40th Annual IEEE Conference on Local Computer Networks

LCN 2015, Clearwater Beach, Florida, USA

JitVector: Just-in-Time Code Generation for
Network Packet Classification

Samuel Brack

Sven Hager

Bjorn Scheuermann

Computer Engineering Group
Humboldt University of Berlin, Germany
Email: {samuel.brack, hagersve, scheuermann}@informatik.hu-berlin.de

Abstract—Network packet classification plays a pivotal role
in packet-switched networks; it is at the heart of many func-
tions including firewalling, QoS routing, and OpenFlow-based
switching. However, packet classification is a hard problem, as
packets must be classified within a short time frame. Existing
classification techniques use sophisticated data structures which
are traversed by generic search algorithms—that is, the algorithm
is static, while the data structure reflects the configuration of
the classifier. In this paper, we propose to break up the strict
separation between data structure and algorithm by specializing
the algorithm’s implementation on the specific classification rules.
We demonstrate the feasibility of our approach by introducing
JitVector, which builds upon the well-known bit vector classifi-
cation algorithm, but generates instance-specific machine code at
runtime. In our evaluation, which also includes an integration
into the OpenFlow Reference Switch, we show that JitVector
achieves significant performance gains over an equivalent generic
search scheme.

Index Terms—Packet Classification; JIT; Bit Vector Search

I. INTRODUCTION

Network packet classification is a central building block
for many important functions in packet-switched networks [8],
[15]. In packet classification, incoming packets are categorized
using a specified classification rule set (e. g., firewall rules or
an OpenFlow flow table). Classification aims for high data
rates, in order to not cause a bottleneck in the network.
Accordingly, the research community has proposed a wide
variety of algorithmic schemes in order to accelerate the
matching process performed during packet classification [6]—-
[8], [13], [15]. Although these techniques differ largely in
detail, they all have in common that they translate a user-
specified rule set into a data structure which is subsequently
traversed by a generic search algorithm in order to classify
incoming packets. Hence, these approaches strictly distinguish
between data structure and search algorithm.

In this paper, we take the opposite approach and explore the
potential of a classification algorithm which is specialized in
the specific instance, i. e., for a specific rule set. The motivation
behind this approach is that a specialized algorithm does not
need to interpret the rule set at runtime, because the rule set is
already incorporated in the algorithm’s implementation. This
can be achieved by leveraging a just-in-time compiler, which
re-generates the matching code at runtime upon updates in the

978-1-4673-6770-7/15/$31.00 ©2015 |IEEE

used rule set. Thus, we integrate parts of the search structure
in the algorithm’s machine code itself by using immediate
operands in order to avoid additional memory accesses to be
made during packet classification.

In order to evaluate this approach, we created JitVector,
a classification technique which builds upon the well-known
bit vector algorithm [9], but specializes its implementation
based on the current rule set: x86_64 machine code for a
tailored classifier is automatically generated at runtime. We
examined JitVector both in an isolated environment as well
as in a real system, namely the OpenFlow Reference Switch
implementation (ORS) [10], [11]. We demonstrate (1) that
JitVector achieves significantly better matching performance
than the equivalent generic bit vector algorithm, and (2) that
JitVector can increase the throughput of the ORS by more than
one order of magnitude.

The remainder of the paper is structured as follows: In
Sections II and III, we describe related work and introduce the
packet classification problem, respectively. Next, we review
the bit vector algorithm and describe the JitVector approach
in Section IV, before we evaluate it in Section V. Finally,
Section VI concludes this paper and describes future work.

II. RELATED WORK

The concept of just-in-time compilation has been used in
the past to increase the performance of virtual machines used
for packet filtering [4], [5]. However, while these works are
concerned with the efficient execution of high-level program
code, in this paper we study the effects of specializing a
dedicated classification algorithm on one of its inputs, namely
the rule set used for packet classification.

During the last two decades, a lot of different classification
schemes have been proposed, including decision tree algo-
rithms, tuple space search, or decompositional methods [7]. As
the name suggests, decision tree algorithms like HiCuts or Ef-
ficuts transform the rule set used for packet classification into
multi-dimensional decision trees which can be subsequently
traversed in order to classify incoming network packets [8],
[15]. Tuple space search partitions the rule set into equivalence
classes, so called tuples, which are searched successively
using a fast hash function for each packet classification [13].
Decompositional schemes like the bit vector search reduce

161

multi-dimensional packet classification to one-dimensional
problems that can be solved independently. Subsequently, the
partial solutions obtained by the one-dimensional searches are
combined in order to compute the matching rule [9].

All of the above schemes have in common that they
transform the specified rule set into a data structure which is
amenable to be searched by a generic algorithm. In contrast,
the JitVector approach proposed in this paper specializes the
used search algorithm and thus generates instance-specific
code with respect to the currently active rule set.

III. PROBLEM STATEMENT

Consider a network packet with a tuple T = (hy €
Hy,...,hq € Hy) of d regarded header fields, where
Hy, ..., H; are the domains of possible header values. Also,
let R = (Ry,...,R,) be a rule set consisting of n rules.

Each rule R; specifies d checks ¢ : H; — {true, false}.
The goal of the packet classification problem is to find the
smallest index ¢ € {1,...,n} for which rule R; matches
the regarded header fields 7', i.e., for which it holds that
ci(h1) A ... A ciy(hq). In practical applications, the checks
specified by each rule are often simple equality, prefix, or
range checks on fields like IP addresses, port numbers, or
protocol numbers [9], [13]. Accordingly, we assume for the
remainder of this paper that the domains H,...,Hy are
intervals of consecutive non-negative integers which contain
all possible values for the respective header field.

IV. THE JITVECTOR APPROACH

In this section, we first review the bit vector algorithm as
our starting point. Subsequently, we describe how we built a
runtime code generation engine which emits machine code for
specific classifier instances, based on the bit vector concept.

A. Bit Vector Search

The bit vector scheme is a decompositional technique which
consists of two basic steps [9]. First, the d-dimensional lookup
problem is decomposed into d one-dimensional searches. Each
of the one-dimensional searches yields a bit vector of size
n which are combined in the second step to compute the
index of the first matching rule. The bit vectors must be
precomputed for each search dimension before the actual
packet classification. We illustrate this preprocessing phase
based on the two-dimensional rule set shown in Table I, which
lists the rules with descending priority.

Figure 1 shows the geometric representation of the rule
set from Table I, which is a collection of two-dimensional
rectangles. For each dimension j, the end points of the
rectangles are projected onto the jth axis, thereby partitioning
the axis into a sequence .S; of at most 2n + 1 intervals. Then,

TABLE I: A two-dimensional rule set
Rule index | Field 1 (Domain: [0,15]) | Field 2 (Domain: [0, 7])

I [3,11] [4,7]
2 [1, 5] (2, 5]
3 8,13] [0, 3]

for each I € S;, a bit vector V; of n bits is created, whose
ith bit is set to 1 iff [intersects with rule R; in dimension j,
as sketched in Figure 1. Accordingly, the space requirements
for the bit vector algorithm are in O(dn?).

Once the bit vectors and intervals have been computed,
the matching rules can be computed efficiently by locating
the corresponding bit vector for each regarded header field
through a binary search over the projection intervals. In our
two-dimensional example shown in Figure 1, the header tuple
P, = (4, 3) falls into interval [3,5) for field 1 and into [3,4)
for field 2. Subsequently, the bitwise AND of the d extracted
bit vectors is computed, which yields a result vector Vs
whose set bits indicate the positions of each rule that matches
in every dimension. Finally, the index of the highest prioritized
rule can be found by searching the index of the most significant
set bit in the result vector V/..s, which can be done in O(n/w)
time for a machine-specific constant w. Again, this process is
illustrated in Figure 1.

B. JitVector Specialization

The JitVector approach combines the bit vector algorithm
with the concept of function specialization through partial
evaluation. Dedicated machine code is generated after rule
set updates. This machine code performs the binary searches
for each inspected header field dimension. Thus, JitVector
essentially integrates parts of the search data structure into
its own implementation. The motivation behind this approach
is that the intervals and bit vectors remain static until the
next rule set update, i.e. typically for a relatively long time
(in relation to the rate of incoming packets). That is, the
binary searches performed during packet classification always
operate on the same sequence of intervals, with respect to
each dimension. In essence, we spend some additional effort
after a rule set update (for code generation) in order to further
increase the performance afterwards (during classification). If
we regard the binary search which is performed in dimension
J on the interval sequence S; using the jth header field h; as
an abstract procedure bsearch with bsearch(S;,h;) —
indeXpjwectors then we can specialize bsearch on the rarely
changing input parameter S, which yields a new procedure
bsearchg, (h;) — indexpiwector- In fact, bsearchg; (h;)
is equivalent to bsearch(S;, h;), but is partially evaluated
for the interval sequence S;.

&[010]

Vres

. First set bit
R3 | at index 2

3175 o715
1 0
0 0

Fig. 1: Geometric representation of rule set and bit vectors.

0

1
0
0

Field 1

= oo

1
0

162

Algorithm 1 Generating a specialized binary search.

1: function GENSEARCH(delims[], low, high)

2 /I delims[] contains the interval delimiters.

3 /I The register reg contains the header value.

4: mid + low + | e low

5: if high == low then

6: EMITCODE(Compare: reg < delims[low])

7. EMITCODE(JumplfTrue: CASE2)

8 EMITCODE(Return: low)

9 EMITCODE(Return: low-1) > CASE2
10: return Number of written bytes in EMITCODE

11: end if

12: leftTree < GENSEARCH(delims[],Jlow,mid-1)

13: rightTree +— GENSEARCH(delims|[],mid+1,high)

14: EMITCODE(Compare: reg < delims[mid])

15: EMITCODE(JumplIfTrue: LEFT)

16: EMITCODE(Compare: delims[mid+1] < reg)

17: EMITCODE(JumplfTrue: RIGHT)

18: EMITCODE(Return: mid)

19: EMITCODE(leftTree) > LEFT
20: EMITCODE(rightTree) > RIGHT

21: return Number of written bytes in EMITCODE
22: end function

Such specialized functions can be generated by linearizing
the binary search trees represented by the interval sequences.
These linearizations can be written as native machine code into
executable memory. This is depicted by Algorithm 1, which
takes an interval sequence delims[] and recursively emits
the binary tree structure as a sequence of x86_64 instructions.
An important detail of Algorithm 1 is that it inserts the interval
boundaries used for comparisons as immediate operands in
the generated machine instructions, as depicted in lines 6,
14, and 16. This and the fact that the search key is held in
a register reg has the implication that a specialized binary
search does not require any data memory accesses during its
operation. Thus, despite the fact that the JitVector approach
has the same theoretical worst case performance as the plain
bit vector algorithm, the matching performance is significantly
increased, which we demonstrate in our evaluation.

V. EVALUATION

We evaluated the JitVector approach both in an isolated
scenario as well as in a real system, namely the OpenFlow
Reference Switch (ORS). Both the isolated system and the
ORS are implemented in C. All experiments in our evaluation
were conducted on an otherwise idle computer with an Intel
Core 2 Duo CPU and 3GB of RAM running Linux 3.18.6.
Measurements involving the ORS were executed in a virtual
network created by the mininet tool [3].

A. Measurements in the Isolated Environment

In our first series of measurements, we evaluated the JitVec-
tor approach in an isolated environment. It does not classify
real network packets, but instead concentrates on the classifica-
tion task itself, which is performed for a set of predefined rule
sets and corresponding packet header traces. Hence, we can
compare the main performance characteristics of the bit vector
and JitVector approaches, such as classification speed and
preprocessing time, without adding I/O noise. We performed
our measurements as follows: first, we generated rule sets
consisting of 100 up to 3500 rules in steps of 200. For each

rule set, we also generated a trace of 100000 header values,
uniformly distributed over the specified rules. We employed
the ClassBench tool [14] for both rule set and trace generation.
ClassBench is a benchmark generator for packet classification
algorithms that is capable of creating rule sets of an arbitrary
size based on seed files which describe the structure of real
filter sets. Here, we used the ipc (ipchains) seed files which
are publicly available at [2]. Each generated rule defines
checks on IPv4 source and destination addresses, the transport
protocol, and source and destination port ranges.

Next, we classified each header tuple in the generated traces
using the corresponding rule set with both the bit vector and
JitVector algorithms in order to measure the preprocessing
times, the classification speed, and the size of the resulting
data structures/functions. Each experiment was repeated ten
times. Mean values and standard deviations of the observed
quantities are shown in Figures 2a to 2c. Figure 2a indicates
that JitVector has longer preprocessing times than the plain
bit vector approach due to the transformation of the interval
sequences into specialized functions. The amount of memory
needed to store these functions exceeds the size of the interval
arrays by a factor between 5 and 6, as each specialized
function contains not only the interval delimiters, but also
the instructions of the unrolled binary search, as indicated by
Figure 2b. However, Figure 2c depicts that this overhead is
rewarded by a significant speedup in terms of classification
performance as a result of the faster execution of the partially
evaluated functions.

We also investigated the amount of L1 cache misses for the
JitVector and bit vector algorithms using cachegrind [1].
For all rule set/trace pairs in the generated data set, the
JitVector approach had about four times more instruction cache
misses and 1.3 to 1.7 times less data cache misses than the bit
vector algorithm. However, for both JitVector and bit vector,
the absolute number of data cache misses was four orders
of magnitudes higher than the number of instruction cache
misses, which renders the instruction cache misses negligible.

In addition to our self-generated rule sets and traces, we also
evaluated the JitVector approach for twelve publicly available
data sets [12], which were likewise generated by ClassBench.
Beyond ipc rules, these benchmarks also include acl (access
control list) and fw (firewall) rule sets which mainly differ in
the number of wildcarded fields. These rule sets are available
in four size classes (100, 1k, 5k, 10k); the corresponding trace
files include roughly ten times as many headers. For each of
the twelve rule sets, we classified the corresponding traces
ten times both with the JitVector and bit vector algorithms
and measured classification, preprocessing times, and memory
requirements. The former two quantities are illustrated by
Figures 2d and 2e. Again, the figures confirm that JitVector
provides better classification performance than the bit vector
algorithm, at the cost of some additional preprocessing. Also
like above, the memory requirements of JitVector for all
publicly available rule sets are 5 to 6 times higher than those
of the bit vector algorithm.

163

Bit vector —e— JitVector —a-—

Number of rules

Size of data structure [KB]

120
100
80
60
40
20

100 500 1000 1500 2000 2500 3000 3500

Interval arrays (Bit vector) —e—

Specialized bin. searches (JitVector) -4

T
AT
A

b9 O

1At

o006

LAk
e

_e—o0—o—0—0—0 %

Number of rules

60

40
30

Classification time [ms]

50 -

20 .
10

Bit vector —e— JitVector &

;/m

e

@rfv**"@x& -

e
PSS S oS &

aohodd
B *
- e
T
PO

0 .
100 500

1000 1500 2000 2500 3000 3500
Number of rules

(a) Preprocessing time for rule sets.

og.)

o
S

(b) Size of interval arrays/compiled searches.

(c) Classification time for 100k headers.

= 10000
1000 ¢

Bit vecto
JitVector zzzzz

Bit vector

S
B

JitVector zzzzz1

14x
12x |
10x
8x
6x AA
ax r ‘r"‘

2+

Matching performance
increase

0.1

Classification time [ms] (log.)
Preprocessing time [ms] (|

004 bodi R

OX g L L L L L L
100 500 1000 1500 2000 2500 3000 3500

— — — - o = I I3 I3
o = = o = o 2T o = o £ 83 6% 8 o =8
EE8E8 28828828 SERasE R aRR Number of rules
L O O T S O [N [I P IO I
. SN < o o N o = = =
> = S = = =X x 2 =)
388x XX X2RQ S © X XX

(d) Classification times with public rule sets.

(e) Preprocessing time for public rule sets.

(f) Performance increase in the ORS.

Fig. 2: Evaluation results.

B. Measurements in the ORS

In order to investigate the performance of the JitVector
algorithm in a more realistic scenario, we integrated it into
the OpenFlow Reference Switch (ORS, version 1.0) [11]. The
ORS employs a matching engine which performs a basic
linear search to classify incoming packets. We explored the
achievable throughput gains by replacing this matching engine
by the JitVector approach. Different from the previous setting,
the ORS uses twelve instead of five header fields for packet
classification. For this reason, we could not use ClassBench
for rule set generation. Instead, we generated random rule sets
with a fixed IPv4 destination address A as well as uniformly
distributed UDP traces destined for virtual host A. We then
sent minimal-sized UDP packets according to the traces from
a virtual sending host via the ORS to host A for a duration of
ten seconds. We counted the number of packets which were
received by A. We repeated this experiment ten times for
both the linear search and the JitVector algorithm. Figure 2f
shows the averages as well as the standard deviations of the
quotients packet_countyector /Packet_countinear search- Al-
though we observe fluctuations in the graph, which may be
introduced by unfortunate rule set/trace combinations or /O
effects, the figure also underlines a clear gain in performance.

VI. CONCLUSION AND FUTURE WORK

In this work, we explored the potential of classification
algorithm specialization through the example of JitVector, a
classification algorithm which makes use of dynamic code
generation in order to increase its matching performance. In
contrast to existing work in this field, JitVector specializes
its own implementation on the currently used rule set. We
demonstrated that JitVector provides better classification per-
formance than an equivalent generic algorithm. Furthermore,
we integrated JitVector into the OpenFlow Reference Switch
and thereby increased its throughput by over an order of
magnitude. Future work includes optimization of the generated

machine code by, e. g., considering the CPU’s branch predic-
tion strategies or exploiting the potential of SIMD instructions.

ACKNOWLEDGMENT

This work was funded by the BMWi (German Federal
Ministry of Economics and Energy) in the context of the
HARDFIRE project.

[1]
[2]
[3]
[4]

[5]

[6]
[7]

[8]
[9]

(10]

(11]

REFERENCES

“Cachegrind website,” http://valgrind.org/docs/manual/cg-manual.html,
last access: July 10, 2015.

“ClassBench website,” http://www.arl.wustl.edu/classbench/, last access:
April 9, 2015.

“Mininet: An instant virtual network on your laptop (or other PC),”
http://www.mininet.org, last access: April 9, 2015.

A. Begel, S. McCanne, and S. Graham, “BPF+: Exploiting global
data-flow optimization in a generalized packet filter architecture,” in
SIGCOMM 99, Aug. 1999, pp. 123-134.

D. Engler and M. Kaashoek, “DPF: Fast, flexible message demultiplex-
ing using dynamic code generation,” in SIGCOMM ’96, Aug. 1996, pp.
53-59.

P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
SIGCOMM 99, Aug. 1999, pp. 147-160.

P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network: The Magazine of Global Internetworking, vol. 15, no. 2, pp.
24-32, Mar. 2001.

P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in HOTI ’99, Aug. 1999, pp. 34-41.

T. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” in SIG-
COMM 98, Aug. 1998, pp. 203-214.

N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74,
Mar. 2008.

A. Nygren et al., “OpenFlow switch specification,” Open Networking
Foundation, Tech. Rep., Oct. 2013.

[12] H. Song, “Evaluation of packet classification algorithms,”
http://www.arl.wustl.edu/"hs1/PClassEval.html, website includes
publicly available rule sets, last access: April 9, 2015.

[13] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in SIGCOMM 99, Aug. 1999, pp. 135-146.

[14] D. Taylor and J. Turner, “Classbench: a packet classification benchmark,”
IEEFE/ACM Transactions on Networking, vol. 15, no. 3, pp. 499-511,
Jun. 2007.

[15] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: Optimizing

164

packet classification for memory and throughput,” in SIGCOMM ’10,
Aug. 2010, pp. 207-218.

