some
important issues that need to be addressed properly.

An important application-specific characteristic in the dis-
cussed services is: to validate a user, update its profile and
provide the personalized data is the necessary and first job in
the request handling. This results in that each single request
would involve both a user-type object and a content-type
data object. It makes the cost-effective design on resource
allocation and utilization complicated. The co-location of
the two involved objects is favored in terms of the access
efficiency (and consequently the lower VM cost), but this
would inevitably yield a larger extent of data replication, which
conflicts with the favoring on a lower storage cost. Note that
although user profiles are less intensive in traffic volumes, the
frequent access and update necessitate a careful consideration
similar to that for the requested contents.

To these aspects, we model the costs and constraints in
the cloud as well as the two-stage jobs in handling a content
retrieval request: user profiling and content fetching. Then the
Resource Allocation and Request Handling (RARH) problem is
formulated. It can be summarized as: given the set of users, set
of contents and predicted content request rates from each user
to each content, how to efficiently allocate the cloud-based
resources, i.e., storage and VM nodes, and how to make these
allocated resources connected as a system to handle requests.
In the formulated problem, any content retrieval request would
be fulfilled in one or two hops after it gets into the data center,
which results in a quite low response time and avoids the
congestion in the data center networks.

Solving the RARH problem helps to reduce the cost of the
system while ensuring the service quality. However, the prob-
lem is NP-Hard, so two approximate algorithms are proposed.

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 72

For a higher access efficiency, the One-Layer Serving (OLS)
method is devised which lowers the system traffic and response
time by fulfilling the requests in only one hop and achieves a
much lower storage cost than the common Decreasing First-
Fit algorithm [3] by the proposed partition-based packing
method. For the higher storage efficiency, we devise the Two-
Layer Serving (TLS) method, which adopts a two-layer serving
structure and significantly lowers the storage cost through the
request redirection. Besides, the scheme to help the algorithms
implemented in practice is presented, where how to predict
the request rate matrix, the input of the algorithm, and how to
provision the service based on the algorithms are discussed.

In the literature, the methods in building the user-aware con-
tent retrieval services on the cloud were still elusive, although
some other applications in the cloud have attracted certain
attentions, such as the interactive applications [4], Online
Social Network (OSN) [2], etc. In this paper, with the joint
considerations of user-awareness, efficient resource utilization,
and cloud-based cost model, we justify the design issues
in a user-aware content retrieval service and propose some
novel methods in lowering the system cost while maintaining
the service quality, which are further analyzed and evaluated
through analytical approaches and simulations.

The rest of the paper is organized as follows. Section II gives
the modeling framework and problem formulation. Section III
presents the approximate algorithms. Section IV discusses the
implementation issues and Section V makes the evaluation
through simulations. Then we present the related work and
conclusions in Section VI and Section VII, respectively.

II. MODELING FRAMEWORK

A. Preliminaries

In this paper, the issues in building a user-aware content
retrieval service based on the Infrastructure as a Service
(IaaS) clouds are discussed from the perspective of the service
provider, who rents the resources provided by IaaS clouds in
a data center to build the service. The end users of the system
are clustered beforehand into groups, under a certain criterion
(such as by the geo-location of the user), or randomly (such
as by hashing each user ID to an integer in a small range as
the group ID). With this coarsening of granularity, multiple
users are treated as one user. It lowers the computational
overhead and the amount of information to be maintained in
the proposed scheme, so that the number of individual users
could be much large. Below we abbreviate a group of users
as a user, and the request rate to be discussed is also at the
group level. From the perspective of database system, the user
discussed here can be considered as a shard or horizontal
portion of the user table. The main traffic to be handled by
the system is the retrieval requests for different contents from
different users. The contents to be retrieved are also clustered
into groups and accounted at the group level for the same
coarsening purpose.

In the IaaS clouds considered, there are two types of entities,
VM nodes and storage volumes. The VM nodes provide the
computation resource in serving the user requests. The storage

Requests: (3,4) ...

VM2 VM3VM1

u: 1, 2 u: 3, 4 u: 5, 6
c: 2c: 1, 3 c: 3, 4

Data Center

(3,2) ...(1,1) ...

Access Controller

Fig. 1. Example of a user-aware content retrieval system

volume provides the persistent storage of data objects, and
each of them is mounted to a specific VM node and can be
directly accessed only through that node. So if a data object is
stored in a storage volume mounted to a VM, we can simply
say that the object is stored in the VM. As multiple storage
volumes can be mounted to the same VM, although each has
a size limit, it can be equally considered as we can allocate
and mount a storage volume of any size to a VM.

The retrieval requests are satisfied with the help of VMs and
storage. Denote the available node set by V with cardinality
N and use n to represent a specific node. In the system only a
portion of VMs in V is allocated to reduce the cost. A storage
volume can be allocated and mounted to an allocated VM,
whose size is determined by the data objects stored.

B. System Model

Denote U the set of users directed to a data center with
the cardinality I and use i to denote a specific user where
i = 1, .., I . Denote F the set of content objects to be retrieved
by the users with the cardinality J and use j to denote a
specific content where j = 1, .., J . We use (i, j) to denote
the request from user i to content j and use λij to denote its
average arrival rate. Then we obtain the set of requests, such
as R = U×F = {(i, j)|i = 1, ..., I, j = 1, ..., J}, and the load
matrix containing the average arrival rates of requests, such as
A = {λij |i = 1, ..., I, j = 1, ..., J}. Given the predicted load
matrix A for a future interval t, denoted by A(t), an optimal
solution for that interval t is to be obtained. Each λij(t) in
A(t) can be predicted based on its history and more details
on the prediction method will be given in Section IV.

We model the fulfillment of a request as two stages: 1) the
request should be checked and accounted based on its user
profile i in the request (i, j), and then 2) the content would
be fetched based on the requested content j in (i, j). The
first stage is necessary for a user-aware system for the reasons
such as user profiling, user accounting and personalization.
As a result, some data related to the specific users need to
be stored and updated. Since the data objects necessary in the
two stages are different, they are differentiated as user-type
and content-type, respectively. In the example illustrated in
Fig. 1, there are three VMs allocated and the set of content-

73

type and user-type objects stored in each VM are listed with
the prefix c: or u:, respectively.

We assume each request should be fulfilled within two
hops after it enters the data center, which ensures the access
efficiency. A larger hop count implies a larger response time
due to the queueing at more machines, and also yields more
traffic overhead in the local network. Then a request is fulfilled
in the procedures as follows: 1) in serving a request (i, j),
the request should firstly be directed or mapped to an access
node na and it is necessary that the user-type object about
user i is stored at na; 2) then the request to the content can
either be satisfied at na or a second-hop node nr through the
relaying of na. But in either case, the requirement is that the
content j should be ready at the final serving node. In Fig. 1,
request (1, 1) and (3, 2) are satisfied locally at VM1 and VM2,
respectively. But request (3, 4) is satisfied through the relay
from VM2 (to obtain the user-type data u:3) to VM3 (to
obtain the content-type data c:4). Also note that the same
data object can appear in more than one VMs, such as c:3.

C. Costs, QoS Constraint and Objective

Costs: In the paper, the costs considered include: the unit
cost per VM, denoted by Cv , and the cost of each user-
type and content-type data object, denoted by Cu and Cc,
respectively. We assume a homogeneous size of data objects
within each type for the ease of discussion, which can also be
considered as the allocation is based on the maximum allowed
size of each object. We expect to lower the total cost of VMs
and storage, but have to face the conflicts in lowering them
together. So a tradeoff is made by having different points of
emphasis in the respective algorithms designed below.

QoS Constraint: Denote the request arrival rate and service
rate at each VM by λ and µ, respectively. To ensure the queue
stability at each VM, λ ≤ µ is necessary. We can further model
the service at each VM as an M/M/1 queue or even some other
types of queues, based on the actual arrival and service rate
distribution. With such a queueing model, the constraint can be
further tightened as λ ≤ µqos, where µqos ≤ µ. This smaller
µqos can ensure a certain system time. For example, in an
M/M/1 queue the system time is 1/(µ− λ) [5]. To achieve a
system time T , it is necessary λ ≤ µqos = µ−1/T . Based on
the exact queuing type in a real system, µqos can be obtained.
In the following formulation, without loss of generality, we
apply λ ≤ µ as the constraint.

Objective: The objective is to build a system supporting
the predicted traffic load based on the cloud infrastructure.
We aim at minimizing the monetary costs on the allocation
of VMs and storage while ensuring that the arrival rate (or
system time) at each VM is below the threshold µ (or T).

D. Resource Allocation and Request Handling Problem

Remind that we have modeled the request rate matrix A =
{λij |i = 1...I, j = 1...J} which gives the average request
rate for all the items in R, the request set. For each request
(i, j), it should be directed to an access node. The expected
maximum rate at a single node is defined as µ, which means

although different requests can be mapped to the same node,
the feasible mapping is still limited by the servicing capacity
of VM. The mapping function can be described as

f : (i, j)→ n , (1)

and the binary variable x
[m]
ijn is used to denote whether the

request (i, j) is mapped to the access node n, where [m]
indicates the variable category (here [m] is for the mapping,
others categories are [v] for VM, [u] for user-type objects, [c]
for content-type objects and [r] for the relaying relationship).

We formulate the Resource Allocation and Request Han-
dling (RARH) problem, in the form of binary programming.
It is presented in (2)–(8), where (2) is the objective function,
specifying that the total cost on nodes, user-type and content-
type storage should be minimized. In (2), whether node n is
allocated is represented by the binary variable x[v]n . The cost
on the VMs is determined by the number of VMs allocated.
The binary variable x[u]in tells the availability of the user-type
object related to user i at VM n. The binary variable x

[c]
jn

indicates whether content-type object j is stored at VM n.
The total cost to minimize is expressed as a linear function
of the number of VMs, the sum of the number of different
content-type objects in each VM, and the sum of the number
of different user-type objects in each VM.

min Cc
∑
j∈F

∑
n∈V

x
[c]
jn+Cu

∑
i∈U

∑
n∈V

x
[u]
in +Cv

∑
n∈V

x[v]n (2)

s.t.∑
i∈U

∑
j∈F

λij(x
[m]
ijn +

∑
na∈V

x
[m]
ijna

x
[r]
ijnan

) ≤ µx[v]n ,∀n ∈ V (3)

x
[r]
ijnan

≤ x[c]jn,∀i ∈ U, j ∈ F, na ∈ V, n ∈ V (4)

x
[m]
ijn ≤ x

[u]
in ,∀i ∈ U, j ∈ F, n ∈ V (5)∑

n∈V
x
[m]
ijn = 1,∀i ∈ U, j ∈ F (6)

x
[m]
ijn ≤ x

[c]
jn +

∑
nr∈V

x
[r]
ijnnr

,∀i ∈ U, j ∈ F, n ∈ V (7)

x
[m]
ijn, x

[v]
n , x

[u]
in , x

[c]
jn, x

[r]
ijnanr

∈ {0, 1},∀i ∈ U, j ∈ F,
na ∈ V, nr ∈ V.

(8)

About the constraints, (3) represents the QoS constraint at
each VM n, such as, if any node n is allocated, the sum of
the access traffic (first hop) and the redirected traffic (second
hop) to that node should be lower than the maximal load µ.
In (3), the variable x

[r]
ijnan

is used to represent whether the
request (i, j), which was initially mapped to access node na,
will (or will not) be relayed to another node n by 1 (or 0). For
those requests to content j, their redirection from access node
na to another node n is possible to be enabled only if there
is a copy of j at the node n, which is shown through (4). (5)
defines the user-type object requirement at the access node,
which ensures request (i, j) can be mapped to n only if there
is a copy of user-type object related to i in node n and (6)

74

defines each request should be mapped to one and only one
access node. It is also necessary that if a request is mapped to
a node, it should be either fulfilled at the node, or redirected
to another node nr to retrieve the content, which is shown in
(7). (8) gives the binary variables used in the formulation.

In fact, the formulated problem applies the constraint of
at most two-hop in the request fulfillment to the formulation.
However, to improve the access efficiency and avoid network
congestion, we could change it to the one-hop constraint, such
that the request to the content should be completely fulfilled
at the access node. Then the relaying is not needed and the
necessary condition for x[m]

ijn = 1 is that the data objects
related to user i and content j are both available at the node
n. Moreover, the one-hop case is equivalent to that we set all
relaying variables, i.e., x[r]ijnanr

, to 0 in the formulation. Below
we would propose two algorithms oriented to the one-hop or
two-hop case, respectively.

III. ALGORITHMS

A. Access-Efficient Method

The RARH problem is NP-hard [6] and the number of
variables in the problem formulation is O(IJN2), so it is
meaningful to design an approximate algorithm that solves
the problem in the polynomial time. Note that we use Nopt
to represent the result of the optimal solution and use Napx
to represent that of the approximate solution. An algorithm is
with approximation ratio r if Napx based on its solution can
always ensure Napx ≤ rNopt+δ, where δ is a small constant.

Here we will solve the problem with the one-hop fulfillment
constraint for a better access efficiency. In the one-hop case,
the traffic of the second hop is not needed which lowers the
traffic inside the data center and only one VM access is enough
for the request fulfillment which improves the response time.

It is noticed that if the storage cost is ignored such that
Cu = Cc = 0, the problem is the same as the traditional bin-
packing problem [3], and it is equivalent to packing requests
(with size λij) as items into VMs (with capacity µ) as bins.
In the literature of bin-packing [3], it is proved that First-
Fit gives a 2-approximation ratio and its general idea is to
pack each item into the first bin that can fit it. An improved
version, called Decreasing First-Fit, which sorts the items in
a descending order by the size before the packing, gives a
3/2-approximation ratio. Another approach is Next-Fit, which

Packing C

(4,1) (5,1) (6,1) (7,1) (8,1) (9,1) (10,1)(3,1)

Content ID

(0,0)
User ID

(2,2) (3,2) (4,2)

(2,3) (3,3)

(2,4) (3,4)

(4,3)

(4,4)

Packing A

Packing B

(6,3) (7,3) (8,3) (9,3)

(6,4) (6,6) (6,7)(6,5)

(2,1)

Fig. 2. Different cases of packing in the OLS algorithm

tries to pack an item into the last created bin without any
search on the previous ones. However, since the storage cost
is not negligible in our formulation, we need to devise a new
solution that aims at minimizing the VM cost and storage cost
simultaneously.

We propose an algorithm as shown in Alg. 1, termed as One-
Layer Serving (OLS). It tries to lower the storage cost through
packing the requests from the same partition to the same VM.
The partitions are specially designed intending to achieve a
lower storage cost. An example will be presented to illustrate
our idea, where all the request rates to be packed are in the
same size 1, and the unit cost of the user and content object
is the same. Fig. 2 shows a portion of the request rate matrix
A and each shown point (i, j) represents a kind of request.
From Fig. 2, Packing A is better than Packing B in terms of
storage cost, because both of them pack 9 requests, however,
the former packs the 3 × 3 square, introducing 3 + 3 = 6
storage cost (3 in user-type and 3 in content-type), while the
latter packs the 9 × 1 row, introducing 9 + 1 = 10 storage
cost. If the bin size is 9, we can use 3 and 3 as the width and
height of partitions, which can achieve a lower storage cost
than any other schemes to pack 9 items. In OLS, we use a
similar rectangle to divide A into partitions. The width and
height of each partition can be considered as the maximum
allowed number of user-type and content-type objects in it,
denoted by Nu and Nc, respectively.

Algorithm 1 One-Layer Serving (OLS)
1. Initialize bin set S = ∅; Obtain Nu and Nc through (10).
2. Remove an item (i, j) from R. Calculate its partition ID
through (11).
3. Obtain the list of existing bins in that partition and search
the first-fit bin in the list to put (i, j) into.
4. If failed in 3, create a new bin for (i, j), set the partition
ID of the bin to the same as (i, j), and put it into S.
5. Repeat 2–4, until R is empty.
6. Merge the bins in S. The S after merging is the solution.

When Cu = Cc, to pack items in a square is always a
good choice as shown from the example, such that Nu = Nc.
When Cu 6= Cc, we can tradeoff the width and height in the
rectangle by making Cu/Cc ≈ Nc/Nu. For example, when
Cu : Cc = 1 : 2, Packing C, where Nu = 4 and Nc = 2, is
the best way to pack at least 8 items in terms of achieving the
lowest storage cost. In such a case, the storage cost for the
rectangle 4×2 is 4×1+2×2 = 8, which is better than other
cases, such as, 3× 3 costs 9 and 2× 4 costs 10. Through this
idea, the area of the rectangle used in partitioning is set to the
expected number of items in a bin, denoted by M , such as

M =
µ

E[λij]
=

µ∑
i

∑
j λij/(IJ)

, (9)

and then Nu and Nc can be obtained as

Nu = b
√
CuM/Ccc, Nc = b

√
CcM/Cuc . (10)

75

The matrix A is virtually divided into rectangle partitions
with the width Nu and height Nc. For each item (or request)
(i, j) to be packed into a bin (or VM), we calculate its
designated partition ID, such as

partition(i, j) = (bi/Nuc, bj/Ncc) . (11)

Next we try to pack that item into the first-fit bin with the
same partition ID, which implies that a list of related bins
should be maintained for each partition in the algorithm. If no
one is found, create a new bin with that partition ID and put
the item into it. In the resultant bin set after all the items are
packed, some of the bins might be almost empty, so in Step
6, merge the bins by iterating all the created bins in S and
checking whether there exist any two bins that the size after
they are merged will not violate the bin capacity.

From the bin set S after merging, we can obtain the number
of allocated VMs and the storage volume size for each VM,
which guide the resource allocation. The data object location
and the mapping function f are also obtained from S, which
guide the resource utilization. The worst-case time complexity
of OLS is in O((IJ)2).

Theorem 1 (Approx. Ratio of VM Cost): OLS gives a 2-
approximation ratio in the part of VM cost.

Proof: This proof refers to that for First-Fit in [5]. In the
resultant bin set, there are no two bins that can be merged
together. Then if the bin number is even, for any two bins,
the sum of their occupied size should be larger than µ, and
we obtain µN [v]

apx/2 ≤
∑
i

∑
j λij . It is obvious that N [v]

opt ≥∑
i

∑
j λij/µ, so we obtain N [v]

apx/N
[v]
opt ≤ 2. Similarly, if the

bin number is odd, except for one bin, all the others could be
merged in pairs with a size larger than µ, so µ(N [v]

apx−1)/2 ≤∑
i

∑
j λij . Therefore N [v]

apx ≤ 2N
[v]
opt + 1.

Theorem 2 (Approx. Ratio of Storage Cost): It is ensured
that OLS at least gives a J/Nc + NuNc (or I/Nu + NuNc)
approximation for the user-type (or content-type) storage, if
I | Nu and J | Nc, where I | Nu means I is divisible by Nu.

Proof: We prove the approximation ratio for the user-type
objects here and that for the content-type is similar. For the
use-type storage, the times of any user-type object i appearing
in the resultant bin set are no more than d

∑
j λij/µe, so

N
[u]
opt ≥

∑
id
∑
j λij/µe ≥ I . In OLS, Nu × Nc is used to

partition matrix A. Only consider those whole-size partitions,
and denote Pf (Ps) the number of partitions with a total
rate larger (not larger) than µ. Since Ps + Pf = b I

Nu
cb JNc

c
and µPf ≤

∑
i,j λij , Ps ≥ b

I
Nu
cb JNc

c −
∑
i,j λij/µ. Ob-

viously N
[u]
apx ≤ IJ , the total number of requests. In the

Ps partitions, each has a saving of NuNc − Nu from IJ ,
so we obtain N

[u]
apx ≤ IJ − (NuNc − Nu)Ps ≤ IJ −

(NuNc − Nu)(b I
Nu
cb JNc

c −
∑
i,j λij/µ). Then by setting

δ = IJ − b I
Nu
cb JNc

cNuNc, we can obtain N [u]
apx ≤ IJ/Nc +

NuNc
∑
i,j λij/µ + δ. Because N [u]

opt ≥
∑
id
∑
j λij/µe ≥ I ,

N
[u]
apx ≤ (J/Nc + NuNc + δ/I)N

[u]
opt. When I and J can be

divided by or much larger than Nu and Nc respectively, δ can
be ignored.

From Theorem 2, we observe that the approximation ratio
obtained is related to the chosen value of Nu and Nc. In the
special case that Nu = Nc = 1, the ratio is max(I, J). The
ratio proved here is still not very tight, and the performance
is further investigated through simulations in Section V.

Lemma 1 (Approx. Ratio of Total Cost): With the result of
Theorem 1 and 2, the approximation ratio of the total cost
through OLS is no more than max(J/Nc, I/Nu) +NuNc, if
I | Nu and J | Nc.

B. Storage-Efficient Method

With the two-hop request fulfillment allowed, it is not
necessary to put the user-type and content-type object related
to a request in the same node, which removes the dependence
between the two types and potentially gives a much higher
reduction in the storage cost. In the two-hop case, a method is
devised aiming at a much higher storage efficiency although
the access-efficiency has to be sacrificed to some extent.

We propose the Two-Layer Serving (TLS) method, as shown
in Alg. 2. It sets two layers of nodes in the system: the first
layer is for user accessing and only provides the user-type
objects, while the second layer only consists of relay nodes
with the requested contents. The sorting before the request
packing for each layer significantly lowers the storage cost.
In the request handling, any request is firstly mapped to an
access node in the first layer, and later it is redirected to the
node in the second layer and the content request is fulfilled
there.

Algorithm 2 Two-Layer Serving (TLS)

1. Initialize bin set S[i] = ∅, S[j] = ∅, S = ∅.
2. Sort R by index i, and if two with the same index, sort
them by the λij in the decreasing order, denoted by Ri.
3. Insert items in Ri into bin set S[i] using Next-Fit.
4. Sort R by index j, and if two with the same index, sort
them by the λij in the decreasing order, denoted by Rj .
5. Insert items in Rj into bin set S[j] using Next-Fit.
6. Set up the redirection route between each request in S[i]

to the same request in S[j].
7. Obtain the set S = S[i]∪S[j]. Merge the bins in S when
possible and output S.

Here we give more explanations. In the first layer, we need
to pack R into a set of bins. Since only the user-type objects
are needed at this layer, we can pack the requests with the
same user-type i in the same bin as much as possible. First,
all the requests are sorted according to the index i, and if some
are with the same index, they will be sorted according to the
object size. After this sorting, the objects are packed into bins
using an approach similar to Next-Fit, which means each item
is put into the current bin if it satisfies the capacity constraint.
Otherwise, create a new bin as the current bin and put the item
into the bin. Similarly, we pack R into bins again in the second
layer, and the approach is similar to the first layer. After the
two steps, we would have two layers of bins. In Step 6, we

76

set up the redirection path between these two layers. Since for
each item in R, it appears in both of the layers, we could easily
build the connection between the layers by linking the same
item in these two layers together. Obviously, the worst-case
time complexity of TLS is in O(IJ).

Theorem 3 (Approx. Ratio of VM Cost): TLS gives 4 ap-
proximation ratio in the part of VM cost.

Proof: The resultant bin set built in each layer through
TLS still satisfies the initial condition in the proof of Theorem
1, so a similar approach applies. Therefore the cost of the first
layer on VM satisfies N [i]

apx ≤ 2N
[v]
opt+1. So does the second-

layer cost N [j]
apx. Therefore the total cost of the two layers on

VM satisfies N [v]
apx ≤ N [i]

apx +N
[j]
apx ≤ 4N

[v]
opt + 2.

Theorem 4 (Approx. Ratio of Storage Cost): For each type
of storage, TLS ensures an approximation ratio of 2.

Proof: Here we prove the ratio of the user-type storage,
and the method for the content-type is similar. The total
number of any user-type object i in the optimal solution should
be no less than the minimum number of bins to only pack
requests related to i, such as N [u]

opt ≥
∑
id
∑
j λij/µe, where

d
∑
j λij/µe specifies the minimum number of bins related to

i. In TLS, the actual number of bins storing user-type object i is
no more than the optimal number by 1, because of the sorting
by i before packing. So the cost of our approach satisfies
N

[u]
apx ≤

∑
i(d

∑
j λij/µe + 1). Therefore, the approximation

ratio is N [u]
apx/N

[u]
opt ≤ 1 +

∑
i
1∑

i
d
∑

j
λij/µe

≤ 2.

Lemma 2 (Approx. Ratio of Total Cost): From Theorem 3
and 4, TLS gives a 4-approximation ratio in the total cost.

IV. IMPLEMENTATION DISCUSSIONS

Two assumptions are made in applying the proposed algo-
rithms to the real systems. We assume the request rates would
show certain steadiness in a short interval, although they might
change drastically after a long time-period. This ensures the
solution for that short interval meaningful. We also assume
the traffic pattern between two adjacent short intervals should
be strongly correlated, so we can use the logged statistics
to accurately predict the request pattern of the next interval.
These two assumptions are often found in real application
scenarios and existing research work [7].

With the assumptions, we propose an implementation
scheme where the time is discretized into intervals. The
statistics about the request rates of each interval is measured
and collected. We use λij(t) and λ

[e]
ij (t) to represent the

measured and predicted arrival rate of request (i, j) at time
interval t, respectively. We can easily measure each λij(t) at
the access controller as shown in Fig. 1, by simply counting the
number of requests to (i, j) at the interval t. When the system
scale is large, it is necessary to have a cluster of homogeneous
access controllers to equally distribute the incoming traffic. In
such a case, λij(t) is the sum of the measured results at every
access controllers. With the method of Exponentially Weighted
Moving Averaging (EWMA) [8], the rate for the next interval
t+ 1 can be predicted given the actual arrival rate λij(t) and

the predicted rate λ[e]ij (t) of the last time interval t, such as,

λ
[e]
ij (t+ 1) = αλij(t) + (1− α)λ[e]ij (t) , (12)

where α ∈ (0, 1) is a parameter determining the tradeoff
between the most recent information and history information.
If α is larger, it means we give more weight to the most
recent load in the prediction; otherwise, the impact of the most
recent load is less emphasized. The prediction accuracy can
impact the service quality at each VM in the next interval,
i.e, average response time. The problem exists in any other
schemes relying on the prediction. A common solution is
to allocate resources more than necessary, which introduces
the tradeoff between the cost of the extra resources allocated
and the possible sacrificing of user experience due to the
unpredicted sharp traffic surge. In our scheme, we can adjust
µ in (3) to make this tradeoff.

At the end of each time interval, the request rate matrix from
the prediction is obtained and then the proposed algorithm OLS
or TLS can be applied. Based on its solution, the amount of
the VM and storage resource allocated, and the data location
will be adjusted accordingly. The deployment is feasible in
the IaaS clouds, since users of IaaS clouds can decide how to
connect the rented node logically and to place a data object
in which node by their own choice. In our work, the primary
objective is to reduce the monetary cost of the system and the
main constraint is to match the service capacity and throughput
of each VM node. That could be well achieved through the
proposed scheme.

During each time interval, the access controller (or the
cluster of homogenous access controllers) is responsible for
routing each request (i, j) to the proper VM. It is necessary
that each access controller maintains a hash table with the
size of I × J . Using (i, j) as a key, the resultant hashing
value through that table indicates the routing destination. The
table is built based on the solution of the algorithm. Its size
is controllable because of the granularity coarsening process
introduced in Section II.A, where we can adjust the number
of accounted user groups and content groups to an acceptable
level. This avoids the expensive overhead to obtain the optimal
solution and provides a good support to the large scale system.

V. PERFORMANCE EVALUATION

A. Data Preparation

NASA-HTTP Trace [9]: This is the user request trace of a
NASA website, where 1,891,714 HTTP requests are captured
in a period of 28 days. For each request, the client address (IP
or domain name), content object to fetch, and timestamp are
given. According to our design, in the first step, we cluster
all the client addresses into user groups and all the requested
contents into content groups. The grouping is by a simple hash
function and results in 101 grouped users and 101 grouped
contents. Besides, the arrival rate of each request in a given
interval can be counted from the request log. Because the
traffic intensity in the dataset is still too low to use multiple
serving machines, we change the granularity of timestamps

77

in the trace from 1 to 1/10, 000, for the purpose of having a
large enough traffic intensity in the simulation.

Generated Data: To give more insights of the algorithms
to be evaluated, we analyze the distribution of requests to
different contents in the NASA-HTTP dataset, and use it
to flexibily generate different experiment data under a given
traffic intensity but still following the same distribution. The
distribution from the trace is shown in Fig. 3. We found
that it fits the Zipf distribution with index H = 0.65, so we
use the Zipf distribution to generate the random data. It was
justified that the overall user demand distribution to a large
set always shows the long-tail behaviour and Zipf can be used
to approximate it [10]. A recent measurement also justifies
that the user requests to YouTube satisfy the Zipf distribution
[11]. Note that although the NASA-HTTP trace for webpages
is used in the experiments, the methods still apply in other
scenarios. We introduce the trace only to show the validity of
synthesizing the request pattern based on the Zipf distribution.

In the synthesized dataset, the numbers of user and groups
considered are set to 200 and 500, respectively. Note that they
are the number of groups or shards after granularity coarsening
and the number of actual individuals could be much larger. The
request rate matrix A, modeled in Section II.B, is generated
with the following steps: 1) the average request rate of all the
requests is given at first, denoted by λ; 2) we create 10 user
patterns, and for each pattern, the request rate to each content
follows the Zipf distribution; for each pattern, the content
set is shuffled into a random sequence, and then the request
probability to the c-th content is determined by the Zipf with
H = 0.65, such that P (c) = (1/cH)/

∑
j∈F (1/j

H); then the
request rate is obtained as P (c)λJ ; 3) each user is randomly
assigned a pattern, and adopts the request rate of that pattern.

B. Evaluation Settings

The simulations are based on a program written in JAVA,
implementing the algorithms proposed. The inputs of the
algorithm are the extracted or synthesized request rate. The
outputs are the decisions on the resource allocation, data
location and request handling. The system costs are used as the
metrics in the evaluation, where the costs per unit of resources
(VM or storage) are estimated based on the prices of Amazon
Web Services [12]. The numbers of allocated units of resources
are from the output of the algorithm. For the verification of
the simulation, we reviewed the outputs and validated that
the deployment based on them satisfies the constraints in the
modeling.

The two algorithms proposed in the paper are implemented
and evaluated, i.e., OLS and TLS. Besides, a baseline approach
is implemented and compared, which is the Decreasing First-
Fit (DFF). In this method, the requests are first sorted de-
creasingly by request rate and then each request type (i, j) is
greedily inserted into the first-fit bin in the order after sorting.
It can be considered as a basic improvement to the standard
practice of distributed storage systems (e.g., Cassandra), where
key-value pairs are randomly distributed to the available nodes.
The algorithms are first evaluated through the NASA dataset,

and then extensively checked and compared under different
parameters.

The service rate of each VM node is set to 500 requests/sec.
The unit monetary cost in the evaluation is based on the price
of Amazon Web Services [12]. For the VM part, the unit
price of a VM is estimated as $0.060/hour×720hours/month
= $43.2/month. For the storage part, we assume that the size
of each storage shard is in the range of (1 ∼ 10)GB, and
then the unit price of storage is estimated as ($0.1/month/GB
+ $0.1/million IO×1 million IO/month/GB)× (1 ∼ 10)GB=
($0.2 ∼ $2)/month. Base on our estimation on the average
size of storage units and the average I/O operation number
related to each storage unit, we set the ratio of cost components
Cv : Cu : Cc to 50 : 1 : 1 by default in the simulations.
The exact ratio varies depending on the actual shard size,
I/O operations, and cloud pricing policy, so the discussions
on different ratios are made to validate the performance of
algorithms in a broader range of cost ratio.

C. Evaluation Results

Remind that a request rate matrix was extracted from the
NASA-HTTP dataset. Based on the matrix, the three algo-
rithms are applied and their comparative results are shown in
Fig. 4. In terms of the total cost, OLS and TLS both outperform
DFF, the baseline. Then we scrutinize the cost by comparing
the three types of cost respectively, which helps us to analyze
the root cause of the difference in the total cost. OLS is similar
to DFF in the VM cost, but incurs much lower storage cost.
This is because the cost-effective data placement in the former.
We also implemented the RARH problem in the one-hop case
with the optimization tool Gurobi [13], and tried to obtain the
optimal solution for the same input as in Fig. 4. But it failed to
give the solution in an acceptable time, because of the scale of
the optimization problem. For a further simplified input with
only 11 users and 11 contents, the best solution from Gurobi
in 1 hour has a total cost of 1, 880 while OLS can instantly
give its solution with a total cost of 1, 960 for the same input.

To have more insights on the algorithms, with the generated
data, a set of experiments with different average request rates is
conducted, which range from 1 to 10 requests/sec. The number
of user-type or content-type objects that need to be stored by
each algorithm is shown in Fig. 5. It can be observed that
TLS gives the best performance in the storage cost, since it
sacrifices the cost of VM. OLS has a higher total storage cost
than TLS but is still much better than DFF, which validates
that the partition-based packing method can largely reduce the
storage cost. We also observe that the costs of user-type and
content-type storage are almost the same in OLS, which is
related to the fact that Cu : Cc is set to 1 : 1 in this experiment.

Then the cost on the VM is shown in Fig. 6. We observe that
OLS has slightly higher cost than DFF because the partition-
based packing reduces the storage cost, but it simultaneously
results in some small and wasted fragments in the VM service
capacity. Besides, TLS costs almost twice of OLS. It is because
the two-layer serving design introduces more traffic load to the
system. In fact, under the two-hop setting, each request from

78

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Content ID (in the order of decreasing access rate)

P
e
rc

e
n
ta

g
e

NASA−HTTP Trace

Zipf (H=0.65)

Fig. 3. Content request rate distribution in the
NASA-HTTP trace

VM User Content Total
0

500

1000

1500

2000

2500

3000

Cost Type

C
o
s
t

DFF

OLS

TLS

Fig. 4. Comparison results for the trace

2 4 6 8 10
10

2

10
3

10
4

10
5

Mean Request Rate

N
u
m

b
e
r

o
f
O

b
je

c
ts

 S
to

re
d

DFF, U

OLS, U

TLS, U

DFF, C

OLS, C

TLS, C

Fig. 5. Comparison results of storage cost

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

Mean Request Rate

N
u
m

b
e
r

o
f
V

M
s
 A

llo
c
a
te

d

DFF

OLS

TLC

Fig. 6. Comparison results of VM cost

20 40 60 80 100 120 140 160 180 200 220 240
0

2

4

6

8

10
x 10

4

Unit Cost Ratio: VM / Stored Object

T
o
ta

l
C

o
s
t

DFF

OLS

TLS

Fig. 7. Effect of cost ratio Cv : Cu

1/16 1/8 1/4 1/2 1 2 4 8 16
0

2

4

6

8

10

12

14

16

18
x 10

4

Unit Storage Cost Ratio: Content Type / User Type

T
o
ta

l
C

o
s
t

DFF, L

OLS, L

TLS, L

DFF, H

OLS, H

TLS, H

Fig. 8. Effect of cost ratio Cu : Cc

the user is fulfilled only after it goes through two nodes in the
system, one for the user profiling and another for the requested
content fetching. Comparatively, OLS or DFF shows a great
advantage on the VM cost and access efficiency because they
fulfill the request through only one node.

Besides, the total cost under different cost ratios is dis-
cussed. In Fig. 7, Cu = Cc = 1 is set and we change the value
of Cv to check the resultant total cost. It could be observed
when the ratio is small, TLS could outperform the others, since
its aggressive allocation of VMs largely reduces the demand
for data replication and therefore lowers the cost of storage.
But if the unit VM cost increases, the advantage disappears
soon. Then OLS is always better than DFF in all the ratios
tested, since the former moderately sacrifices the VM cost to
achieve in return the large reduction in the storage cost. From
the observations here, we suggest that TLS is more suitable
for the application scenarios where exceptionally large objects
are requested, resulting in a much lower ratio of Cv : Cu;
otherwise, OLS is better to be applied.

Then we set Cc = 1, and set Cv to 50 or 100 respectively,
termed as L and H in Fig. 8, and then Cu is varied. The two
proposed algorithms still outperform DFF in all the settings.
Besides, we notice when the ratio is high, the cost of TLS can
still keep stable, because it relies more on the VMs than the
storage and therefore it is less affected by the change of unit
storage cost. Besides, when Cu is larger, it implicitly results in
a smaller ratio of Cv : Cu, which lets the TLS get close to or
even outperform OLS, for the same reason stated above. This
informs us that the ratio of Cv to the larger one of Cu and Cc
should be paid enough attention, when we are to decide which
is more suitable for a specific application scenario between the
two proposed algorithms. We also validate that the advantage

of the proposed algorithms holds in all the range of cost ratios
in the experiments.

VI. RELATED WORK

We investigated the optimization of a content retrieval sys-
tem through exploiting the predictability of traffic load. Similar
problems commonly exist in Content Distribution Networks
(CDN). In [14], the network is modeled as a weighted graph
to consider the distance between nodes, and the problem to
minimize the cost of replica storage and retrieval is formulated
and several heuristics are proposed. In [15], both the replica
placement and caching are considered to improve the user
experience in the HTTP services. In its proposed hybrid
scheme, the storage in a node is shared by the replicator and
caching. Karlsson et al. [16] stated that any specific heuristic
might only ensure certain performance metrics it is designed
for, and suggested the methods in determining the applicability
of any specific placement heuristic. The similarity of our
work and CDN is that they both consider how to serve user
requests through a certain amount of distributed machines.
And the difference is that our work did not consider the geo-
distribution of these machines. Instead, we differentiate the
types of data stored in the network, considers the impact of
traffic load in making data replica decisions and investigate
the cost-efficient design method under the cloud-based cost
model, which is not discussed in CDN. The method proposed
could be a supplement to improving the system efficiency of
CDN in one data center.

With the convenience and potential cost reduction of de-
ploying services to the cloud, the study on the data placement
or service placement in the cloud emerges. Alicherry et al. [17]
considered two types of entities in IaaS clouds, storage and

79

VM, and they focused on optimizing the total (or maximum)
access latency by the proper mapping between the given set
of VM nodes and set of storage nodes from the perspective of
cloud provider. Our work considers how to utilize those nodes
from the prospective of cloud users and solves the problems
of data placement and request handling routine. Argarwal et
al. [7] considered the geo-distributed clouds. By collecting
user logs in different data centers, a centralized decision
is made to guide each data object to move to a weighted
center of user requests in order to lower the access latency.
Our work aims at the optimization in one data center and
considers the benefit and cost of data co-location. In [2], it is
suggested that the data object placement in a cloud-based OSN
system should consider the social relationship between users.
Rochman et al. [1] proposed a high-level resource assignment
and placement problem to satisfy certain service demands
with clouds while minimizing the service cost. With a pre-
defined assignment scheme, the placement problem was solved
by transforming it into the min-cost flow problem. All such
works are not designed for the user-aware content retrieval
services, such as having respective models and objectives or
not capturing the user demand of the specific service.

The formulated problem in the paper is related to bin-
packing [3], but with some extra objectives, therefore we
cannot obtain a favorable solution by the common bin-packing
algorithms. In [18], a different extra objective is considered in
the two-dimensional bin-packing, i.e., to maintain a balanced
load of each bin. Xavier et al. [19] modeled the different items
in each bin as an extra constraint and a moving-window based
heuristic is proposed. However, our problem is different such
that the number of different objects in a node has no upper
limit, although it is expected to be low. In [20], bin-packing
is used in the VM placement problem, whose motivation
is how to efficiently pack the VMs into physical machines
with multiple types of resource constraints. Our work can
potentially be generalized as a new variant of the bin-packing
problems and be more broadly applied to some different
scenarios in the future.

VII. CONCLUSIONS

In this paper, we investigated and formulated the problem
of optimizing the resource allocation and request handling
for the user-aware content retrieval services. Two approximate
algorithms with different design emphasis were proposed and
the approximation ratios were derived. Besides, the issues
in implementing the algorithms in practice were discussed.
Through simulations, the performance of the devised algo-
rithms was evaluated, showing a large improvement in the
total cost while ensuring the service quality.

In the future, we will improve the work with the con-
siderations of data caching and adaptability to the dynamic
workload, in order to achieve a lower system cost in the
whole running period. In fact, the application of the proposed
methods can be extended to the scenarios which require to
place data items from two different categories while aiming
at a higher access efficiency or storage efficiency. Following

the work, we will also try to extend the problem with a
more generalized formulation for the broader spectrum of
applications, such as allowing a higher number of data items
involved in each transaction.

ACKNOWLEDGMENT

This work is supported in part by NSERC, CFI and BCKDF.

REFERENCES

[1] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assign-
ment in distributed network topologies,” in Proc. of IEEE INFOCOM,
2013.

[2] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social
networks on geo-distributed clouds,” in IEEE ICNP, 2012.

[3] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: A survey,” Approximation algorithms for
NP-hard problems, pp. 46–93, 1996.

[4] H. Zheng and X. Tang, “On server provisioning for distributed interactive
applications,” in IEEE ICDCS, 2013.

[5] Q. T. I. Adan and J. Resing, Queueing Theory. Eindhoven University of
Technology, 2002.

[6] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial opti-
mization. Wiley New York, vol. 18, 1998.

[7] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services.”
in Proc. of USENIX NSDI, 2010.

[8] J. S. Hunter, “The exponentially weighted moving average.” Journal of
Quality Technology, vol. 18, no. 4, pp. 203–210, 1986.

[9] Online, “http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.”
[10] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,”

Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.
[11] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteriza-

tion: a view from the edge,” in Proc. of ACM IMC, 2007.
[12] Online, “http://aws.amazon.com/ec2/pricing/.”
[13] Online, “http://www.gurobi.com/.”
[14] X. Tang and J. Xu, “On replica placement for qos-aware content

distribution,” in Proc. of IEEE INFOCOM, 2004.
[15] S. Bakiras and T. Loukopoulos, “Combining replica placement and

caching techniques in content distribution networks,” Computer Com-
munications, vol. 28, no. 9, pp. 1062–1073, 2005.

[16] M. Karlsson and C. Karamanolis, “Choosing replica placement heuristics
for wide-area systems,” in Proc. of IEEE ICDCS, 2004.

[17] M. Alicherry and T. Lakshman, “Optimizing data access latencies in
cloud systems by intelligent virtual machine placement,” in Proc. of
IEEE INFOCOM, 2013.

[18] D. Liu, K. C. Tan, S. Huang, C. K. Goh, and W. K. Ho, “On solving
multiobjective bin packing problems using evolutionary particle swarm
optimization,” European Journal of Operational Research, vol. 190,
no. 2, pp. 357–382, 2008.

[19] E. C. Xavier and F. K. Miyazawa, “The class constrained bin packing
problem with applications to video-on-demand,” Theoretical Computer
Science, vol. 393, no. 1, pp. 240–259, 2008.

[20] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in Proc. of IEEE GreenCom, 2010.

80

