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Abstract—An increasing number of households is connected
to the Internet via DSL or cable, for which home gateways
are required. The optimization of these – caused by their large
number – is a promising area for energy efficiency improvements.
Since no power models for home gateways are currently available,
the optimization of their power state is not possible. This paper
presents PowerPi, a power consumption model for the Raspberry
Pi which is used as a substitute to conventional home gateways to
derive the impact of typical hardware components on the energy
consumption. The different power states of the platform are
measured and a power model is derived, allowing to estimate the
power consumption based on CPU and network utilization only.
The proposed power model estimates the power consumption
resulting in a RMSE of less than 3.3%, which is slightly larger
than the maximum error of the measurements of 2.5%.

I. INTRODUCTION

Considering the world’s population of 7.1 billion and a
fixed broadband subscription rate of 10.82% in 20121, there
exist around 770 million home gateways world wide. With a
power consumption of around 10 W each, their power draw
alone results in approximately 6.7 TWh of electrical energy
per year. This corresponds to 0.03% of the world electricity
consumption2, or between 2.6% and 5% of the Internet power
consumption [19].

Green networks are an emerging topic. Baliga et al. estimate
the carbon footprint of the Internet [1], which is extended
by Hinton et al. to include the cost of content storage and
delivery [11]. Chiaravigli et al. focus on Internet Service
Provider (ISP) networks and the reduction of their power con-
sumption [4]. Other, very active areas of energy improvements
are cellular networks in general [9] and the optimization of 4G
networks [5].

The development of energy models currently focuses mainly
on servers [2], desktop PCs [6] or mobile handsets [25].
Less work is done on profiling the power consumption of
home gateways, access points or small servers. Due to the
high number of these devices [19], these cannot be neglected
when evaluating the power consumption of the full Internet
infrastructure.

43% of these devices located in the developed world are
always on [8] and often idle. The idle resources of such
devices may be used to provide network access to other
users [21] or pre-load content for their owners, while they
are away (i.e., caching, pre-fetching of content, running local

1http://www.itu.int/net4/itu-d/icteye/, accessed 2013-12-04
2http://www.eia.gov/aeo, accessed 2013-12-04

services). The devices are built to be cheap and reasonably
energy efficient. However, no detailed power model for this
device class is available, which would allow for software
based optimization. In most calculations [19] a fixed power
consumption is assumed, independent of the device utilization.

The Raspberry Pi is a popular platform for low-power
and low-cost computational tasks, suitable for a large range
of applications. It is used as a platform to model cloud
computing [22], for home monitoring and automation [18], or
to provide low cost computation to developing countries [10].
Applications for the Raspberry Pi range from enhanced In-
ternet gateways (Nano Datacenters (NaDas) [24], supporting
the intelligent caching of video content, over intelligent WiFi
access points [21], future ICN applications [16], to applica-
tions in outer space [3]. To accurately estimate the power
consumption and possible improvements to each application,
accurate power models of the devices are necessary.

To this end, this paper presents PowerPi, a power model
focusing on the power consumption of the Raspberry Pi to
derive possible power saving strategies. The hypotheses of the
paper are:

• An accurate estimation of the Raspberry Pi’s power
consumption can be obtained using the system utilization
only.

• Knowing the power model, it is possible to reduce the
power consumption by optimizing the software running
on the platform.

PowerPi is based on hardware measurements of the Raspberry
Pi.

The remainder of this paper is structured as follows. The
setup and configuration of the platform is detailed in Sec-
tion II, which gives an overview of tools and services used
during the experiment and custom tools to generate load and
monitor the system state. The measurements are described in
Section III, showing a linear dependency between the CPU
power consumption and the utilization. Similarly, second to
fourth order functions between the data rate on the interface
and the power consumption are derived. Based on these, the
model generation and models approximating the behavior of
the device under load are described in Section IV. The result-
ing model is compared to similar approaches in Section V.
Section VI concludes the paper and gives an outlook on
possible applications of the energy model.
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Fig. 1. Measurement setup and its wiring for the Raspberry Pi

II. MEASUREMENT SETUP

PowerPi measures the power consumption of the Raspberry
Pi using an external power meter. Simultaneously, scripts and
custom tools on the platform generate load and monitor the
device state. The following sections describe the measurement
setup in detail.

A. Power Measurement

The Raspberry Pi is a low-power device, which supports
being powered via USB. Its power consumption is measured
by interrupting the power lines of the USB connection and
inserting a measurement shunt in the 5 V line. The wiring
of the setup, as shown in Figure 1a, is detailed in Figure
1b. The current flowing through R1 causes a voltage U1,
proportional to the current drawn by the Raspberry Pi. The
requirements for the measurement shunt are twofold. First, it
must be large enough to create a voltage that can easily be
measured. Secondly, it must be small enough to reduce the
voltage drop to a minimum, allowing the connected device to
start. A resistance of 100 mΩ, with a maximum current of 1.2
A creates a voltage drop of 120 mV, which reduces the voltage
on the +5 V line to 4.88 V. This is still sufficient to operate a
USB device. Still, the voltage U1 when only small currents are
drawn is around 30 mV, allowing a sufficient accuracy. A 12
bit A/D converter with an absolute error of 6 mV results in a
relative error of 20 %. Therefore, Measurement Computing’s
USB1608-FSPlus is used, which has a resolution of 16 bits,
allowing the measurement of voltages of a few mV with an
absolute accuracy of 0.68 mV, thus reducing the error to 2.3
% for idle measurements. The voltage U2 between the 5 V
line and GND is measured directly.

A custom built software based on Measurement Comput-
ing’s FlexDAQ API3 constantly measures the voltage drop U1

over this shunt and the voltage U2 of the 5 V line. The power
consumption of the Raspberry Pi is calculated with

PPi =
U1 · U2

R1
. (1)

The software then writes the measurements together with a
time-stamp to a local file.

The error of the power measurement depends on the ac-
curacy of the two voltage measurements, which depend on
the accuracy of the A/D conversion and the accuracy of the

3http://www.mccdaq.com/daq-software/DAQFlex.aspx, accessed 2014-01-
19

measurement shunt. Mathematically, the maximum error is
defined as
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The maximum error of the voltage measurement ∆U/U can
be calculated directly from the above considerations as
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= 0.12% (3)

Similarly, the maximum error of the current measurement is
calculated.
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The maximum error for the voltage U1 is

max

(
∆U1

U1

)
=

max(∆U1)

min (U1)
=

0.68mV

30mV
= 2.26% (5)

Combining the error of the measurement with the tolerance of
the shunt of 1% results in an error of

max

(
∆I

I

)
= max(

√
0.02262 + 0.012) = 2.47% (6)

resulting in a maximum absolute measurement error of

max

(
∆P

P

)
= max(

√
0.02472 + 0.00122) = 2.47% (7)

This error is the upper bound of the errors introduced by
the measurement setup. The actual accuracy of the measured
samples is expected to be better. Furthermore, averaging the
measurements over the evaluation period reduces the error of
the final power measurements to even lower values.

B. Measurement PC Setup

These measurements are run from a conventional laptop.
The only hardware requirements are a USB 2.0 interface for
the measurement card and a Gigabit Ethernet interface to run
the network tests. The Gigabit interface is recommended, as it
ensures that the bottleneck of the throughput tests is located
on the platform’s network chip and not on the measurement
PC. The Wireless Fidelity (WiFi) measurements can be run
over a conventional WiFi Access Point (AP), or by creating
a software AP on the laptop. Here, the over-provisioning of
bandwidth on the remote side is difficult, as the WiFi interface
selected supports the 802.11n standard. The measurements are
best run from a Linux PC, as most software required for the
measurements is readily available for this platform. Still, the
power measurement software is written in Java, hence running
measurements is possible on each OS.

Before running the tests, the measurement PC is prepared
by installing and configuring a number of applications. A
custom built software measures the voltages on the USB
connection and writes the values to a CSV file. This is
later evaluated and correlated with the measured system and
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network utilization using MATLAB scripts. Furthermore, the
Precision Time Protocol (PTP) [14] is run in server mode on
the PC to allow the Raspberry Pi to synchronize its clock
before executing measurements. iPerf is installed on both the
measurement PC and the Raspberry Pi and run either in server
or client mode to generate traffic in the respective direction.
It is run as a daemon in UDP mode, as only this mode allows
configuration of the target data rates. The system parameters
such as current CPU utilization or consumed bandwidth are
monitored on the Raspberry Pi itself.

C. Setup of the Raspberry Pi

The measured platform is a Raspberry Pi Model B running
a software image based on Raspbian4. It is a Debian-based
Linux distribution specifically designed for the Raspberry Pi.
For the wireless tests, a USB WiFi dongle, the D-Link DWL-
G122 is used. It was selected because Linux drivers are
available and high data rates (802.11n) are supported.

The default Raspbian image is extended by running PTP
in client mode and a number of scripts monitoring the system
utilization. The hardware monitors are detailed in Section II-D.
Each monitor stores the collected measurements in the RAM
until the end of the experiment. This minimizes the influence
of the logging on the host system. The results are written to
the SD-card only after the tests have finished.

D. System State Monitoring

During the tests only required services run, minimizing side
effects. These services are udev, dhcp client, ssh server, and
dbus. All other services are stopped after the boot process
completes.

The system is monitored using custom scripts tracking
state and utilization of the platform. As the CPU monitoring
application also causes CPU utilization, special consideration
was paid to reduce its influence to a minimum. Parsing the
output of tools such as top or ps is resource intensive. A cause
of this is the high amount of text output generated by these
tools. Therefore, a very lightweight utilization monitor was
written in C and compiled with the -O3 option of gcc to
optimize the generated code. To avoid disk I/O the monitors
do not directly write to the memory card. The measurement
script mounts a ramdisk to the /tmp folder and copies the
content after the measurement is finished.

The CPU monitor reads the /proc/stat file (see Listing
1), which includes information about the number of cycles the
CPU was busy (user, nice, system), in idle state, interrupted,
and some more states since the last boot. The monitor takes
the busy and idle states and computes the utilization according
to Equation 9. Since the available values are incremental
over time, the system utilization must be calculated from
the difference of the counters. The system utilization u[t] is
calculated by dividing the busy cycles cbusy[t] by the total
number of cycles ctotal[t] during the last evaluation interval.

4http://www.raspbian.org/, accessed 2014-01-19

1 # comments do n o t be l on g t o f i l e
2 # cpu u s e r n i c e sys tem i d l e i o w a i t i r q s o f t i r q
3
4 cpu 13551 0 27452 665582 491 58 60 0 0 0
5 cpu0 13551 0 27452 665582 491 58 60 0 0 0

Listing 1. Excerpt of /proc/stat

The total number of busy cycles up to time t is defined as

cbusy[t] = cuser[t] + cnice[t] + csystem[t]. (8)

Here, cuser[t] are the user generated CPU cycles, while cnice[t]
and csystem[t] are the cycles created by low priority processes
and the system respectively. As we are interested in the
full system load, these processes must be included in the
calculation. The total number of cycles ctotal[t] is the number
of busy cycles cbusy[t] plus the number of idle cycles cidle[t]
This leads to

u[t] =
cbusy[t] − cbusy[t− 1]

ctotal[t] − ctotal[t− 1]
. (9)

Hence, the utilization at time t is calculated based on the
difference of utilization cycles during the last measurement
period.

Similar to the CPU monitor, a network monitor was written
to keep track of the network utilization. The advantages of this
approach are the low overhead, as the proc filesystem is used,
the possibility to use any traffic generator and the elimination
on parsing the output of bandwidth measurement tools. The
drawback is the reduced accuracy of the first and last sample of
an experiment. The influence of these is eliminated by running
each test for a considerable time. The /proc filesystem is
read at /proc/net/dev, returning the processed packets
on kernel level. This is advantageous, as it contains the raw
number of bytes sent and received via the interface. Similar
to the /proc/stat file, the counters are incremental. The
current bandwidth (in B/s) is calculated by

r[t] =
B[t] − B[t− 1]

∆T
(10)

where ∆T is the time interval between t − 1 and t and B[t]
is the absolute amount of data transmitted or received on the
interface.

E. Load Generation

To measure the different operating points of the CPU and
the network interfaces, it is required to generate a configurable
load. For this a combined approach of a load generator and
load limiter is chosen. The CPU utilization is limited using
a tool called cpulimit. It is available from the Raspbian
repositories but has one major drawback for the measurements.
It is designed to limit the CPU utilization of a specific process
(including its children), but cannot control the overall CPU
utilization. Hence, the cpulimit source code was modified to
measure the full system utilization. The unmodified version
of cpulimit reaches the targeted utilization very accurately
because it has no external disturbance. After modifying the
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1 i n t main ( i n t argc , char∗ a rgv [ ] ) {
2 v o l a t i l e i n t x =0;
3 v o l a t i l e i n t y ;
4 whi le ( 1 ) {
5 y=x+x ;
6 x ++;
7 }
8 re turn 0 ;
9 }

Listing 2. Source Code to keep the CPU busy

source code, all other processes also influence the measured
CPU utilization. Hence the variance is higher. The load is
generated by running an infinite loop adding numbers as
shown in Listing 2, filling up the CPU load to the desired
limit.

The load on the network interfaces may be generated by a
number of tools. The basic differentiation of these is between
TCP and UDP connections. TCP is the most widely used
protocol in the Internet, hence, its performance is of high
interest. Still, UDP has a number of advantages considering
the measurements. The most important aspect is the missing
traffic control, which allows configuring a fixed data rate
beforehand. This further eliminates the errors introduced by
TCP’s slow start and congestion avoidance algorithms. As
UDP uses no back channel, the measurement of only the
incoming or outgoing traffic counter is sufficient. Furthermore,
only the bytes on the wire are used to calculate the power
consumption. Considering the final model, the selection of
UDP has no influence on the applicability of the final power
model. Contrary, the accuracy of the measurements is im-
proved. As the kernel file system is evaluated during the model
generation, the power consumption generated by TCP traffic
can be modeled as well.

As a traffic generator, iPerf was selected. It allows config-
uration of the bandwidth for UDP connections. The measure-
ments are automated using a script running iPerf in different
configurations. iPerf also returns traffic statistics during and
after each run, but these miss the required accuracy. Further-
more, they only contain the self generated traffic and require
parsing of the command line output.

III. MEASUREMENTS

The measurements were conducted in a home environment
during the night to reduce potential interference of the WiFi
measurements. The power measurements are conducted with
a sampling rate of 1 kS/s, while the maximum update rate of
the bandwidth and utilization measurements is one sample per
second. Hence, a block-wise average is applied to the power
measurement samples. The start of the blocks was determined
based on the beginning of the utilization samples. All mea-
surement values between two system or network utilization
samples are averaged and then mapped to the second value.
The time difference between the utilization and bandwidth
measurement points is always below 80 ms. Hence, the time
difference may be neglected. Each test runs for 900 seconds,
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Fig. 2. Power consumption vs. CPU utilization

resulting in 900k power measurements, which are reduced
to 900 combined utilization and power measurements. For
each experiment 10 different operating points are configured
and measured, resulting in 90k independent samples for each
approximation. The CPU utilization measurement is executed
without network access to reduce external influences to a
minimum.

The collected measurements are plotted in a heat map to
allow a visualization of the density of the measurements. This
is advantageous compared to scatter plots, as the high number
of measurements reduces the visibility of the individual data
points. The heat map is logarithmically weighted to visualize
the full range of measurements. On top of the heat map, the
models derived in Section IV are plotted.

A. CPU

Figure 2 shows the result of the CPU measurements in the
range 10% to 100% in 10% steps and a fitted linear function
generated by Matlab’s R© robustfit function. The horizon-
tal extent of the data spots reflects the accuracy of the CPU-
limiting script. The variation is clearly smaller than ±5%. The
power measurements between the different configurations are
overlapping. This can be explained by the discrete number of
frequency scaling steps in the processor. As the plotted values
are averages of the individual measurements, the discrete steps
are not visible. Still, this improves the visibility of the trend.
As the number of power samples is 1000 times higher than
the displayed values, the averages still reflect the underlying
power consumption.

B. Ethernet

The power measurements in this section use the power
model proposed in Section IV-A. From the raw measurements,
the power consumption generated by the idle state and CPU is
subtracted. Remaining is the power of the network transmis-
sion only. This is possible, as during the measurements, the
network load and the CPU utilization were monitored by the
respective scripts.
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Fig. 3. Ethernet power consumption during download vs. used bandwidth

Figure 3 shows the power measurements of the download
experiments over the link utilization as a heat-map. The
horizontal spread of the values denotes the variance in the
measured throughput. The deviation is quite small for all
data rates, indicating a low number of errors on the wire.
Still, the data rate is slightly lower than requested. The
power measurements stay in a range of 70 mW. There is
one deviation in the measured data for a rate of 50 Mbps,
where the power consumption is almost as low as the idle
power. This measurement was repeated several times to rule
out measurement errors. This deviation might be caused by
the design of the hardware, which is in an optimal state for
this rate. Still, the general trend of the power consumption
is increasing while receiving data on the Ethernet interface,
although the difference between the minimum and maximum
is quite small.

Figure 4 shows the same configuration, but uploads from
the platform are measured. The spread of the bandwidth mea-
surements is quite narrow for lower traffic rates, which shows
an accurate behavior of the traffic generator, while it is larger
for higher rates. This effect is thought to be caused by the
saturation of link and interfaces between the measurement PC
and the Raspberry Pi. Higher data rates lead to higher collision
probabilities, and hence, the actual data rates are lower than
the requested ones. The variance of the power measurements
is inverse to the variance of the traffic measurements. For
low traffic rates, the variance is high, which is thought to be
caused by frequent transitions between different power states
within the device. For higher rates, where the link is saturated,
this is less likely, which is also visible in the measurements
above 50 Mbps. The maximum increase over the idle power
for a fully utilized Ethernet interface while downloading is
96 mW at a rate between 30 Mbps and 40 Mbps. The lowest
power consumption while uploading data is 21 mW lower than
the power consumption of the idle interface. This behavior is
also visible in other measurements of consumer grade network
equipment [12], hence the result is plausible.
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Fig. 4. Ethernet power consumption during upload vs. used bandwidth
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Fig. 5. WiFi power consumption during download vs. used bandwidth

C. WiFi

Figure 5 shows the power consumption when receiving
data over WiFi. Contrary to the Ethernet measurements, a
distinct increase in power consumption based over the down-
link bandwidth is visible. The minimum power consumption
of the interface is 950 mW while idle and increases to 1.4 W
for a fully utilized link. Similar to the Ethernet down-link mea-
surements, the variance of the measured data rates is quite low.
The power measurements vary in a range of 100 mW, which
is acceptable given the accuracy of the CPU measurements in
Figure 2. Still, for higher data rates (>85 Mbps) two distinct
power states are visible.

Figure 6 shows the power consumption of the WiFi interface
during upload. Similar to the download tests, the spread of
the measured data-rates is limited for lower bandwidths. For
higher rates (>40 Mbps) the measurements begin to spread.
This is thought to be caused by the higher computational effort
required to create the frames and coordinate the connection.

This is also reflected in the power consumption, which is
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Fig. 6. WiFi power consumption during upload vs. used bandwidth

more than 700 mW higher at the upper end, when compared
to the downloads. There is an interesting effect visible at
the 3 Mbps measurement. This might be caused by the
802.11 protocol, switching to different coding schemes when
interference is encountered. Still, this effect is not visible in
the download measurements.

IV. MODEL GENERATION

The power model for the different measurements is gen-
erated by fitting a linear function to the measured data,
minimizing the remaining root mean square error (RMSE).
For this purpose, Matlab’sTM robustfit function is used.
This function is based on an iterative process fitting the linear
function to the data, minimizing the RMSE. The detailed
process is described in [13]. The underlying data are weighted
with a bi-square function to reduce the effect of outliers on
the final fit.

A. Description of the Power Models

The measurements of the CPU utilization in Figure 2 show
a clear linear dependency. This observation is confirmed, by
calculating the 1st order regression. The resulting function for
the platform including CPU utilization is

PPi,CPU(u) = 1.5778W + 0.181 · u · W. (11)

Here, u is the CPU utilization in the range 0 to 1 as defined
in Equation 9. The resulting RMSE is 18.9 mW, which
corresponds to an error of 1.2%. The measurements below
10% CPU utilization represent the idle state of the Raspberry
Pi without additional load.

Figure 3 shows the fourth order approximation to the
Ethernet download measurements, for which Matlab’s R©

robustfit function was used. The resulting RMSE of the
4th order function is 14 mW. This is only slightly lower than
the RMSE of the first order approximation of 16 mW. For
practical reasons, it might be sufficient to use the first order
function when estimating the power. The equations for all
approximations up to 4th order are detailed in Table I.

The graph in Figure 4 shows the second order approxi-
mation to the WiFi down-link measurements. The resulting
RMSE of 8 mW shows the good fit of the model to the mea-
sured data. Still, for higher bandwidths, the error is increasing.

The WiFi download measurements in Figure 5 show a
minimum (idle) power consumption of 950 mW, while the
full utilization of the interface adds an additional 400 mW to
this. The approximation plotted in the figure shows the second
order model, resulting in a RMSE is 26 mW.

The power model plotted in Figure 6 is the second order
approximation to the WiFi upload measurements. Looking at
the data, also a first order model might be possible. The RMSE
of the first order approximation is 83 mW, while the second
order model results in a RMSE of 71 mW. Hence, the gain of
using the higher order model is minimal.

B. Combined Power Model and Usage

Table I shows the approximations of the power consumption
of the Raspberry Pi for different utilization. The first column
is the symbol used in the text to refer to this function. The
second column indicates the approximation order, while the
third column gives the RMSE, which is the mean error to
be expected when using the model. The last column lists the
formula describing the dependency between utilization and
power consumption.

The table is grouped to distinguish the different measure-
ment categories. The first group gives the idle power consump-
tion of the Raspberry Pi for different power states. PEth,idle

and PWiFi,idle denote the power draw when the platform is
idle. The second group describes the power consumption of the
platform depending on the CPU utilization. This is included as
the variable u, giving the CPU utilization as defined in Equa-
tion 9. The remaining groups show the power consumption of
the data transfers on both network interfaces. The first term of
each model in these groups is a correction term necessary to fit
the model to the constants determined before. The other terms
are modeled to depend on the transferred data rate r in Mb/s
or the CPU utilization u as defined in Equation 9. This results
in an additive model, where the absolute power consumption
of the Raspberry Pi can be modeled on a per-component basis.
The model can be expressed as

PPi = Pidle+PCPU(u)+
∑
if

(Pif,idle + Pif,up(r) + Pif,dn(r)),

(12)
where the constants Pidle and Pif,idle and the approximations
PCPU(u) and Pif,d(r) are defined in Table I. Here, the
interface if is either WiFi or Eth.

The RMSEs of the built in components are generally quite
low (<18 mW). Only the WiFi measurement shows a larger
error. This is explained by a higher power consumption of the
USB dongle, leading to a higher variance of the combined
measurements. The power consumption of the USB WiFi
dongle with 2 W is double the platform’s power consumption,
and close to the maximum allowed power draw of a USB 2.0
device of 2.5W.
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TABLE I
THE POWER MODELS OF THE RASPBERRY PI. HERE, u IS THE CPU UTILIZATION IN THE RANGE 0 TO 1 AND r THE TRAFFIC RATE IN MB/S

Function Ord. RMSE Model

Pidle 0 15 mW 1.5778 W

PEth,idle 0 9 mW 0.294 W

PWiFi,idle 0 8 mW 0.942 W

PCPU(u) 1 18 mW 0.181W · u

PEth,dn(r) 1 16 mW 0.006W+ 1.060e−3 · r · W
Mbps

PEth,dn(r) 2 17 mW 0.003W+ 1.634e−3 · r · W
Mbps

− 6.531e−6 · r2 · W
Mbps2

PEth,dn(r) 3 16 mW −0.002W+ 2.702e−3 · r · W
Mbps

− 3.838e−5 · r2 · W
Mbps2

+ 2.331e−7 · r3 · W
Mbps3

PEth,dn(r) 4 14 mW −0.008W+ 4.792e−3 · r · W
Mbps

− 0.164e−3 · r2 · W
Mbps2

+ 2.509e−6 · r3 · W
Mbps31

− 12.498e−9 · r4 · W
Mbps4

Peth,up(r) 1 11 mW 0.000W+ 2.327e−3 · r · W
Mbps

Peth,up(r) 2 8 mW −0.002W+ 5.542e−3 · r · W
Mbps

− 45.850e−6 · r2 · W
Mbps2

PWiFi,dn(r) 1 59 mW 0.057W +4.813e−3 · r · W
Mbps

PWiFi,dn(r) 2 26 mW 0.010W+ 11.003e−3 · r · W
Mbps

− 71.988e−6 · r2 · W
Mbps2

PWiFi,up(r) 1 83 mW 0.064W+ 4.813e−3 · r · W
Mbps

PWiFi,up(r) 2 71 mW 0.020W+ 24.387e−3 · r · W
Mbps

− 1128e−6 · r2 · W
Mbps2

V. RELATED WORK

Currently, the main focus of related work is on analyzing
and improving the energy efficiency of either high perfor-
mance networking, mobile devices or network interfaces only.
To the best of our knowledge, no power model for the
Raspberry Pi is available, neither is there one for any of the
other low-cost low-power ARM boards.

The power consumption of low power high efficiency pro-
cessors (ARM, Intel ATOM) is compared to conventional high
performance processors in [15]. Results of different bench-
marks normalized by the power consumption of the processors
are compared, concluding that, depending on the benchmark,
the energy efficient variants of conventional desktop (i7) or
server processors (Xeon E7) outperform ARM processors
for most benchmarks in the number of achieved points per
watt. The energy efficiency of ARM cores in a data-center
environment is evaluated by Tudor et al. [23]. They analyze the
combined impact of the CPU performance and the limitations
of the memory access, which on ARM systems is generally
slower compared to x86 CPUs, on the energy required to fulfill
a particular tasks. As currently servers are usually operated in
a CPU range of 10% to 50% [2], the power consumption while
idle should also be included in the benchmarks.

Gomez et al. [7] have developed a power measurement
and control board named Energino. They measure the power
consumption of the WiFi adapter of a PCEngines ALIX 3D2
(500 MHz x86 CPU, 256 MB RAM) and generate an energy
model for WiFi traffic. Measurements are taken using a custom
built Arduino based power measurement platform (Energino)
with a power resolution of 135 mW and time resolution

of 10 ms. The absolute accuracy of the Energino is not
detailed in the paper. Their strength is the low price of the
measurement platform and the versatile placement options,
which are achieved by including ZigBee communication chips
for collecting the measurements. The measurements focus on
deriving a model for traffic generated or received by the AP,
but neglect the analysis of the computational complexity of
WiFi encryption and the Ethernet interface.

Diouri et al. analyze the accuracy of different power me-
tering approaches [6] for desktop and server machines. They
compare the results of internal and external power measure-
ments and analyze the influence of the sampling rate on the
visibility of features on the generated graphs. Their conclusion
is that the sampling rate must be adapted to the system being
measured, but the accuracy of the sampling with different rates
is not evaluated. Furthermore, averaging of measurements is
not conducted to compare the overall accuracy over a given
time interval.

Closest to this publication is the work by Nunez-Yanez et
al. [17]. They analyze the processing and memory performance
and energy consumption of an ARM Cortex-A9 chip manu-
factured for energy efficient processing in smartphones. Still,
the influence of the network components is excluded.

VI. CONCLUSION AND OUTLOOK

This paper presented PowerPi, a power model for the
Raspberry Pi, which includes the CPU and Ethernet power
consumption as well as the power consumption of an external
USB WiFi dongle. The power model is modular to incorporate
all measured components.
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At the beginning of the paper, the following hypotheses
were made:

• An accurate estimation of the Raspberry Pi’s power
consumption can be obtained using the system utilization
only.

• Knowing the power model, it is possible to reduce the
power consumption by optimizing the software running
on the platform.

The error of the model has been evaluated based on the
measurement accuracy and the error introduced by the model.
The resulting errors for the built-in components are in the
order of tens of mW only. PowerPi can be used to improve
the energy footprint of software running on the Raspberry Pi,
using system traces only. Similar power models can easily be
generated for other devices by repeating the same measure-
ments. These power models are valuable, as future Internet
services may likely run on the end-user’s premises. Examples
of possible future distributed services are NaDas [24], Multi-
service Home Gateways [20] or HORST [21]. These aim at
improving the Quality of Service (QoS) of the specific service
and reducing the dependency on the up-link bandwidth, while
requiring local computation and storage.

Using the PowerPi model, and similar models of other
devices connected to the network, it becomes possible to
estimate the power consumption of the full network for a
given load. Hence, energy efficiency improvements of the
full network infrastructure are possible based on the power
models and the system utilization only. This eliminates the
need for dedicated power measurement hardware, but allows
derivation of the power consumption with an accuracy of
lower than 3.3%. For a networked system specialized on
traffic forwarding, the traffic statistics alone are sufficient to
generate accurate predictions of the network state and power
consumption. This allows optimizing the traffic flows to use
the most energy-efficient paths, or redirect computations to the
most energy-efficient location based on the current utilization.
Thus, both hypotheses are supported by this paper.
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