
Performances of Cryptographic Accumulators
Amrit Kumar
Privatics team

INRIA Rhône-Alpes
Grenoble, France

Email: amrit.kumar@inria.fr

Pascal Lafourcade
LIMOS

Université d’Auvergne
Clermont Ferrand, France

Email: pascal.lafourcade@imag.fr

Cédric Lauradoux
Privatics team

INRIA Rhône-Alpes
Grenoble, France

Email: cedric.lauradoux@inria.fr

Abstract—Cryptographic accumulators are space/time efficient
data structures used to verify if a value belongs to a set. They have
found many applications in networking and distributed systems
since their introduction by Benaloh and de Mare in 1993. Despite
this popularity, there is currently no thorough performance evalu-
ation of the different existing designs. Symmetric and asymmetric
accumulators are used likewise without any particular argument
to support either of the design. We aim to establish the speed
of each design and their application’s domains in terms of their
size and the size of the values.

Index Terms—Cryptographic accumulators, Bloom filter, Per-
formance

I. INTRODUCTION

Cryptographic accumulators are space/time efficient data
structures that are used to test if a value belongs to a given
set. They are the cryptographic counterpart of a data structure
very popular in the field of networking: the Bloom filter [3].

Similar to a one-way hash function, cryptographic accumu-
lators generate a fixed-size digest representing an arbitrarily
large set of values. Interestingly, an asymmetric accumulator
further provides a fixed-size witness for any value of the set,
which can be used together with the accumulated digest to
verify its membership in the set. The security requirement is
that the verification succeeds only for the elements of the set.

Since their appearance as a cryptographic primitive in [2],
accumulators have received attention in both directions: de-
signing efficient and dynamic primitives and providing novel
applications in different domains. Many applications have been
found ranging from search on encrypted data [5] to data
aggregation in sensor networks [10] and distillation codes [7]
among several others.

Despite their widespread applications, in many works, the
choice of the accumulator is not motivated: it is therefore hard
to know if the proposed solution is the most appropriate one.
For instance, Zachary [14] uses RSA accumulator to detect
unauthorized nodes in a sensor network. Indeed any other
accumulator can potentially replace RSA accumulator as the
only goal in this scenario is to test set-membership.

Some of the previous works ([4], [9], [12]) partially study
the performance of accumulator based primitives. These in
general only consider certain accumulators coupled with an ar-
bitrarily chosen hash function and fixed security parameters in
certain cases. In this perspective, we fill this gap by providing
a complete evaluation of different schemes (symmetric as well
as asymmetric) in a stand-alone manner, using varied security

levels and studying the impact of other implicit parameters
such as hash functions.

Contributions: We provide a software performance eval-
uation (see [8] for the full version of this paper) to determine
which accumulator offers the best verification time. We also
analyze the impact of implicit parameters (in particular hash
functions) which affect efficiency.

From our benchmarks, we observe that elliptic curve cryp-
tography (ECC) based accumulators have the best verification
time followed by secure Bloom filters and lastly RSA. The
former two are affected by the length of the values accumu-
lated while RSA is immune to this. More details are provided
in the following sections of the paper.

We first give cryptographic recalls concerning accumulators
and provide a few asymmetric and symmetric constructions.

II. CRYPTOGRAPHIC ACCUMULATORS

Informally, an accumulator is a space/time efficient algorith-
mic solution to the set-membership problem, which consists in
determining if a value belongs to a set. This set of values is
often represented by a compact data structure such that for
each value of the set it is possible to compute a witness that
determines if the value is incorporated in the accumulator.

Definitions: The notion of cryptographic accumulator,
or accumulator for short, was first coined by Benaloh and
de Mare in the seminal work [2]. The accumulators in this
work are defined as a family of one-way hash functions
(Def. 1) which satisfy an additional quasi-commutative prop-
erty (Def. 2).

Definition 1 (One-way hash functions [2]). A family of one-
way hash functions is an infinite set of functions Hλ := {hu :
Xu × Yu → Zu} having the following properties:

1) For security parameter λ and each integer u, hu(x, y)
is computable in time polynomial in the parameter λ for
all x ∈ Xu and for all y ∈ Yu.

2) For any probabilistic polynomial-time algorithm A the
following probability is negligible in λ:

Pr[hu
$← Hλ; y, y′

$← Yu;x
$← Xu;x

′ ← A(1λ, x, y, y′)

: hu(x, y) = hu(x
′, y′)]

We recall that f : N → R is a negligible function in the
parameter n, if for every positive polynomial p, there exists
N , such that for all n > N , we have f(n) < 1

p(n) .

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 366

Definition 2 (Quasi-commutativity [2]). A function f : X ×
Y → X is quasi-commutative if:

∀x ∈ X,∀y1, y2 ∈ Y f(f(x, y1), y2) = f(f(x, y2), y1)

A one-way quasi-commutative function provides a primitive
to design an accumulator. A function f : X×Y → X is chosen
depending on some security parameter together with an initial
value x ∈ X . A set of values Y ′ = {y1, y2, . . . , yn} ⊂ Y
accumulates to a value z using the following equations for
1 ≤ i ≤ n: z0 = x

zi = f(zi−1, yi)
z = zn

A witness wi for a value yi is the accumulated value for the
set Y ′ \ {yi}. Clearly, given a value yi, and its corresponding
witness wi, one can easily verify if yi had been accumulated
by verifying the equality z = f(wi, yi), which holds due to
the quasi-commutativity of f . The accumulator is secure if the
verification fails for any y ∈ Y \ Y ′ with a high probability.

A. Some Instances

We briefly present below the accumulators we study in this
work, which can be broadly classified into: asymmetric and
symmetric ones.

1) Asymmetric Accumulators: Asymmetric accumulators
are those which require witness for verification and are built
on asymmetric cryptographic primitives. The first accumulator
proposed by Benaloh and de Mare [2] is asymmetric. The con-
struction uses modular exponentiation f(x, y) = xy mod N
as a one-way quasi-commutative function since it satisfies:

f(f(x, y1), y2) = (xy1)y2 = (xy2)y1 = f(f(x, y2), y1)

For exponentiation to be used for one-way accumulators, the
modulus is chosen to be a product of two safe primes p and q
of equal size. A prime p is safe if p−1

2 is also a prime number.
A malicious attacker knowing the accumulated value z may try
to forge a witness w for a randomly chosen value y by finding
an initial value x verifying xy mod N = z. However, this is
infeasible under the RSA assumption, Def. 3.

Definition 3 (RSA assumption). When the modulus N is
sufficiently large and randomly generated, and the exponent y
and a value z are given, it is hard to compute x satisfying xy

mod N = z.

However, as informally noticed in [2] and later recognized
by Nyberg in [11], one-wayness imposed in the definition
might not suffice for certain applications where an adversary
has access to the list of values to be accumulated. To remedy,
one should consider a stronger property called strong one-
wayness (Def. 4) where the attacker is not imposed the choice
of y′ as in Def. 1.

Definition 4 (Strong one-way hash functions [2]). A family
of strong one-way hash functions is an infinite set of functions
Hλ := {hu : Xu×Yu → Zu} having the following properties:

1) For security parameter λ and each integer u, hu(x, y)
is computable in time polynomial in the parameter λ for
all x ∈ Xu and for all y ∈ Yu.

2) For any probabilistic polynomial-time algorithm A the
following probability is negligible:

Pr[hu
$← Hλ; y

$← Yu;x
$← Xu;x

′, y′ ← A(1λ, x, y) :

hu(x, y) = hu(x
′, y′)]

As recommended in [2], a value to be accumulated is either
hashed or encrypted before taking it to the accumulator, which
hence provides strong one-wayness1.

Another construction proposed by Karlof et al. [7] uses
elliptic curve to build an accumulator. To accumulate the
values (scalars), they are multiplied with the public-key (i.e. a
scalar times the base point of the curve). Witness generation
follows the same algorithm but excludes the corresponding
value. Verification is simple and involves checking for equality
if the multiplication of the witness and the value equals the
accumulated value.

2) Symmetric Accumulators: Symmetric accumulators are
those which do not require witness for verification and are
built on symmetric cryptographic primitives. Bloom filters [3]
by construction can be used as a symmetric accumulator.
Furthermore, Yum et al. in [13] prove that they excel over
other symmetric accumulators. Secure Bloom filter consists
of k hash functions {fi : Y → X} and a vector ~x (of size `)
initialized to ~0. Each hash function uniformly returns a vector
index. To add a value to the accumulator, it is fed to each of
the hash functions to obtain k indices. The bits of ~x at these
indices are set to 1. To verify if a given value was accumulated,
the k hash functions are again applied to obtain the vector
indices. If any of the bits of the accumulated vector at these
indices is 0, then value was certainly not accumulated. If all
the bits at these indices are 1, then the value is in the filter
(with a small false positive probability). Another variant of
secure Bloom filter uses Hash-based Message Authentication
Code (HMAC) instead of hash functions.

We note that the size ` increases with the number of
elements in the filter or if the false positive rate is set lower.

III. EXPERIMENTS

Our aim is to evaluate the performances of existing crypto-
graphic accumulators in order to compare them. For this, we
have implemented the original RSA-based accumulator [1],
[2], ECC-based accumulator described in [7], secure Bloom
filter using cryptographic hash functions [13] and HMAC-
SHA-1 based accumulator mentioned in [5].

We note that another variant of cryptographic accumulator
called dynamic accumulators exist, which allow constant-time
addition/deletion to/from the accumulator. However, this work
only considers static accumulators (as previously presented),
since they capture the essential notion of membership testing.

1Another stronger notion of collision resistance (requiring the values to be
prime) has also been studied [1], but due to space constrainsts, it has not been
included in this work. See the full version for details and experiments [8].

367

For symmetric accumulators, we only consider Bloom filter
for our evaluation as they perform better (see [13]) over
accumulator proposed by Nyberg [11].

Several pairing-based accumulators have also been pro-
posed in the past. However, due to continuous and recent
attacks [6] on existing pairing friendly curves, no officially
recommended curves have been proposed until now. We hence
exclude pairing-based accumulators from our evaluation. How-
ever, interested readers may refer to [9], [12] where older
curves have been considered for benchmarking.

A. Scenario and Cryptographic Parameters

To benchmark the different cryptographic accumulators, we
used different size S for the accumulated values. The size S
varies from 128 (minimum acceptable RSA key size) to 2048
bytes which is representative of X.509 certificates. The number
n of values in an accumulator is arbitrarily fixed to 1000.

In case of Bloom filter, if ε is the probability of false pos-
itive, then the (optimal) number of hash functions considered
is k = − log2(ε).

The respective parameters of each accumulator and the
elliptic curves (integrated in OpenSSL) are given in Table I.

Accumulator Parameters size
RSA 1024 2048 3072
ECC binary 163 283 571
ECC prime 160 256 521
Bloom (− log2 ε) 128 256 512

Prime field Binary field
secp160r1 sect163r1
secp256r1 sect283r1
secp521r1 sect571r1

TABLE I
SECURITY AND PARAMETER SIZES IN OUR EXPERIMENTS.

B. Software and Settings

All implementations are in C. RSA accumulator is imple-
mented using GNU multi-precision library GMP2 version 4.2.1
to handle arbitrary precision arithmetic on integers. ECC-based
accumulator uses OpenSSL (version 1.0.1) EC library.

To ensure strong one-wayness required for accumulators [2],
we use SHA-1, HMAC-SHA-1, SHA-256 and SHA-3. The
values to be accumulated are hashed using one of these
functions before adding it to the accumulator. The OpenSSL
implementation of SHA-1, HMAC-SHA-1 and SHA-256 has
been used. The optimized code of Keccak available in version
3.2 3 has been used for SHA-3.

Our target platform is a 64-bit processor desktop computer
powered by an Intel i7 3520M processor at 2.90 GHz with 4
MB cache and running 3.8.0-35 Ubuntu Linux. We have used
GCC 4.3.3 with -O3 optimization flag.

C. Memory and Communication Cost

In applications, memory and communication costs are criti-
cal. The size of the accumulator is an inevitable memory cost.
The size ` of a secure Bloom filter is given by ` = −n log2(ε)

ln 2
with ε the false positive probability. For ε = 2−128 and
n = 1000, a secure Bloom filter (184,664 bits) is 180 times
bigger than a 1024-bit RSA accumulator and 1154 times
bigger than a 160-bit ECC accumulator. The key size for RSA

2http://gmplib.org/
3http://keccak.noekeon.org/files.html

and ECC determines the size of the respective accumulator.
Therefore, ECC-based accumulators outperform RSA-based
ones.

For ε = 2−128 and n ≥ 12, even 2048-bit RSA accu-
mulators are smaller than secure Bloom filter. The 160-bit
ECC accumulator is obviously less expensive than RSA based
accumulator and hence it is often the best solution in terms of
memory. If secure Bloom filters are costly in memory, they are
inexpensive in communication: they do not require witnesses
as in ECC and RSA. In the next section, we investigate the
speed of accumulators.

IV. RESULTS

For all accumulators, we measure the time needed to verify
if a value belongs to an accumulator. The results presented
in the paper are the average values for 100000 repetitions of
the same experiment. We first give individual results on each
accumulator and then make an overall comparison.

A. Individual Results
1) RSA-based: We use the following RSA key sizes

{1024, 2048, 3072}. In Fig. 1, we first observe that the key
length has (obviously!) a big influence on the performance. If
we consider SHA-1 as deprecated, the choice of the hash func-
tion (SHA-256 or SHA-3) has little influence. Moreover, the
message size S also has no influence on the verification time.
The cost of hashing is subdued by the cost of exponentiation.

SHA-1

3072
2048
1024

Time (ms)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

128 728 1,328
Size (bytes)

SHA-256

Time (ms)

128 728 1,328
Size (bytes)

SHA-3

Time (ms)

128 728 1,328
Size (bytes)

Fig. 1. Verification time for RSA-based accumulators with different key size
{1024, 2048, 3072} with SHA-1, SHA-256 and SHA-3.

2) ECC-based: We observe from Fig. 2 and Fig. 3 that for
almost the same security level binary elliptic curve of degree
163 performs better than elliptic curve over 160 bit prime field.
We further remark that unlike in RSA accumulator where hash
function has no impact, in case of elliptic curve, the impact
of hash functions (SHA-1 and SHA-256) appears visible for
larger size of the values. This phenomenon appears because for
large values, cost of hashing is comparable to the cost of point
multiplication on elliptic curve. Unlike other hash functions,
SHA-3 does not influence the verification time as we use the
optimized version of Keccak.

368

SHA-1

521
256
160

Time (µs)

0

3

6

9

12

15

18

21

24

27

30

128 728 1,328
Size (bytes)

SHA-256

Time (µs)

128 728 1,328
Size (bytes)

SHA-3

Time (µs)

128 728 1,328
Size (bytes)

Fig. 2. ECC prime

SHA-1

571
283
163

Time (µs)

0

3

6

9

12

15

18

21

24

27

30

128 728 1,328
Size (bytes)

SHA-256

Time (µs)

128 728 1,328
Size (bytes)

SHA-3

Time (µs)

128 728 1,328
Size (bytes)

Fig. 3. ECC binary

3) Symmetric Accumulators: In Fig. 4, we analyze the ver-
ification time for different size of values for SHA-1, HMAC-
SHA-1, SHA-256 and SHA-3 with ε ∈ {2−128, 2−256, 2−512}.
If k is the number of calls to the cryptographic hash function.
We have k = − log2(ε). Any effect or artifact on the
performance of the hash function is amplified k times on the
verification using a secure Bloom filter. It explains why the
verification time grows linearly for SHA-1, HMAC-SHA-1
and SHA-256. For optimized SHA-3, we observe a step-wise
progression. The size of the step is 1000 bytes.

Time (µs)

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750
SHA-1

512

256

128

128 728 1,328
Size (bytes)

HMAC-SHA-1Time (µs)

128 728 1,328
Size (bytes)

Time (µs) SHA-256

128 728 1,328
Size (bytes)

SHA-3Time (µs)

128 728 1,328
Size (bytes)

Fig. 4. Verification time for secure Bloom filter as a function of the value’s
size and for different false positive values ε ∈ {2−128, 2−256, 2−512}.

Overall comparison: With the obtained results, we high-
light that: ECC-based accumulators are the most efficient,
then we have Bloom filter and at the bottom, the RSA-

based accumulators.
We note that building a RSA-based accumulator with n

elements would cost n-times the cost of a verification. This
is due to the fact that building an accumulator would involve
n modular exponentiations. The same holds for ECC-based
accumulator and Bloom filter.

V. CONCLUSION

We present a software based performance analysis of crypto-
graphic accumulators. Our work considers rather big-size data
ranging from 128 bytes (1024 bits) to 2048 bytes. These sizes
are appropriate for Certificate Revocation Lists (CRL) which
are widely used in PKI infrastructure. It is important to notice
that CRL file size can become very large, for example CRLs
issued by VeriSign4 can be a megabyte in size. In order to
efficiently store such sensitive data non-cryptographic Bloom
filters are often used as a space efficient data structure. Our
analysis demonstrates that for such application scenarios ECC
can reduce the memory footprint and improve the verification
at the cost of a witness.

Acknowledgement. This research was conducted with the
support of the “Digital trust” Chair from the University of
Auvergne Foundation. The work was also partly supported by
the LabEx PERSYVAL-Lab (ANR–11-LABX-0025) and the
project-team SCCyPhy.

REFERENCES

[1] N. Bari and B. Pfitzmann, “Collision-Free Accumulators and Fail-
Stop Signature Schemes Without Trees,” in Advances in Cryptology -
EUROCRYPT ’97. Springer, 1997.

[2] J. C. Benaloh and M. de Mare, “One-Way Accumulators: A Decen-
tralized Alternative to Digital Sinatures,” in Advances in Cryptology -
EUROCRYPT ’93. Springer, 1993.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, 1970.

[4] S. A. Crosby and D. S. Wallach, “Authenticated dictionaries: Real-world
costs and trade-offs,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 2, 2011.

[5] E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive, Report
2003/216, 2003, http://eprint.iacr.org/2003/216/.

[6] T. Hayashi, T. Shimoyama, N. Shinohara, and T. Takagi, “Breaking
pairing-based cryptosystems using t pairing over gf(397),” in Advances
in Cryptology - ASIACRYPT 2012. Springer, 2012.

[7] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D. Tygar, “Distillation
Codes and Applications to DoS Resistant Multicast Authentication,” in
NDSS. The Internet Society, 2004.

[8] A. Kumar, P. Lafourcade, and C. Lauradoux, “Performances of Cryp-
tographic Accumulators,” Tech. Rep., 2014, http://hal.archives-ouvertes.
fr/hal-00999432.

[9] J. Lapon, M. Kohlweiss, B. Decker, and V. Naessens, “Performance
analysis of accumulator-based revocation mechanisms,” in Security and
Privacy Silver Linings in the Cloud. Springer Berlin Heidelberg, 2010.

[10] Z. Li, “Efficient Authentication, Node Clone Detection, and Secure Data
Aggregation for Sensor Networks,” Ph.D. dissertation, University of
Waterloo, 2010.

[11] K. Nyberg, “Fast Accumulated Hashing,” in Fast Software Encryption -
FSE 1996. Springer, 1996.

[12] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated
hash tables,” in Proceedings of the 15th ACM Conference on Computer
and Communications Security. ACM, 2008.

[13] D. H. Yum, J. W. Seo, and P. J. Lee, “Generalized Combinatoric
Accumulator,” IEICE Transactions, vol. 91-D, 2008.

[14] J. Zachary, “A decentralized approach to secure management of nodes in
distributed sensor networks,” in Military Communications Conference,
2003. MILCOM ’03. 2003 IEEE, vol. 1, 2003.

4http://crl.verisign.com

369

