
Dependency-Aware Distributed Video Transcoding in the Cloud
Mohammad Reza Zakerinasab and Mea Wang

Department of Computer Science, University of Calgary
{mrzakeri, meawang}@ucalgary.ca

Abstract—To improve the quality of experience of video
streaming services, content providers are challenged by the
need to prepare videos at different quality levels appropriate
to the network infrastructure and device hardware specification.
Distributed video transcoding in the cloud has received many
research attentions to address this challenge. Such a cloud-
based solution segments a video into multiple video chunks and
distributes chunks to virtual machines in the cloud for parallel
transcoding. However, by inspecting video codec standards, we
learn that important inter-dependency among video frames is
broken if the video is segmented into fixed-size chunks, which
leads to increasing bitrate and transcoding time. In this paper,
we propose a distributed video transcoding scheme that exploits
dependency among GOPs by preparing video chunks of variable
size. Experimental results from real video sequences with diverse
visual features show that the proposed transcoding scheme
effectively reduces bitrate and transcoding time.

Keywords—multimedia, video transcoding, cloud

I. INTRODUCTION
According to Cisco, video streaming will constitute 72% of

Global mobile data traffic by 2019 [1]. With advancements in
end-user devices, users may use devices with different memory
capacity, CPU speeds or screen sizes for video playback. They
may stream the video content over networks with very different
channel noise levels and packet loss rates. The diversity in
network infrastructure and device hardware specification poses
a new challenge to service providers to deliver appropriate
level of quality of experience (QoE) to end users. This problem
can be addressed to some extent using simulcast, i.e., encoding
the original video into several separate video files at different
quality levels. Simulcast may stream a standard-definition (SD)
video at bitrate 192 Kbps to smartphones over lossy cellular
network, and a high-definition (HD) video at bitrate 2 Mbps to
an HD TV over wired Internet connection. Such discrete-level
of video quality does not fully utilize all available network
resources to deliver the video in best possible quality. For
example, although the available bandwidth from the service
provider to an end-user device is 400 Kbps, sufficient to serve
a video better than the standard definition (SD) quality (at
192 Kpbs bitrate), only SD video will be delivered since there
is no intermediate quality level that can utilize all available
bandwidth. Moreover, the system cannot dynamically tune the
video quality at fine granularity as the bandwidth fluctuates in
real networks.

To provide a continuous range of quality levels subject to
fluctuating network conditions and diverse hardware specifica-
tions, a raw video could be directly encoded with a specific
quality level. Due to the vast amount of space required to
store raw videos, video transcoding is often employed to first
decode a high-quality encoded version of the video and then re-
encode it to the target quality level. However, the transcoding
process is computationally expensive due to the complexity
of the encoding phase. For this reason, distributed video
transcoding using cloud has received many research attentions

to speed up the transcoding process. Such a solution segments
a video into chunks and distributes chunks to virtual instances
in the cloud for parallel transcoding. This paradigm greatly
reduces the video access delay [2], [3], [4]. In addition, layered
video encoding can be used along with cloud-assisted video
transcoding to allow the media service provider to transcode a
video once and use it for several target bitrates and resolutions
[2], [5], [6].

We note that existing proposals for cloud-assisted video
transcoding treat the encoded video no different from a raw
video. A fixed number of consecutive frames or group of
pictures (GOP - the smallest encoding unit in distributed
transcoding) are grouped into a video chunk [2]. The chunks
are assigned to virtual machines using a scalable technique
such as MapReduce [7]. The transcoded video chunks are
then merged into a single video sequence to be delivered to
end users. By inspecting video codec standards, we learn that
certain important inter-dependency among consecutive video
frames (due to high similarity in the video content) may be
broken when segmenting a video into fixed-size chunks. For
example, two GOPs with very dissimilar pictures (e.g., due
to change of scenery) may be grouped into one video chunk,
and two consecutive GOPs with high degree of similarity may
be separated into two video chunks. Since video encoding
techniques, like other compression techniques, are based on
utilizing the similarity between the to-be-encoded pictures,
working with fixed-size chunks leads to increasing bitrate and
transcoding time up to three times [8].

In this paper, we propose a distributed video transcoding
scheme that exploits dependency among GOPs by preparing
video chunks of variable size. The goal is to reduce the bitrate
and transcoding time for fast delivery of a video to end users.
The key to achieve this goal is the variable-size chunk. In the
proposed scheme, the chunk size is determined according to
the prediction dependency among GOPs in an encoded video.
Hence, highly dependent GOPs are encoded together to take
advantage of visual similarity among enclosed video frames.
We utilize layered video coding along with video transcoding
to produce transcoded videos that can satisfy certain range
of quality requirements [2], [5], [6]. The experimental results
on a set of real video sequences with diverse visual features
show that the proposed transcoding scheme reduces bitrate and
transcoding time compared to conventional video transcoding
schemes that use fixed-size video chunks.

The remainder of this paper is organized as follows. Sec. II
reviews existing proposals on distributed video transcoding
in the cloud. Sec. III provides an overview of distributed
video transcoding in the cloud as well as the coding and
prediction structure of SVC (the state-of-the-art layered video
coding standard). Sec. IV presents the proposed dependency-
aware distributed video transcoding scheme, followed by the
performance evaluations in Sec. V. Finally, Sec. VI concludes
the paper.

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 245

II. RELATED WORKS
Due to the increasing demand for video streaming and

the massive computing power offered by the cloud, video
transcoding in the cloud has recently received many research
attentions. The most simple and straight-forward use of the
cloud is utilizing the virtual instances to perform conventional
video transcoding upon request [6], [9]. The cloud is also
utilized to assist mobile devices for customized transcoding
services [5], for cloud-assisted video transcoding [10] [11],
and for energy conservation on mobile devices [12].

Towards efficient video transcoding in the cloud, a new
approach is suggested in [13] to reduce the bitrate of the
transcoded video by encoding the video using a higher quan-
tization parameter without reducing frame size or frame rate.
Furthermore, There are proposals on transcoding only portion
of a video to reduce the transcoding time [3], [4]. In the
implementation of distributed video transcoding in the cloud,
Hadoop and MapReduce are used to distribute video content
to virtual machines [14], [15], [2]. For example, CloudStream
[2] segments SVC video into chunks of unit GOP and uses
MapReducde [7] to parallelize SVC video transcoding among
virtual machines in the cloud. Furthermore, two approximate
solutions are proposed to minimize the transcoding delay and
reduce the transcoding jitter.

In general, the cloud provides a scalable, responsive, and
cost-effective solution for video transcoding services. We note
that existing proposals on video transcoding in the cloud are
all performing conventional video transcoding of a video on
either a single virtual machine or multiple virtual machines.
The performance gain are mostly due to efficient use of cloud
resources or parallelism managed by Hadoop or MapReduce.
None of these proposals considers information that can be ex-
tracted from the video. In fact, an encoded video encapsulates
useful dependency information among GOPs, frames, slices or
even macroblocks. In this paper, for the first time, we propose
a dependency-aware distributed video transcoding scheme. The
goal is to reduce bitrate and transcoding time for fast delivery
and decoding of the video for end users.

III. PRELIMINARY
Our proposed distributed video transcoding scheme is a

cloud-based solution that exploits the coding and prediction
dependency in layered video coding to transcode a video
satisfying certain requirements. In this section, we provide an
overview of distributed video transcoding in the cloud and
SVC (the state-of-the-art layered video coding standard).

A. Distributed Video Transcoding in the Cloud
Fig. 1 illustrates the workflow of distributed video

transcoding in the cloud. Upon receiving a video streaming re-
quest, the streaming server instructs the transcoding controller
to load the requested source video from the video repository.
The controller segments the video into chunks and distributes
chunks to virtual instances in the cloud using a scalable
technique such as MapReduce [7]. At last, the transcoded video
chunks are merged into a video sequence to be delivered to
end users, and if desired, stored in video repository for future
requests.

Towards improving the distributed video transcoding pro-
cess, numerous models and algorithms have been proposed
in literature to minimize transcoding delay, number of

Video
Repository

Streaming
Requests

Streaming
Server

Transcoding
Controller

Transcoding
Servers

Video
Stream Video

Merger
Source
Video

Video
chunks

Fig. 1: Workflow of distributed video transcoding in the cloud.
transcoding virtual machines needed, energy consumption, and
transcoding cost in the cloud [6], [9], [5], [11], [12]. By
intuition, encoding each GOP separately reduces encoding
time, as the encoder does not need to consider the information
from other GOPs. But counter-intuitively, this approach leads
to poor coding efficiency, i.e., more bits is needed to present
the video at a specific level of quality [8]. On one hand, the
larger the chunk size, the more visual similarity are enclosed
in a chunk. Hence, we expect more coding efficiency gain
(i.e. less video bitrate) as we increase the chunk size, which
is confirmed by results reported in [8]. On the other hand,
increasing the chunk size normally increases the transcoding
time. However, the trade-off between coding efficiency and
transcoding time depends on the visual properties of the to-be-
transcoded video. Therefore, an adaptive algorithm is required
to determine the proper size of video chunks.

To select the proper chunk size, we must consider video
properties such as similarity among frames in consecutive
GOPs rather than grouping a fixed number of GOPs into a
chunk. Although results from [8] show that visual features
such as details and motion activity provide hints on the
appropriate chunk size for transcoding, it is computationally
expensive to extract these features and they require access to
the raw video. In this paper, we present a novel linear-time
approach for determining the appropriate chunk size. Based
on this approach, we propose a distributed transcoding scheme
that segments a video into variable-size chunks according to
prediction dependencies mined during the encoding process.
The idea of grouping related frames was first suggested in
[16] to eliminate network redundancy in video caching and to
avoid caching the same video multiple times. The authors de-
fined “sample-based” chunking as grouping all video samples
between two consecutive IDR frames. This approach results
in video chunks with the same number of frames but varying
sizes in bytes.

B. Scalable Video Coding
A layered video coding standard, such as Scalable Video

Coding (SVC) [17], can be used to embed different frame rates,
frame sizes, and video qualities inside one video stream. This
offers service providers the flexibility to dynamically adjust the
frame rate, resolution or the bitrate of the to-be-transmitted
video by simply dropping some video packets. Due to page
limit, only a concise summary of SVC coding and prediction
mechanism is presented here. We refer interested readers to
[17] for more details. Following the standard of the H.264
family, a SVC video consists of a sequence of GOPs, where
each GOP is a group of consecutive frames (also referred to as
pictures) of different types. As illustrated in Fig. 2, each GOP
starts with a key frame (an I-frame or a P-frame). The key

246

frame then is followed by a hierarchical temporal prediction
structure that is defined by the size of GOP. In Fig. 2, the
GOP size is 8. Each key frame serves as the reference frame
for non-key frames within the GOP and from the previous
GOP, for the key frame of the next GOP, and for key frames
in dependent layers.

0 4 5 7 8 1

0

3 2 6

1

Group of Pictures (GOP)

T0 T1 T2 T3

23 4

S0 S1

Fig. 2: Layered design of a SVC video stream with two spatial
and four temporal layers. The numbers on each frame specify
the coding order inside the respective spatial layer.

SVC supports three modes of scalability: temporal, spatial,
and quality (SNR), denoted by D, T and Q, respectively. Every
SVC compliant bitstream contains a H.264/AVC compliant
base layer representing the lowest temporal, spatial, and quality
of the video (i.e., DTQ = (0, 0, 0)), and several enhancement
layers that provide scalability in different modes. The base
layer is needed to playback the video at its lowest quality,
and the quality improves as more enhancement layers become
available. The temporal scalability in SVC is provided by the
hierarchical temporal prediction structure in each GOP. Spatial
scalability in SVC is provided by enhancement layers. At
last, the quality scalability is provided by allowing the quality
enhancement information to be distributed between different
substreams. In summary, each layer may use visual information
from the layers with smaller or equal spatial, temporal and
quality identifier tags.

Like H.264/AVC, in SVC, each frame is divided to a
number of spatially distinct slices. A slice is further divided
into a mesh of 16×16 macroblocks. In SVC, macroblocks are
either temporally or spatially predicted, and quality informa-
tion can be added to the predicted macroblocks (if needed). For
temporal prediction, if the predicted frame is an I-frame, the
slices in this frame are I-slices and the contained macroblocks
can be predicted from other macroblocks of the same frame.
If the predicted frame is a P-frame, the slices in the frame
are either I- or P-slices depending on the decision made by
the encoder. Similarly, if the predicted frame is a B-frame, the
slices in the frame are I-, P- or B-slices, again determined by
the encoder. In addition to predicting the visual information,
the encoder can derive additional information from reference
macroblocks, e.g., motion vectors and reference picture lists.
For spatial prediction, SVC uses inter-layer prediction to
estimate dependent macroblocks from portions of reference
macroblocks. SVC supports dyadic and non-dyadic spatial lay-
ering. The dyadic configuration enforces the spatial layers to
conform to a 2:1 resolution scale, and facilitates up-sampling
of reference spatial layers using bitwise shift operations. For
quality scalability, SVC re-quantizes the residual texture signal
in enhancement layers with a smaller quantization parameter
(QP) than the QP used in the lower quality layer. This leads

to more details in the enhancement layers. The encoder used
in this paper is the SVC encoder, but it can be replaced with
any encoder from other coding standards.

IV. DEPENDENCY-AWARE DISTRIBUTED VIDEO
TRANSCODING

As discussed in Sec. III, transcoding fixed-size video
chunks leads to coding inefficiency. We also observed that a
group of n GOPs sharing great visual similarity can be encoded
significantly faster than a group of n relatively independent
GOPs. The visual similarity among consecutive GOPs in a
raw video cannot be measured easily. Nonetheless, since the
visual similarity drives the prediction decision when encoding
a raw video, the prediction dependency among GOPs found
in a coded video reflects the visual similarity and greatly
determines the coding complexity. The GOP dependency may
be calculated when producing a coded version of a video from
a raw video. In a cloud-based distributed video transcoding
system, as illustrated in Fig. 1, the transcoding controller can
segment the to-be-transcoded video into proper number of
video chunks according to dependency among GOPs and then
distribute the variable-size video chunks to virtual instances
in the cloud for fast transcoding. In this section, we propose
a GOP-dependency model that exploits the visual similarities
(also refer to as the coding dependency) among GOPs in
Sec. IV-A. Based on this model, we propose a dependency-
aware video transcoding scheme that clusters GOPs into video
chunks according to their inter-dependency and distributes the
chunks in the cloud for transcoding in Sec. IV-B.

A. GOP-Dependency Graph
From the deep inspection of SVC encoder (summarized in

Sec. III-B), we note that there is a correlation between the
prediction decisions made by the encoder and the visual sim-
ilarity of the encoded pictures. Hence, the GOP-dependency
model may be derived based on the layered structure in a SVC
video. However, recently it has been shown that the layering
information is not sufficient to characterize dependency in a
video sequence [8]. For example, a pair of frames from two
different spatial layers may have stronger dependency than a
pair of frames within the same spatial layer, or vice versa.
Thus, segmenting and transcoding video chunks based on
dependency among layers may still lead to coding inefficiency.
For this reason, it has been suggested to utilize dependency
among macroblocks and sub-macroblocks (the basic encoding
units in the H.264 standard family) to accurately model the
dependency in a video [8]. Inspired by deep inspection of
SVC encoder and observations reported in [8], we build a
GOP-dependency graph derived from the macroblock-level
prediction dependency among consecutive GOPs in two steps.

Step 1: Generating the macroblock dependency graph
To generate the macroblock-dependency graph for two con-

secutive GOPs, we propose a dependency graph Gm, where Gm
is a weighted directed acyclic graph (DAG) Gm = (Vm, Am).
Each node mi ∈ Vm represents a macroblock belonging to
the key frames (frames 0 and 1 in Fig. 3) or a non-key frame
that depends on the key frame in the second GOP (frames 2
and 4 in Fig. 3). Hereafter, we refer to this set of macroblocks
as M. Since GOP is the smallest transcoding unit assigned
to a transcoding server, there is no need to capture intra-GOP
dependency in Gm.

247

Each directed arc ai,j ∈ Am indicates a prediction depen-
dency between macroblocks mi and mj , where the direction
is from the reference macroblock towards the dependent mac-
roblock. Next, to generate the macroblock-dependency graph
Gm, we extract the dependency among all pairs of macroblocks
mi in frame fy and mj in frame fz . This can be done when
encoding a raw video sequence for the video repository. When
the SVC encoder visits a new macroblock that belongs to
M, a new node is added to the dependency graph. For each
prediction decision, if the reference macroblock is a member
of M, an arc is added to the graph from the dependent
macroblock to the reference macroblock. The resulting graph
Gm is a DAG, as shown in Fig. 3, since no two macroblocks
can either directly or indirectly mutually depend on each other.

GOP1

0 123 4

GOP2

Fig. 3: Top: Prediction dependency links between two con-
secutive GOPs in the base layer (layer S0) of the SVC video
from Fig. 2. Bottom: Macroblock dependency graph modelling
inter-GOP prediction.

Since the degree of dependency between a pair of mac-
roblocks may vary depending on the prediction method used,
we associate a weight to each dependency arc by using
the error introduced due to prediction decision, also referred
to as distortion. The prediction distortion is calculated by
the encoder when making each prediction decision. We then
normalize the distortions to be in the range of [0, 1] for each
predicted frame as follows:

‖ di,j ‖=
di,j −minmk∈fz dk,j

maxmk∈fz dk,j −minmk∈fz dk,j
(1)

where di,j is the distortion introduced when predicting mj ∈
fz from mi ∈ fy . Next, we calculate the weight of each link
as follows:

wam
i,j

= 1− ‖ di,j ‖ (2)

where wam
i,j

is the weight of dependency link between mi ∈
fy and mj ∈ fz and ‖ di,j ‖ is the normalized distortion
from Eq. 1. The weight of a link is large if the prediction
distortion is small, i.e., a strong dependency exists between
two macroblocks that are visually very similar. The weight of
a link is small if the prediction distortion is large, i.e., a weak
dependency exists between two macroblocks that are visually
very different.

To achieve high compression rate and high video quality at
the same time, SVC encoder is not limited to the boundaries
of the reference macroblocks. The dependency among mac-
roblocks may be categorized into four cases, as illustrated in
Fig. 4. The weight of each dependency relation in each case
may be calculated as follows:
• Using a full macroblock as a reference (Fig. 4(a)): In the

simplest form, the prediction of a macroblock is based on
another macroblock. In this case, one dependency arc is
added to the graph and the weight of the arc is calculated
using Eqn. 2.
• Using a macroblock created from portions of 2 or 4 mac-

roblocks as a reference (Fig. 4(b)): The prediction modules
may use a 16 × 16 area located on the borders of two or
four macroblocks as a reference macroblock. In this case,
we add a dependency arc from the predicted macroblock to
each of the macroblocks serving as a partial reference. The
weight of each dependency arc is prorated weight of the
reference macroblock:

wp
am
i,j

= (1− ‖ di,j ‖)×
smi,j
256

(3)

where ‖ di,j ‖ is the normalized distortion introduced by
the respective prediction, and smi,j is the number of pixels
(out of the 256 pixels) in the reference macroblock that is
used to predict the dependent macroblock.
• Using a submacroblock as reference (after proper upsam-

pling) (Fig. 4(c)): A submacroblock may be upsampled to
serve as a whole reference macroblock. If the reference
submacroblock belongs to a macroblock, there is only
one arc from the predicted macroblock to the macroblock
containing the reference submacroblock, as illustrated in
Fig. 4(c). In this case, the weight of the arc is the same
as the case that a full macroblock is used as a reference.
Thus, the weight of the arc is calculated as in Eqn. 2. If the
reference submacroblock is located across boundaries of 2
or 4 macroblocks, similar to the case illustrated in Fig. 4(b),
we add a dependency arc from the predicted macroblock to
each of the macroblocks serving as a partial reference. The
weight of each dependency arc is calculated as in Eqn. 3,
except that constant in the denominator is 64 (representing
the smaller size of 8× 8 co-located submacroblock).
• Using multiple macroblocks as reference (Fig. 4(d)): A pre-

dicted macroblock may use multiple reference macroblocks
and combine the result by, for example, taking an average
over the predicted samples. The importance of each refer-
ence macroblock depends on the availability of the reference
macroblocks. The quality of the reconstructed macroblock
improves as more reference macroblocks become available.
In this case, we add one dependency arc from the predicted
macroblock to each of the reference macroblocks. The
weight of each dependency arc is calculated as follows:

wp
am
i,j

=
1− ‖ di,j ‖

Nref
(4)

where Nref is the number of reference macroblocks. Since
the availability of each reference macroblock is not known
before delivering the video to end users, all reference blocks
are equally important. Thus, each arc has an equal share of
the full weight.

Step 2: Creating the GOP-dependency graph
Fig. 5 illustrates the creation of the GOP-dependency

graph. First, we begin with the Gm that is prepared in the
previous step to model inter-GOP prediction dependency, as
exemplified by Fig. 5(a). We then convert the macroblock-
dependency graph Gm to a frame-dependency graph Gf =
(Vf , Af), as shown in Fig. 5(b). To do so, we merge nodes

248

Reference
macroblock(s)

Predicted
macroblock

(a)

(b)

Reference
macroblock(s)

Predicted
macroblock

(c)

(d)

Fig. 4: Different types of dependencies between macroblocks
in SVC. (a) Using a full macroblock as a reference, (b) Using
a macroblock created from portions of 2 or 4 macroblocks as
a reference, (c) Using a submacroblock as a reference (after
proper upsampling), and (d) Using multiple macroblocks as
references.

in Gm presenting macroblocks from the same frame into a
single node to simplify the graph. Correspondingly, we merge
the dependency arcs in Am that have a common start and end
frame into one dependency arc in Af , where the weight of
each combined arc is the weighted average of the weights of
all individual arcs being merged, i.e.,

waf
y,z

=
∑

∀am
i,j∈C

wam
i,j

Ngop
(5)

where waf
y,z

is the weight of an arc in Af from frame y to
frame z, wam

i,j
is the weight of an arc from the macroblock-

dependency graph Gm, C is the set of arcs in Am just being
merged, and Ngop is the total number of 16× 16 macroblocks
in each frame.

(a)

GOP 1 GOP 2

(c)

(d)

(b) 0 2 1

0.6
0.3

0.4
0.73

GOP 1 GOP 2

0.6
0.33GOP 1 GOP 2

0.36GOP 1 GOP 2(e)

3 4

Fig. 5: Converting a macroblock-dependency graph Gm (a) to
a frame-dependency graph Gf (b), to a GOP-dependency graph
Gg (d), and at last to a GOP-distance graph (e).

Next, we convert Gf to a directed GOP-dependency graph
~Gg = (Vg, ~Ag), as shown in Fig. 5(c), by merging nodes
representing frames belonging to the same GOP into one node.
In H.264 standard family, each key frame in GOPk+1 depends
on the key frame in the previous GOPk, and some non-key
frames in GOPk depend on the key frame of GOPk + 1, as
shown in Fig. 4. Thus, in Gf , there is always one dependency
arc from the key frame in GOPk to the key frame in GOPk+1,
and a number of dependency arcs from the key frame of
GOPk+1 to some non-key frames in GOPk. The weight of
the arc from GOPk to GOPk+1 in the GOP-dependency graph
Gg is the weight of the dependency arc from the key frame
in GOPk to the key frame in GOPk in the frame-dependency
graph Gf , which is 0.6 in the example illustrated in Fig. 5.
The weight of the arc from GOPk + 1 to GOPk is calculated

as weighted average of the weights of all arcs from the key
frame in GOPk+1 to non-key frames in GOPk as in Eq. 6:

w
a~g
k+1,k

=
∑ (S − I(fj))

S − 1
waf

i,j
(6)

where w
a~g
k+1,k

is the weight of backward dependency arc from
GOPk+1 to GOPk, waf

i,j
is the weight of a dependency arc

from fi ∈ GOPk+1 to fj ∈ GOPk in the frame-dependency
graph Gf , S is the number of frames in each GOP (4 in the
example illustrated in Fig. 5), and I(fj) is a function that
returns the index of fj inside GOPk starting from 0 for the key
frame. In Fig. 5(c), the weight of the arc from GOP2 to GOP1

is 2
30.3 + 1

30.4 = 0.33. The weight is inverse proportional to
the distance from the reference key frame, and proportional
to the number of frames that will be affected by the quality
of reference key frame due to temporal prediction. In general,
frames appears earlier in a GOP (in coding order as shown
in Fig. 3) are used as reference frames by more frames than
later frames are. For example, we gave more weight to the
dependency link from frame 1 to frame 2 because frames 3
and 4 both use frame 2 as their reference frame, as shown in
Fig. 3.

Next, the directed GOP-dependency graph ~Gg is further
simplified to a undirected GOP-dependency graph Gg , as
shown in Fig. 5(d), by merging the two directed arcs into one
undirected arc. The weight of the undirected arc is calculated
as follows:

wag
k,k+1

= w
a~g
k,k+1

+ (1− w
a~g
k,k+1

)× w
a~g
k+1,k

(7)

The rationale behind using one minus the weight of the
forward link as a coefficient for the weight of the backward
link is that if the forward link is very strong, then the
information spread back from the key picture in GOPk + 1 is
very similar to that of the key frame in GOPk, hence, GOPk+1
does not provide much new information. Since w

a~g
k,k+1

and
w

a~g
k+1,k

are normalized, the result of this function is always
between 0 and 1 and no further normalization is required. In
Fig. 5 (d), the weight of the undirected arc between GOP1

to GOP2 is 0.6 + 0.4 ∗ 0.33 = 0.73. Finally, using Eq. 8
the dependency between GOPs can be converted to a distance
measure for the GOP clustering algorithm. This step will be
detailed in Sec. IV-B.

B. Dependency-Aware Distributed Video Transcoding in the
Cloud

As described in Sec.III-A, towards distributed video
transcoding in the cloud, the transcoding controller segments
the to-be-transcoded video into chunks and distributes chunks
to virtual machines in the cloud to speed up the transcoding
process. In this section, we propose a new cloud-based dis-
tributed video transcoding scheme that take advantage of the
GOP-dependency graph Gg to perform transcoding on variable-
size video chunks. In other words, the new scheme assign
GOPs sharing great visual similarity to the same machine for
better coding efficiency and faster transcoding. We first present
the clustering algorithm for grouping GOPs to variable-size
video chunks based on the GOP-dependency graph Gg , and
then present the algorithm that dispatches video chunks to
virtual machines for transcoding.

249

Preparing variable-size video chunks
In order to take advantage of visual similarity among

pictures in a video sequence, we propose to segment the video
into variable-size video chunks so that GOPs are clustered ac-
cording to prediction dependency (hence, the visual similarity).
Many clustering algorithms have been proposed to group data
into a fixed number of clusters [18] or any number of clusters
as needed [19], [20], [21]. Since the number of desired video
chunks in the proposed adaptive model is not known a priori
when transcoding a video in real time, we adopt OPTICS
(Ordering Points To Identify the Clustering Structure) [21] to
cluster nodes in GOP-dependency graph Gg into as many video
chunks as necessary.

Since OPTICS clusters a stream of data points according
to distances between each pair of points, we must convert
the GOP-dependency graph Gg to a GOP-distance graph Gd
by converting the dependency weight of each arc to a dis-
tance measure between two consecutive GOPs. Since highly
dependent GOPs should be transcoded together, they should
be clustered into one video chunk. Thus, the distance between
two consecutive GOPs dk,k+1 should be inverse proportional
to the degree of dependency (the arc weight wag

k,k+1
in the

GOP-dependency graph Gg), as calculated in Eqn. 8.

dk,k+1 =
1

wag
k,k+1

− 1 (8)

We subtract the inverse of the weight of a GOP-dependency
arc by one to make the distance measure to be greater than or
equal to 0. According to Eqn. 2–7, if two consecutive GOPs are
very similar, the weight of the corresponding dependency arc
in Gg is close to 1 (due to the low prediction distortion), which
makes the distance between these two GOPs in Gd approaching
to zero according to Eqn. 8.

OPTICS has two parameters: ε – the maximum distance
among nodes in a cluster, and MinPts – the minimum
number of nodes in a cluster. We set MinPts to one by
default, meaning that if there is no GOP with a strong visual
similarity with a GOP, then the GOP can be processed alone
as a video chunk. The value of ε is set to 5 experimentally.
The computational complexity of OPTICS depends on the
complexity of ε-neighborhood query function which is invoked
exactly once for each GOP. Since the GOP-dependency graph
Gg is a chain of GOPs, the query function is invoked at
most n times, where n is the number of GOPs in the video
sequence and the query function adds the distances of the
new GOPs together until the accumulated distance from the
first GOP of the current cluster is more than the threshold
ε. As the computation complexity of the query function (one
addition and one comparison) is constant, the complexity of
this algorithm is O(n).

Dispatching video chunks for distributed transcoding in
the cloud

After segmenting the video into variable-size video chunks
according to dependency among GOPs, the transcoding con-
troller dispatches video chunks to virtual machines in the cloud
for transcoding. Though it is an NP-hard problem to optimize
the dispatching algorithm for transcoding delay, number of vir-
tual machines, or the energy consumed in the cloud, heuristic
solutions have been proposed [22]. For real-time streaming,
video chunks must be transcoded in respect to their playback

deadline. Thus, a simple FIFO dispatching algorithm is suitable
for our transcoding scheme since it preserves the time order
of video chunks. In other words, the transcoding controller
dispatches the first job in the FIFO queue as soon as a virtual
machines becomes available.

V. PERFORMANCE EVALUATION
In order to evaluate the proposed dependency-aware dis-

tributed transcoding scheme, we implement a prototype of the
transcoding system in a private cloud with 10 computing units.
Each computing unit is equipped with 16 Intelr Xeonr E5640
CPU cores at 2.67GHz. One machine is dedicated to serve as
the transcoding controller, and the remained machines serve as
transcoding servers. We used the most recent release of the ref-
erence software package for scalable video coding, i.e. JSVM
9.19.15 [23]. As shown in Fig. 6 we modified the SVC encoder
in JSVM by wiretapping a new module into the main video
coding modules of the encoder to generate the macroblock-
dependency graph when encoding a video, as described in
Step 1 of generating the GOP-dependency graph in Sec. IV-A.
The macroblock-dependency graph is then converted to the
GOP-dependency graph, as described in Step 2 of generating
the GOP-dependency graph in Sec. IV-A. The conversion can
also be performed in parallel to the encoding process on a
different processor as the encoder produces consecutive GOPs.
The GOP distances are calculated as described in Sec. IV-A,
and the results are stored as a list of n− 1 distance measures
in the video repository, where n is the number of GOPs in
the video sequence. At last, the transcoding controller clusters
the GOPs into variable-size video chunks using the OPTICS
algorithm according to the GOP distances. It is worth to note
that the proposed algorithm needs to run only once for each
raw video sequence prior to be encoded and stored on video
repository. Once the distances are calculated and stored, they
can be used to serve any transcoding request received by the
cloud transcoding system.

GOP
Encoder

Frame
Encoder

Layer
Encoder

Slice
Encoder

MB
Encoder

Dependency Graph Generator
& GOP Distance Calculator SV

C
 E

nc
od

er

Raw
Video

NAL Unit
Encoder

Encoded
Video Sequence

GOP Distances

Video
Repository

Fig. 6: The modified JSVM encoder software. Components in
gray are modified JSVM components. Components in white
are added to JSVM.

We use seven full-HD raw video sequences as input to
the transcoding system for a reality check. As reported in
Table I these videos are selected from different genres. They
exhibit diverse values of detail [24] and motion activity [25]
visual features. The detail feature provides a summary of the
histogram descriptors in the pictures of raw video sequence,
and the motion activity feature primarily captures the degree or
intensity of scene changes. The reference raw video sequences
are in YUV 4:2:0 format using the standard sampling scheme
for H.26x video coding standards. The frame rate is 24 fps
[26]. We encoded each video sequence using the modified
SVC encoder with layering configuration DTQ=(1, 3, 1), i.e.,
the SVC encoded video contains two dyadic spatial layers

250

(1920 × 1088 and 960 × 544 pixels), four temporal layers
(GOP = 8) and two quality layers (QP = 36 and QP = 30). The
encoded SVC videos are stored in the video repository along
with the respective GOP distances. By default, the transcoding
request requests a video with the same layer configuration but
in 720p frame resolution.

TABLE I: Reference videos and their visual properties.
Content Genre Detail Motion Activity

Big Buck Bunny (BB) Animation 3.52 1.63
Elephants Dream (ED) Animation 3.73 2.39
Pedestrian Area (PA) Scene 3.15 4.42

Rush Hour (RH) Scene 3.17 3.12
Park Joy (PJ) Scene/Nature 4.24 3.73
Riverbed (RB) Nature 4.72 4.13
Sunflower (SF) Nature 4.04 2.57

A. The overhead of the transcoding scheme
The proposed cloud-based distributed transcoding scheme

introduces computational and storage overhead in different
stages of the process. Due to space limit, we present the
results for two video sequences with the highest and lowest
computational and storage overhead, i.e., BB and RB. At first,
the macroblock-dependency graph Gm is created by capturing
macroblock dependency when encoding a raw video. Then Gm
is converted to the GOP-distance graph Gd. This overhead is a
one-time overhead since the GOP-distance graph once created
can be used for any transcoding request. As shown in Table II,
the highest computational overhead (the CPU time) is less than
2% of the encoding time for reference video sequences. Next,
the GOP-distance graph is stored in the video repository along
with the GOPs to serve any transcoding request. Since the
GOP-distance graph is simply a chain of n nodes representing
a sequence of GOPs, we only need to store the distance
measures of the n − 1 edges in the graph. To store the
distance measures with double precision, the storage overhead
is (n − 1) × 8 bytes, which is very small compared to the
size of the encoded videos. According to Table II, this storage
overhead is less than 0.04% of the space required to store a
reference encoded video. At last, a delay is introduced by the
OPTICS algorithm when clustering the GOPs into variable-
size video chunks in the transcoding controller. Compared to
the time required by the transcoding controller to retrieve the
video from video repository and decode the video prior to
dispatching transcoding jobs to the virtual machines, this over-
head was less than 0.02% for all video sequences. Compared
to the computational and storage required by the encoding
and transcoding processes, the overhead introduced by the
proposed distributed transcoding scheme is almost negligible.

TABLE II: Overhead of the proposed algorithm.
BB RB

Computational overhead - preparing Gd 1.64% 0.19%
Storage overhead - storing Gd 0.035% 0.003%
Delay in transcoding controller 0.016% 0.008%

B. Bitrate and Transcoding Time
To evaluate the performance of the proposed dependency-

aware distributed video transcoding scheme, we compare the
proposed scheme using variable-size video chunks with a
conventional video transcoding scheme using fixed-size video
chunks. For the conventional video transcoding scheme, we

vary the chunk size from 1 GOP to 64 GOPs. We measure
the bitrate (Kbps) and the average transcoding time (second)
for each reference video. Furthermore, we also compare the
proposed scheme (results are labeled with keyword ‘Variable’)
with a conventional scheme whose chunk size is the average
size (s̄) of the variable-size video chunks produced by the
proposed scheme (results are labeled with keyword ‘Average’).
Since video chunk size must be multiple of GOPs, we set the
chunk size to bs̄ ∗ (i+ 1)c− bs̄ ∗ ic so that the overall average
is still s̄ and no GOP is broken into two chunks. Due to page
limit, we only represent the results for fixed video chunk sizes
of 1, 8 and 64 GOPs here.
Average video chunk size and bitrate: According to Table
III, the average size of video chunk prepared by the proposed
scheme varies significantly from one video to the next. This
implies that the proposed scheme chooses different video
chunk sizes according to the video context. For example, for
the BB video sequence, with great visual similarity among con-
secutive GOPs, the proposed scheme produces video chunks
enclosing more GOPs (19.7 GOPs on average). In contrast, for
RB video sequence with more details and changing scenery,
the average chunk size is 1.6 GOPs.

TABLE III: Comparing bitrate and average chunk size
BB ED PA PJ RB RH SF

Average chunk size (GOPs) using the proposed scheme
19.7 11.9 5.1 2.8 1.6 5.4 8.3

Video bitrates (Kbps) using the proposed scheme
Variable 564 1168 1366 8489 6865 1081 776
Average 599 1207 1443 9041 6881 1135 857

Video bitrate (Kbps) using fixed-size video chunks
1 1720 1801 1824 9977 6883 1346 1808
8 678 1222 1394 8588 6857 1104 862
64 546 1156 1339 8439 6854 1075 747

The proposed scheme effectively reduces the video bitrate.
From Table III, we observe that the bitrate of the propose
scheme closely approximates the bitrate of the conventional
scheme with chunk size of 64 GOPs (the best-case scenario).
We also observe that the bitrate of the proposed scheme is
always less than the bitrate of the conventional scheme with
the average chunk size (e.g., 10.8% reduction in bitrate for
the SF video). Hence, in order to match the bitrate produced
by the proposed scheme, the conventional scheme must work
with chunks of size much larger than the average chunk size
found in the proposed scheme. Furthermore, our analysis on
the quality of the transcoded videos (YPSNR in db) indicates
that the proposed scheme not only maintains a good video
quality, but also outperforms all fixed size video chunks for
videos with high detail and motion activity visual features such
as RB.
Transcoding time: Table IV compares the transcoding time
needed by the proposed scheme and the conventional scheme
with different chunk sizes. For all reference videos, the
transcoding times needed by the proposed scheme are always
between the time needed by the conventional scheme with
chunk size of 1 and 8. Moreover, the propose scheme also
transcodes much faster than the case with average chunk size
(e.g., 24.4% faster for BB video sequence). This confirms
that the proposed transcoding scheme provides high coding
efficiency with reduced transcoding time. For example, for
video BB, setting the video chunk size to 1 GOP leads to 1720

251

Kbps video bitrate and 5.55 second video transcosing time.
If the video chunk size is set to 64 GOPs, the video bitrate
decreases to 546 Kbps but the transcoding time increases by
53%. Nevertheless, using the proposed adaptive scheme leads
to a 564 Kbps video bitrate, which is very close to that of
1 GOP video chunks, while the transcoding time is increased
only by 21% compared to 53% of 64 GOPs video chunks.

TABLE IV: Comparing transcoding time
BB ED PA PJ RB RH SF

Transcoding time (s) using the proposed scheme
Variable 6.75 7.80 7.80 8.73 10.24 7.00 7.62
Average 8.39 8.86 9.21 9.39 11.46 8.31 8.78

Transcoding time (s) using fixed size video chunks
1 5.55 5.84 6.42 6.98 9.82 5.87 5.86
8 8.20 8.82 9.63 10.53 14.46 8.85 8.79
64 8.47 9.37 9.93 11.00 14.85 9.09 8.98

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a cloud-based distributed video

transcoding scheme that takes advantage of visual similarity
among macroblocks in a video sequence to reduce bitrate
and transcoding time. As a pioneer work in this research
direction, we propose an algorithm to extract the dependency
among macroblocks in an encoded video, based on which we
determine the dependency between successive GOPs. GOPs
then are clustered according to their dependency to create
variable-size video chunks so that visually similar GOPs are
put in one chunk. Our experiments show that the proposed
scheme achieves reduces the video bitrate and transcoding
time. In future research, we will implement the proposed model
in a public cloud and investigate the scalability of the proposed
model and how it can benefit from the elasticity of the cloud.
Furthermore, when the workload is high, the proposed model
must consider the load balancing problem among transcoding
virtual machines, which is another direction of future research.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2014–2019,” http://www.cisco.com, February 2015.
[2] Z. Huang, C. Mei, L. Li, and T. Woo, “CloudStream: Delivering High-

Quality Streaming Videos Through a Cloud-based SVC Proxy,” in
Proc. of IEEE Conference on Computer Communications (INFOCOM),
Shanghai, China, April 10-15 2011, pp. 201–205.

[3] F. Lao, X. Zhang, and Z. Guo, “Parallelizing Video Transcoding Using
Map-Reduce-Based Cloud Computing,” in Proc. of IEEE International
Symposium on Circuits and Systems (ISCAS), Seoul, Korea, May 20-23
2012, pp. 2905–2908.

[4] G. Gao, W. Zhang, Y. Wen, Z. Wang, W. Zhu, and Y. P. Tan, “Cost
Optimal Video Transcoding in Media Cloud: Insights from User View-
ing Pattern,” in Proc. of IEEE International Conference on Multimedia
and Expo (ICME), Chengdu, China, July 14-18 2014, pp. 1–6.

[5] M. Chen, “AMVSC: A Framework of Adaptive Mobile Video Stream-
ing in the Cloud,” in Proc. of IEEE Global Communications Conference
(GLOBECOM), Anaheim, California, December 3-7 2012, pp. 2042–
2047.

[6] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-Assisted Live Media
Streaming for Globalized Demands with Time/Region Diversities,” in
Proc. of IEEE Conference on Computer Communications (INFOCOM),
Orlando, Florida, March 25-30 2012, pp. 199–207.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 52, no. 1, pp.
107–113, January 2008.

[8] M. R. Zakerinasab and M. Wang, “Does Chunk Size Matter in Dis-
tributed Video Transcoding?” in Proc. of IEEE/ACM International
Symposium on Quality of Service, Portland, Oregon, June 15-16 2015,
pp. 1–2.

[9] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, and P. Huang, “Meeting Service
Level Agreement Cost-Effectively for Video-on-Demand Applications
in the Cloud,” in Proc. of IEEE Conference on Computer Communi-
cations (INFOCOM), Toronto, Canada, April 27 - May 2 2014, pp.
298–306.

[10] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A Cloud-Based Transcoding
Framework for Real-Time Mobile Video Conferencing System,” in
Proc. of 2nd IEEE International Conference on Mobile Cloud Com-
puting, Services, and Engineering (MobileCloud), London, UK, April
7-10 2014, pp. 236–245.

[11] Y. Wu, C. Wu, B. Li, and F. C. Lau, “vSkyConf: Cloud-assisted Multi-
party Mobile Video Conferencing,” in Proc. of the 2nd ACM SIGCOMM
Workshop on Mobile Cloud Computing, Hong Kong, China, August 12
2013, pp. 33–38.

[12] W. Zhang, Y. Wen, and H.-H. Chen, “Toward Transcoding as a Service:
Energy-Efficient Offloading Policy for Green Mobile Cloud,” IEEE
Network, vol. 28, no. 6, pp. 67–73, November 2014.

[13] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit Rate Reduction
Video Transcoding with Distributed Computing,” in Proc. of the 20th
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), Garching, Germany, February 15-17 2012, pp. 206–
212.

[14] A. Heikkinen, J. Sarvanko, M. Rautiainen, and M. Ylianttila, “Dis-
tributed Multimedia Content Analysis with MapReduce,” in Proc. of
the 24th IEEE International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), London, UK, September 8-11 2013,
pp. 3497–3501.

[15] M. Kim, S. Han, Y. Cui, H. Lee, H. Cho, and S. Hwang, “CloudDMSS:
Robust Hadoop-Based Multimedia Streaming Service Architecture for
a Cloud Computing Environment,” Cluster Computing, vol. 17, no. 3,
pp. 605–628, September 2014.

[16] S. Bae, G. Nam, and K. Park, “Effective Content-Based Video Caching
with Cache-Friendly Encoding and Media-Aware Chunking,” in Proc. of
the 5th ACM Multimedia Systems Conference, Singapore, Singapore,
March 19-21 2014, pp. 203–212.

[17] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable
Video Coding Extension of the H. 264/AVC Standard,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1103–1120, September 2007.

[18] R. Xu, D. Wunsch et al., “Survey of Clustering Algorithms,” IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, May
2005.

[19] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases,” ACM SIGMOD Record,
vol. 25, no. 2, pp. 103–114, June 1996.

[20] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proc. of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD-96), no. 34, Portland, Oregon,
August 2-4 1996, pp. 226–231.

[21] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” ACM Sigmod
Record, vol. 28, no. 2, pp. 49–60, June 1999.

[22] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius,
“Stream-Based Admission Control and Scheduling for Video Transcod-
ing in Cloud Computing,” in Proc. of the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), Belfast,
Northern Ireland, May 13-16 2013, pp. 482–489.

[23] Joint Scalable Video Model (JSVM) Software, version 9.19.15, Fraun-
hofer Heinrich-Hertz-Institut, available online.

[24] D. K. Park, Y. S. Jeon, and C. S. Won, “Efficient Use of Local Edge
Histogram Descriptor,” in Proc. of ACM Workshops on Multimedia, Los
Angeles, California, October 30 - November 3 2000, pp. 51–54.

[25] S. Jeannin and A. Divakaran, “MPEG-7 Visual Motion Descriptors,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 6, pp. 720–724, June 2001.

[26] Xiph.org Test Media collection, http://media.xiph.org.

252

