
An Approximation to Rate-Equalization Fairness
with Logarithmic Complexity for QoS

Jorge A. Cobb
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080
Email: cobb@utdallas.edu

Suparn Gupta
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080
Email: suparn.gupta@utdallas.edu

Abstract—Rate-guaranteed scheduling protocols ensure that
packets from each input flow are forwarded at a rate no less
than the rate reserved by the flow. WFQ is the classical example.
Many of these protocols, including WFQ, provide both rate and
fairness guarantees. In particular, they distribute unused capacity
among among the flows in proportion to the reserved rate of
each flow. In earlier work, we presented a scheduling algorithm
that distributes unused capacity to flows whose reserved rate is
the least. However, the per-packet complexity of this algorithm,
known as rate-equalization fairness, is linear in the number of
flows. Here, we present an algorithm that approximates rate-
equalization fairness, but with only logarithmic complexity per
packet.

I. INTRODUCTION

Rate-guaranteed schedulers [4], [7], [9] is a family of pro-
tocols that is able to provide a lower bound on the forwarding
rate of the packets of each flow, and also a bounded end-to-end
delay. Iconic examples of this protocol family include Virtual
Clock (VC) [14], [15] and Weighted Fair Queuing (WFQ) [11].

Most scheduling protocols provide both rate and fairness
guarantees, such as WFQ and its variants [11] [1] [5] [8]
[2]; they distribute the unused capacity among the flows in
proportion to the reserved rate of each flow.

In earlier work [6], we presented an alternative form of
fairness for rate-guaranteed schedulers: rate-equalization. Our
protocol firsts distribute unused capacity to flows whose re-
served rate is the least. This allocation continues until the
flows with least reserved rate and the flows with the next-to-
least reserved rate are given the same capacity. This continues,
level by level, until, if enough unused capacity is available, all
flows will receive the same capacity, and the scheduler will
simply behave like Fair Queuing.

The disadvantage of this protocol is its computational
complexity, which is in O(n) per packet received, where n
is the number of flows. In this paper, we present a protocol
that approximates the behavior of rate-equalization, but with
a smaller O(log(n)) complexity.

II. RATE-EQUALIZATION FAIRNESS

We next overview the motivation for rate-equalizing fair-
ness, which we introduced in [6]. On occasions, the bandwidth
of a channel is not fully utilized. Under these conditions, it
is possible for a flow to temporarily exceed its reserved rate,

in an attempt to take advantage of bandwidth unused by other
flows. We refer to this distribution of unallocated bandwidth
as the fairness method of the protocol.

Some protocols, like Virtual Clock (VC) [15][14], do not
address fairness. A consequence of this is that, if a flow
exceeds its reserved rate, it may later be denied service by
the scheduler, for a duration proportional to the time the flow
exceeded its rate [5]. Other rate-guaranteed schedulers, such as
Weighted Fair Queuing (WFQ) [11] and its variants [1] [5] [8]
[2], distribute unused bandwidth among flows in proportion to
the reserved rate of the flow. Specifically, the effective rate ψf

that is given to flow f (i.e., the rate at which the scheduler
actually forwards the packets of flow f) is

ψf (t) =
C(∑

g∈B(t)Rg

) ·Rf ≥ Rf (1)

where B(t) is the set of backlogged flows at time t and C the
capacity of the output channel.

Consider another flow g with Rf = 2 ·Rg . From (1),

(ψf −Rf) = 2 · (ψg −Rg)

Hence, WFQ favors flows with a higher reserved rate.
In [6], we introduced an alternative fairness method in

which the objective is to give every flow the same effective
rate, provided enough unused bandwidth is available. The
intuition behind it is the following. Flows whose applications
are rate-adaptive could reserve the minimum rate possible to
satisfy their QoS requirements, and thus minimize expense.
Any additional bandwidth is given to flows that need it the
most, i.e., flows with the least reserved rate.

A more detailed description is as follows. First, at all times,
the effective rate of any flow f , ψf , is at least its reserved
rate, Rf , i.e., Rf ≤ ψf . Next, consider another flow g, where
Rf < Rg . By definition, Rg ≤ ψg . In our method, if enough
unallocated bandwidth is available, ψf will increase until it
becomes equal to Rg , and thus, ψf will become equal to ψg .
Thus, flows with lower reserved rates will “catch up” to flows
with larger reserved rates.

Assume that more unallocated bandwidth remains. In this
case, the remaining unallocated bandwidth will be distributed
equally between f and g, maintaining the relationship ψf =

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 426

EQ Server

let B(t) be the set of backlogged flows at time t;
for every flow f ,

if f /∈ B(t), then
ψf,EQ(t) = 0

else
let b1, b2, . . . , bm be the flows of B(t)

ordered by increasing R;
let j, 1 ≤ j ≤ m, be the largest index such that

Rbj ≤
C −

∑m
k=j+1Rbk

j
< Rbj+1

;

let REQ =
C −

∑m
k=j+1Rbk

j
;

for each k, 1 ≤ k ≤ j, ψbk,EQ(t) = REQ;
for each k, j + 1 ≤ k ≤ m, ψbk,EQ(t) = Rbk ;

Fig. 1. Rate equalization fluid server

ψg . If there exists another flow h, where Rh > Rg , then ψf

and ψg increase equally until they reach Rh (assuming enough
bandwidth remains), and hence, ψf = ψg = ψh.

To summarize, our fairness method attempts to give all flows
the same effective rate. However, in doing so, the requirement
of Rf ≤ ψf for all f must be preserved at all times.

We next describe our fairness method in a more formal way.

III. RATE-EQUALIZATION SERVER AND SCHEDULER

Packet scheduling algorithms that provide fairness describe
their fairness method via a virtual fluid server. The packet
scheduler then mimics the fluid server as much as possible.
The fluid server and the packet scheduler have the same input
flows, and the same output channel rate. What distinguishes
them is the manner in which they forwards bits. Once the
packet scheduler begins to transmit a packet, the transmission
cannot be preempted. The fluid server, on the other hand, can
concurrently forward an arbitrary number of bits from a group
of flows; this, of course, is bounded by the capacity of the
output channel.

The effective rate ψf (t) mentioned earlier is actually the
instantaneous bit rate given to f at time t by the fluid server.
Thus, let ψf,EQ(t) be the instantaneous bit rate given to flow
f by the fluid rate-equalization server. This value is computed
as shown in Figure 1.

We next focus our attention on the packet scheduler.
In general, the purpose of a fluid server is to guide the

packet scheduler in the order it chooses to forward packets.
Typically, [3][11][12], for every pair of packets, p1 and p2,
if p1 finishes service in the fluid server before p2 finishes
service, then the packet scheduler will forward p1 before p2.
I.e., the packet scheduler tries to emulate the behavior of the
fluid server as much as possible.

For most fluid servers [3][11][12], at the moment a packet
arrives, the exit time that this packet will have from the fluid

FQ	

PCR	

Δ-‐RR	

PCR*	

(a) (b)

Fig. 2. Dual-Mode Scheduling

server is unknown. This is because the bit rate at which
the packet will be served depends not only on the packets
currently in the system, but also on packets that are yet to
arrive. In consequence, when a packet pf,i arrives into a packet
scheduler, the scheduler assigns to the packet a virtual exit time
Tf,i (see [11] for details on computing this value), such that,
for any other packet pg,j , Tf,i ≤ Tg,j iff the exit time of pf,i
from the fluid server is at most the exit time of pg,j . Packets
are then forwarded in order of their virtual exit times. Thus,
the packet scheduler forwards packets in the same order in
which they are forwarded by the fluid server.

A rate-equalizing fluid server, however, does not have this
order-preserving property. That is, if two packets pf,i and pg,j
are received, not only can’t their exit time from the fluid server
be determined, but also their relative exit times cannot be
determined. I.e., which of pf,i or pg,j exits first depends on
the future arrival of packets.

The lack of the order-preserving property affects the
scheduling complexity. For example, O(log(n)) implemen-
tations of WFQ [13] rely on this property. Thus, similar
techniques cannot be applied to rate-equalization. Although
we have not proven a lower bound, we speculate that a
precise implementation cannot be done in O(log(n)) time.
We thus search for an approximation to the fluid server of
rate-equalization that runs in O(log(n)) time.

IV. DUAL-MODE SCHEDULING

Backlogged flows in the fluid server can be considered to be
in one of two disjoint subsets: enhanced flows, whose effective
rate is greater than their reserved rate and all members have the
same effective rate, and un-enhanced flows, whose effective
rate is simply their reserved rate. This motivates our first
packet scheduler design, presented in Section IV-A. Although
intuitive, this first attempt is not efficient. We then present our
final scheduler design in Section IV-B

A. Flow-Migration Scheduler

Consider Figure 2(a). The service required for an un-
enhanced flow f is simply a constant rate Rf . This is provided
by a packetized constant rate scheduler (PCR), which is
described in more detail in Figure 3. It is similar to the Virtual
Clock protocol [14], except that it does not allow flows to

427

PCR Scheduler

upon receiving a packet pf,i,
let Sf,i be the time when the first bit of pf,i
begins service at a constant rate server of rate Rf

whose sole input is flow f ;
Ff,i = Sf,i + L/Rf ;

if output channel is idle at time t,
let pf,i ∈ Active(t) iff t ≥ Sf,i;
if Active(t) 6= ∅ then

let Fg,j = min{Ff,i | pf,i ∈ Active(t)};
forward pg,j to the output channel.

Fig. 3. Packetized constant-rate scheduler

exceed their reserved rate. Note that this scheduler is non-
work-conserving. Enhanced flows, on the other hand, have to
be served in an equal manner. This is best accomplished by a
fair-queuing (FQ) scheduler, also shown in Figure 2(a).

We thus have two schedulers, one for each type of flow.
Priority is given to the PCR scheduler; only if the PCR
scheduler is unable to provide a packet (due to its queues
being empty or all packets being ’inactive’), then the packet
transmitted is chosen from the FQ scheduler. Both of these
schedulers can be implemented in O(log(n)) time per packet
arrival/departure (FQ using the method of [13]).

The above method should work, provided the membership
in the enhanced and un-enhanced flow sets remains constant.
However, their membership depends on unallocated band-
width. An increase in unallocated bandwidth enhances more
flows, and a decrease un-enhances some flows.

Unallocated bandwidth comes from two sources: from band-
width that is not reserved by any flow, and from flows that
have temporarily stopped creating packets (empty queues).
The former is relatively stable (changes only when flows are
added or removed). In this case, the appropriate movement of
flows between the schedulers can be done before a new flow
is accepted or removed from the system. The latter cannot be
predicted, and may cause large changes in flow assignments
to the two schedulers. Thus, moving flows from one scheduler
to the other is not efficient, which prompts us to present below
our final version of the scheduler.

B. Static-Flow-Assignment Scheduler

Our final protocol, Approximate Packetized rate Equaliza-
tion (A-PEQ), is shown in detail in Figure 4, with an abstract
view in Figure 2(b). For this implementation, we make the
simplifying assumption that all packets of all flows have an
equal size, L.1 There are three major differences from the
previous scheduler.

First, all flows take part in both schedulers. This solves the
problem of having to move a large number of flows between

1We will investigate eliminating this restriction in future work.

A-PEQ Scheduler

upon receiving a packet pf,i,
if the queue of f , Qf , is empty, then

let ρmin = min{ρg | Qg 6= ∅};
ρf = max(ρf , ρmin);

add pf,i to Qf ;

if output channel is idle at time t,
model the behavior of PCR∗ to dequeue a packet;
let pf,i be the packet chosen by PCR∗;
let ρmin = min{ρg | Qg 6= ∅};
if Qf 6= ∅ then

dequeue and forward a packet from flow f ;
ρf = min(ρf + 1, ρmin + ∆);

else
let g satisfy ρg = ρmin;
forward the next packet of flow g;
ρg = ρg + 1;

Fig. 4. Approximate packetized rate equalization scheduler

the schedulers in a short period of time.
Second, the scheduler PCR* differs from PCR as follows.

PCR* assumes that every flow always has packets available
(even if its queue is empty). When it chooses a packet from f
for transmission, it checks the queue of f . If it is empty, then
the packet transmitted is instead a packet chosen by ∆-RR.
Even though f did not transmit a packet, PCR* updates its
state about f as if indeed it had transmitted a packet from f .

Third, instead of FQ, we have a modified round-robin
scheduling, which we denote ∆-RR. Each flow f has a round
number ρf in ∆-RR. When ∆-RR is asked to forward a packet,
it chooses it as follows.
• If ∆-RR is called because PCR* is unable to transmit a

packet, then ∆-RR chooses a packet from the backlogged
flow with the least round-number, and increases the flow’s
round number by one.

• If PCR* is able to transmit a packet from a flow f , then
the round-number of f is increased by one, even though
∆-RR did not output a packet.

The motivation for the above choices is as follows. Consider
two flows f and g, where f has a large reserved rate (always
un-enhanced in the fluid server) and g a small reserved rate
(always enhanced in the fluid server). All un-enhanced flows,
such as f , transmit packets from PCR* at a high rate, so their
round numbers in ∆-RR are higher than those of other flows.
The slower flows, such as g, are served in round-robin order,
and thus receive the same bandwidth.

Consider now two slow flows g and h, with g having a
greater reserved rate than h. Note that through their respective
packet transmissions at PCR*, the round number of g grows
faster than h’s. Nonetheless, both flows receive about the same
behavior from ∆-RR. This is because the unused bandwidth at

428

PCR* causes ∆-RR to serve the slowest flows, such as h, first,
which allows these flows to reach the same round numbers as
other flows, such as g.

One final detail remains. Assume the round number of flow
f , due to its large reserved rate, grows much larger than
that of other flows. Then, assume enough bandwidth becomes
available to make f an enhanced flow in the fluid server.
However, due its large round number, f will not receive service
in ∆-RR for a long time. To avoid this, we place a bound,
∆, on the difference between the round number of any flow
and the minimum round number of any backlogged flow, as
indicated in Figure 4.

The bound ∆ is a tunable parameter of the system. If
it is too large, enhanced flows may not receive their due
bandwidth, and if it is too small, bandwidth may be wasted
on un-enhanced flows.

V. PERFORMANCE BOUNDS

In this section, we briefly outline some of the upper bounds
on the performance of the A-PEQ scheduler. More in-depth
discussions and the proofs may be found in [10]. We first note
that A-PEQ is a rate-guaranteed scheduler.

Theorem 1: For every packet pf,i in the A-PEQ scheduler,
its exit time is at most Ff,i,CR + L/Rf .

The reason for the term L
Rf

, as opposed to the typical smaller
term L

C found in most protocols, comes from the PCR*
scheduler, due to the following. PCR* chooses f , and if it
finds f ’s queue empty, then control is passed to ∆-RR, but at
this very moment a packet from f arrives. Thus, the packet
has missed its scheduling opportunity in PCR*.

Next, the complexity of A-PEQ is as desired.
Theorem 2: Let n be the number of input flows to an A-

PEQ scheduler. The time complexity of processing a received
packet and the time complexity of selecting a packet for
transmission is O(log(n)).

For PCR*, an O(log(n)) time implementation is possible
using well-known techniques, such as maintaining only one
finishing time, Ff , for each flow f , as opposed to maintaining
one value per packet. Also, maintaining a queue of flows that
will become active at some time t can be done in O(log(n))
using the methods discussed in [2]. Implementing ∆-RR is
obviously O(log(n)), since it only needs to maintain the
smallest round number among the backlogged flows.

Finally, note that, contrary to schedulers like WFQ and PEQ,
A-PEQ does not simulate the behavior of the virtual fluid
server. Thus, it is difficult, if not impossible, to provide an
upper bound on the difference in the exit time of a packet
from the EQ fluid server and the A-PEQ packet scheduler.
This is why detailed simulations are presented in [13], which
are omitted here due to lack of space. Nonetheless, to argue
that A-PEQ does provide the desired fairness, we have the
following.

Theorem 3: Assume that starting from a time t, for each
flow in an A-PEQ scheduler, either its queue is always
empty or always non-empty. Let b1, b2, . . . , bm be the set of
backlogged flows. Let j be as defined in Figure 1. Hence,
flows b1, . . . , bj are permanently enhanced in the fluid server,
while flows bj+1, . . . , bm are permanently un-enhanced. Let
P (t1, t2, bk) be the number of bits from flow bk transmitted
by the A-PEQ scheduler during time interval [t1, t2]. Finally,
let

∆ >
Rmax

Rmin

where Rmax and Rmin are the maximum and minimum
reserved rates among the backlogged flows. Then,

• For every k, 1 ≤ k ≤ j, as t′ increases, P (t, t′, bk)
converges to REQ, where REQ is as defined in Figure 1.

• For every k, j + 1 ≤ k ≤ m, as t′ increases, P (t, t′, bk)
converges to Rbk .

REFERENCES

[1] J. C. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithms,” IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 675–
689, Oct. 1997.

[2] ——, “WF2Q: worst-case fair weighted fair queueing,” in IEEE INFO-
COM Conference, 1996.

[3] J. Cobb, “Universal timestamp scheduling for real-time networks,”
Computer Networks, vol. 31, pp. 2341–2360, 1999, Elsevier.

[4] J. Cobb and M. Gouda, “Flow theory,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 661–674, Oct. 1997.

[5] J. Cobb, M. Gouda, and A.-E. Nahas, “Time-shift scheduling: Fair
scheduling of flows in high-speed networks,” IEEE/ACM Transactions
on Networking, vol. 6, no. 3, pp. 274–285, Jun. 1998.

[6] J. A. Cobb, “Rate equalization: A new approach to fairness in deter-
ministic quality of service,” 37th Annual IEEE Conference on Local
Computer Networks, vol. 0, pp. 50–57, 2011.

[7] N. Figueira and J. Pasquale, “Leave-in-time: A new service discipline
for real-time communications in a packet-switching data network,” in
Proc. of the ACM SIGCOMM Conference, 1995.

[8] S. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” in IEEE INFOCOM Conference, 1994.

[9] P. Goyal, S. Lam, and H. Vin, “Determining end-to-end delay bounds
in heterogeneous networks,” in Proc.of the NOSSDAV Workshop, 1995.

[10] S. Gupta, “An approximation to rate-equalization fairness with logarith-
mic complexity for qos,” Master’s thesis, The University of Texas at
Dallas, May, 2014.

[11] A. K. J. Parekh and R. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, Jun.
1993.

[12] D. Stidialis and A. Varma, “Rate proportional servers: A design
methodology for fair queuing algorithms,” IEEE/ACM Transactions on
Networking, Apr. 1998.

[13] P. Valente, “Exact gps simulation with logarithmic complexity, and
its application to an optimally fair scheduler,” SIGCOMM Comput.
Commun. Rev., vol. 34, pp. 269–280, August 2004. [Online]. Available:
http://doi.acm.org/10.1145/1030194.1015497

[14] G. Xie and S. Lam, “Delay guarantee of the virtual clock server,”
IEEE/ACM Transactions on Networking, pp. 683–689, Dec. 1995.

[15] L. Zhang, “Virtual clock: A new traffic control algorithm for packet-
switched networks,” ACM Transactions on Computer Systems, vol. 9,
no. 2, pp. 101–124, May 1991.

429

