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Abstract—We present a new delay-based transport protocol
named FLOWER, that aims at providing a Lower-than-Best-
Effort (LBE) service. The objective is to propose an alternative
to the Low Extra Delay Background Transport (LEDBAT) widely
deployed within the official BitTorrent client. Indeed, besides its
intra-fairness problem, known as latecomer unfairness, LEDBAT
can be too aggressive against TCP, making it ill suited for
providing LBE services over certain networks such as constrained
wireless networks. By using a fuzzy controller to modulate the
sending rate, FLOWER aims to solve LEDBAT issues while
fulfilling the role of a LBE protocol. Our simulation results
show that FLOWER can carry LBE traffic in network scenarios
where LEDBAT cannot while solving the latecomer unfairness
problem. Finally, the presented algorithm is simple to implement
and does not require complex computation that would prevent
its deployment.

I. INTRODUCTION

While standard TCP and its variants endeavor to achieve a
fair share of the network bottleneck capacity between flows,
the service provided by the network remains best-effort. There
exists another service named Lower-than-Best-Effort (LBE)
which aims at providing a second priority class inside the
network traffic. The rationale is to propose a service for
background traffic (e.g. peer-to-peer file transfers, data backup,
software updates, . . . ) or signaling traffic. This kind of traffic
might tolerate a high latency and should not disturb the traffic
carried out by the best-effort service itself or other services that
would propose advanced QoS architecture for time-constrained
application such as DiffServ [1]. Today, the LBE service, also
called “scavenger” service, is perceived as a potential solution
to fetch the unused, sometimes wasted capacity in public
network. One of the objective is, for instance, to provide a
free Internet access based on this LBE principle, as illustrated
by the objectives of GAIA1 or PAWS2 project. Last but not
least, the LBE service should not exacerbate the bufferbloat
issue [2].

Among the different transport protocols providing a LBE
service [3], Low Extra Delay Background Transport (LED-
BAT) [4] is the most used. LEDBAT is a delay-based conges-
tion control protocol that has been standardized by the Internet
Engineering Task Force (IETF). LEDBAT aims to exploit the
remaining capacity while limiting the queuing delay around

1Global Access to the Internet for All (https://sites.google.com/site/irtfgaia).
2Public Access WiFi Service (http://publicaccesswifi.org).

a predefined target τ , which may be set up to τ = 100 ms
according to RFC 6817 [4]. Consequently, LEDBAT flows
limits the amount of queuing delay introduced in the network
and thus lower their impact on best-effort flows such as TCP.
As an example of application, the official BitTorrent client is
using LEDBAT for data transfer [4].

Despite being a widely deployed protocol, the two main
LEDBAT parameters (i.e., target and gain) have been revealed
to be complex to determine [5], [6] as their tuning highly
depends on the network conditions and not dynamically con-
figurable. Indeed, LEDBAT may become more aggressive than
TCP in case of misconfiguration [5], [6]. As an illustration, in
a recent study, the authors of [7] conclude that the LEDBAT
target parameter should not be higher than 5 ms in a large
bandwidth-delay product (BDP ) network. At last, the authors
of [8] show that LEDBAT can greatly increase the network
latency making its impact on the network not transparent
anymore.

Our protocol, FLOWER (Fuzzy LOWer-than-Best-EffoRt
Transport Protocol), is a promising alternative to LEDBAT.
FLOWER overcomes LEDBAT shortcomings and provides
an LBE service that is more transparent to the network.
The principal difference with LEDBAT is that FLOWER
replaces the linear P-type controller (proportional controller)
of LEDBAT by a fuzzy controller to modulate the congestion
window. Compared to a recent solution named fLEDBAT [9]
that proposes to solve the latecomer issue and to the best of
our knowledge, there is no universal scheme allowing intra-
fair LEDBAT flows to remain LBE compliant, that is, non-
aggressive when competing with TCP flows.

We first review in Section II the LEDBAT algorithm and
its problems that motivate our work. Section III details the
design of FLOWER, while Section IV clearly explains its core
component, that is the fuzzy controller. Section V evaluates
our new protocol and gives a side-by-side comparison with
LEDBAT using the network simulator ns-2.35. We finally
conclude our work in Section VI.

II. CONTEXTUAL BACKGROUND AND MOTIVATION

While many transport protocols that have been design to
carry LBE traffic, such as NICE [10] or TCP-LP [11], only
LEDBAT has been reported to be actually deployed [12]. Our
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work therefore focus on LEDBAT and its design issues that
are described in this section.

A. LEDBAT in a nutshell

LEDBAT congestion control is based on queuing delay vari-
ations (i.e., the queuing delay is used as a primary congestion
notification). LEDBAT is characterized by several parameters:
target queuing delay τ , gain γ, minimum one-way delay
owdmin (also called base delay), and current one-way delay
owdack. The target queuing delay τ embodies the maximum
queuing time that a LEDBAT connection is allowed to intro-
duce in the network. The gain γ corresponds to the reactivity
of LEDBAT to queuing delay variations. The bigger γ is,
the faster LEDBAT congestion control increases or decreases
its congestion window. LEDBAT infers the queuing delay by
calculating (owdack−owdmin) obtained from one-way delays
measured by exploiting the ongoing data transfer. To keep the
queuing delay around the predefined target, LEDBAT uses a
linear P-type controller to modulate the congestion window
according to the derived queuing delay. For each ACK received
at discrete time k, the new congestion window size cwnd is
updated as follows:

cwnd(k) = cwnd(k−1)+
γ(τ − (owdack(k)− owdmin(k)))

cwnd(k − 1)

B. Two main LEDBAT issues

1) Aggressiveness of LEDBAT: RFC 6817 [4] states that,
if a compromised target is set to infinity, “the algorithm is
fundamentally limited in the worst case to be as aggressive as
standard TCP”. Actually, it corresponds to the case where the
buffer size is too small in comparison to the target. Thus, the
queuing delay sensed by LEDBAT never reaches the target.
Therefore, LEDBAT always increases its sending rate until a
loss event is reported.

However, there are circumstances “worse than the worst
case mentioned in RFC 6817” in which hostile LEDBAT
makes TCP back off, even in an unfavorable situation for
LEDBAT when it starts after TCP. The issue occurs when
the buffer size is around the target. In this case, LEDBAT
does not have enough time to react to queuing delay before
TCP causes a buffer overflow. After that, TCP halves its
congestion window, resulting in a reduction of the queuing
delay. Since the queuing delay is now below the target,
LEDBAT raises again its congestion window conjointly with
TCP. Consequently, after several cycles, LEDBAT exploits
more capacity than TCP.

To illustrate why the problem is important and the impact
of the aggressiveness of LEDBAT on TCP flows, Fig. 1a
shows an ns-2 simulation of 5 TCP New Reno and 5 LEDBAT
flows sharing the same bottleneck with a capacity of 10 Mb/s.
The buffer size is 84 packets (about 100 ms of delay) and the
LEDBAT target is set to 100 ms. The result is unequivocal
and demonstrates the aggressiveness of LEDBAT flows against
TCP flows. Although we present measurements with TCP New
Reno, the problem remains the same with Cubic as shown later
in the paper.
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Fig. 1: LEDBAT problems.

2) Latecomer unfairness: when LEDBAT flows start at
different times, they may suffer from the latecomer unfairness
problem. This problem arises because latecomer flows may
sense different minimum one-way delays. In the worst case,
when the buffer size is large enough, latecomer flows can
starve ongoing flows.

Fig. 1b demonstrates the latecomer unfairness problem. In
this case, 3 LEDBAT flows start consecutively every 50 s
and share the same bottleneck with a capacity of 10 Mb/s.
The buffer size is 167 packets (about 200 ms of delay). The
LEDBAT target is set to 100 ms. As can be observed in Fig. 1b,
latecomer flows gradually take all bandwidth of ongoing flows.

C. Motivation of FLOWER

Up to this point, we have identified two important problems
of LEDBAT. We now present our motivation to develop the
new congestion control named FLOWER.

Both LEDBAT key parameters — target and gain — are
fixed and do not cope with the diversity of network config-
urations. Consequently, LEDBAT becomes more aggressive
than TCP under some circumstances. One possible solution
is to adapt the target/gain to the change of network conditions
[7], [13]. However, such adaptive control scheme requires a
fine-grained mathematical network model. To prevent the use
of such too complex model, we design a new congestion
protocol based on the fuzzy logic. Two main advantages of
this approach are:

1) a fuzzy control system is a solution that prevents the use
of a mathematical model. Such approach is particularly
interesting when the model is not trivial, difficult to
derive or too complex to be implemented;

2) the fuzzy logic allows to incorporate our heuristic
knowledge about how to control the system. In other
words, we can use our previous findings [6] as an entry
for the fuzzy controller.

An in-depth analysis [6] gives us an insight to overcome
the LEDBAT problems, or more specifically, to control the
queuing delay. Hence, by means of the fuzzy logic, we
integrate our understanding gathered into the fuzzy controller
of FLOWER. We also point out that, by using a fuzzy control
system, we seek a generic solution that works in several and
various network conditions. It means that we are seeking an
average use-case and not the “optimal” one.
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III. DESIGN AND IMPLEMENTATION

A. FLOWER overview

FLOWER is a novel delay-based transport protocol which
aims at providing an effective LBE service. So, as a potential
LEDBAT alternative, FLOWER must tackle its issues while
keeping the same goals in terms of LBE service as listed in [4]:

1) to utilize end-to-end available bandwidth and to maintain
low queuing delay when no other traffic is present;

2) to add limited queuing delay to that induced by concur-
rent flows, and;

3) to yield quickly to standard TCP flows that share the
same bottleneck link.

To achieve these goals, FLOWER implements a fuzzy con-
troller to manage the target queuing delay algorithm instead of
the P-type controller as proposed in [4]. This non-zero target
queuing delay (“non-zero”: because recommended by the RFC
to be fixed by default to 100ms) allows FLOWER to fetch
the available capacity, and thus to saturate the bottleneck link,
when no other traffic is present. Meanwhile, the queuing delay
needs to be kept as low as possible to make FLOWER non-
intrusive to standard TCP traffic.

We can represent FLOWER congestion control as a feed-
back control system depicted in Fig. 2a. The essential compo-
nents of FLOWER are:

1) Fuzzy controller, which is an artificial decision maker
that operates based on a set of “If–Then” rules. By
using the fuzzy logic, the fuzzy controller determines
the congestion window size cwnd such that the future
estimated queuing delay eventually matches the target
queuing delay τ . The fuzzy controller takes two inputs:
queuing delay error e and change of queuing delay error
∆e;

2) Queuing delay estimator, which exploits measured one-
way delays to estimate the current queuing delay q;

3) Peak-valley detector, which keeps track of the maxi-
mum queuing delay qmax observed in the network. This
maximum queuing delay is then used to normalize the
queuing delay error.

Basically, FLOWER operates as follows: after each round-
trip time (RTT), FLOWER finds out the minimum queuing
delay observed during the RTT as the current queuing delay.
Queuing delays in an RTT are obtained using the queuing
delay estimator. Then, the fuzzy controller compares the target
queuing delay with the current queuing delay. The error is
positive when the current queuing delay is below the target. In
this case, the fuzzy controller increases the congestion window,
and thus the sending rate until the queuing delay reaches the
target. When the error is negative, meaning that the current
queuing delay is beyond the target, the fuzzy controller slows
down its sending rate.

B. Comparison of FLOWER and LEDBAT

Fig. 2 shows in blue the differences between FLOWER
and LEDBAT. Notably in FLOWER, we replace the P-type
controller with the fuzzy controller that, besides the queuing

(a)

(b)

Fig. 2: Block diagram of FLOWER and LEDBAT as feedback
control systems.

delay error e, also utilizes the error trend ∆e. We highlight
the fact that while being more robust, the implementation of
a fuzzy controller is simple and adds a little complexity to
computation compared to the P-type controller of LEDBAT.

Another feature added to FLOWER is the peak-valley de-
tector. This detector determines the maximum queuing delay,
which is important for the operation of the fuzzy controller.
Note that FLOWER uses the same LEDBAT queuing delay
estimator, which is fully described in RFC 6817 [4].

C. Peak-valley detection algorithm

To effectively react to congestion events, FLOWER needs
to determine the maximum queuing delay qmax. For this
purpose, we must identify the peaks of queuing delays (local
maximum) and find out the maximum queuing delay (global
maximum) using a threshold S, which is computed following
an exponentially weighted moving average (EWMA) of peaks.
To that end, we develop a simple on-line peak-valley detector
based on the algorithm described in [14]. The algorithm
alternatively identifies the peaks and valleys of queuing delays.
Each time a peak is detected, it is then used to calculate a new
threshold to find out qmax.

D. Slow-start: to do or not to do?

Similarly to LEDBAT, FLOWER might suffer from the
latecomer unfairness problem. During our experiments, we
notice that the use of the slow-start helps to mitigate (without
solving it for LEDBAT) the latecomer issue. This has also been
notified by [15]. FLOWER uses slow-start as a synchronization
signal and allows to get a preliminary measurement of the
queuing delay. The purpose of slow-start is to create a spike in
the queuing delay since in the slow-start phase, the congestion
window rises exponentially until causing a loss event. If other
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FLOWER connections also experience a loss, they restart their
congestion window. As a consequence, the queuing delay is
reduced, and thus allowing all flows to be able to sense the
same base delay. All flows will then rise again at the same time
and share the capacity equally. We highlight that slow-start
does not necessarily cause loss to other flows. Fortunately, in
this situation, the loss detection functionality of the FLOWER
fuzzy controller helps ongoing flows to detect the slow-start
signal of the latecomer flow, and hence to resynchronize all
flows.

IV. FLOWER FUZZY CONTROLLER

At the core of FLOWER congestion control is the fuzzy
controller composed by the following modules [16]:

1) A rule base, which contains a set of “If–Then” rules
that describes how to control the system, in our case,
the queuing delay;

2) An inference mechanism, which emulates the human
expert’s decision making about how best to control the
system based on the information stored in the rule base;

3) A fuzzification interface, which converts controller in-
puts, e and ∆e, into fuzzy values that the inference
mechanism can use for its fuzzy reasoning process;

4) A defuzzification interface, which converts the conclu-
sions of the inference mechanism into numerical output
∆cwnd.

In the remainder of this section, we briefly introduce these
modules and illustrate their operation.

A. The rule base

The rule base models the relationship between the inputs
and the output of the system. The FLOWER fuzzy controller
has the linguistic rules of the form:

Ri: if e(k) is Ai and ∆e(k) is Bi then ∆cwnd(k) is Ci

where

• Ri is the ith rule (1 ≤ i ≤M );
• e(k) = τ − q(k) is the first input variable;
• ∆e(k) = e(k)− e(k − 1) is the second input variable;
• ∆cwnd(k) is the output variable. Thus,
cwnd(k) = cwnd(k − 1) + ∆cwnd(k);

• Ai, Bi, Ci are the fuzzy sets of the input and output
variables.

Each fuzzy set Ai, Bi, Ci takes on the following linguistic
values:

{NVVL, NVL, NL, NM, NM, NS, NVS, Z, PVS, PS,
PM, PL, PVL}

where the meaning is: N: negative; P: positive; V: very; Z:
zero; S: small; M: medium; L: large. Hence, the linguistic
value PVS stands for positive very small and so forth.

Each fuzzy set is defined by a triangle membership function
with three parameters {a, b, c} as follows:

µAi
(x) : X 7→ [0, 1]

µAi
(x) =



0 if x ≤ a,
x− a
b− a

if a < x ≤ b,
c− x
c− b

if b < x < c,

0 if x ≥ c

where a < b < c and b is the center of the triangle membership
function (i.e., where it reaches its peak). The membership
function quantifies the degree of truth that a numerical value
x can be classified linguistically, for example, as PVS.

For a system with two inputs and one output like FLOWER,
we can list all rules using a tabular representation as shown in
Fig. 3. Note that in the rule table in Fig. 3, we use linguistic-
numeric values to shorten the description of linguistic values
(e.g., 1 represents PVS; 2 represents PS; ...).

An important feature of FLOWER is its capability to react
quickly to congestion events caused by TCP. This feature is
integrated in the rule base and can be observed at the last
column of the rule table, which we call the loss detection
zone (see Fig. 3). Concretely, when FLOWER detects a very
large fall in the queuing delay (∆e(k) is 5 or PVL), it must
immediately reduce to its minimum congestion window (e.g,
set to one packet). This case corresponds to the following
output: ∆cwnd(k) is -6 or NVVL.

Fig. 3 also shows all the membership functions for the inputs
and the output of the FLOWER fuzzy controller.

1) Membership functions of e(k): since the queue size
varies continuously as a function of the network traffic, we
need to make the input error e(k) independent of the network
state. For this purpose, before introducing e(k) into the fuzzy
controller, we express it as follows:

e(k) =


e(k)

τ
× 100 if q(k) ≤ τ,

e(k)

τ − qmax
× 100 if q(k) > τ

where qmax is the maximum queuing delay observed on the
network. Consequently, the membership functions of e(k) is
linearly distributed on the universe of discourse [−100, 100] %.

2) Membership functions of ∆e(k): the queuing delay is
ranging from 0 to the maximum value qmax. Thus, we have

∆e(k) = e(k)− e(k − 1) = q(k − 1)− q(k)

where q(k) ∈ [0, qmax]. Then, the universe of discourse for
∆e(k) is [−qmax, qmax] ms.

The variation of the queuing delay, and thus ∆e(k), highly
depends on the network state. Hence, we need to dynamically
adapt the distribution for the membership functions of ∆e(k).
In addition, as seen in the rule table in Fig. 3, the loss detection
zone of FLOWER relies only on ∆e(k). Therefore, we must
determine a threshold to define this zone. To this end, we
use the exponentially weighted moving average (EWMA) of
values of ∆e(k). As EWMA has higher weights on recent
data than on older data, sudden network condition changes
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Δcwnd
Δe

-5 -4 -3 -2 -1 0 1 2 3 4 5

e

-5 -5 -5 -5 -5 -5 -5 -4 -3 -2 -1 -6

-4 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 -6

-3 -5 -5 -5 -5 -4 -3 -2 -1 0 1 -6

-2 -5 -5 -5 -4 -3 -2 -1 0 1 2 -6

-1 -5 -5 -4 -3 -2 -1 0 1 2 3 -6

0 -5 -4 -3 -2 -1 0 1 2 3 4 -6

1 -4 -3 -2 -1 0 1 2 3 4 5 -6

2 -3 -2 -1 0 1 2 3 4 5 5 -6

3 -2 -1 0 1 2 3 4 5 5 5 -6

4 -1 0 1 2 3 4 5 5 5 5 -6

5 0 1 2 3 4 5 5 5 5 5 -6

-1-2-3-4-5 1 2 3 4 50

-1-2-3-4-5 1 2 3 4 50

-1-2-3-4-5 1 2 3 4 50

e(k) (%)

Δe(k) (ms)

Δcwnd(k)

20

sde+ Bsde--B -1-2-3 1 2 3

40 60 80 100-20-40-60-80-100

.6 .8 1.0.4.2-.2-.4-.6-.8-1.0

Δcwnd = 0.55

-∞

-6

Legend

-6 = NVVL, -5 = NVL, -4 = NL, -3 = NM, -2 = NS, -1 = NVS,
 0 = Z,
 1 = PVS, 2 = PS, 3 = PM, 4 = PL, 5 = PVL

( P: Positive, N: Negative, V: Very,
  Z: Zero, S: Small, M: Medium, L: Large )

B: Buffer, sde-: smoothed negative Δe, sde+: smoothed positive Δe

e(k)=τ−q(k)
Δe(k)=e(k )−e(k−1)

Δcwnd (k)=
∑
i

bi μRi
(Δcwnd (k))

∑
i

μRi
(Δcwnd (k))

Δcwnd=
(0.4)(0.25)+(0.6)(0.75)

0.25+0.75
=0.55

Example:

Fig. 3: The membership functions and the rule table of the FLOWER fuzzy controller.

are further taken into account in this average. Consequently,
the distribution for the membership functions of ∆e(k) is as
follows:

−qmax, sde−,−3,−2,−1, 0, 1, 2, 3, sde+, qmax

where sde− and sde+ are the EWMA of the negative and posi-
tive values of ∆e(k), respectively. {−qmax, sde−, sde+, qmax}
are respectively initialized with {−5,−4, 4, 5}. These values
are updated only when the absolute value of a new value is
greater than the absolute value of the initial value.

Finally, we underline that, as an effect of the loss detection
zone, when ∆e(k) > sde+, even if the degree of truth
µPV L(∆e(k)) is small, FLOWER reduces the congestion
window to its initial value.

3) Membership functions of ∆cwnd(k): outside the loss
detection zone, the distribution of ∆cwnd(k) is linear on the
universe of discourse [−1, 1] packet. As a consequence, the
maximum ramp-up speed of FLOWER is the same as TCP,
i.e., one packet per RTT. When operating in the loss detection
zone, ∆cwnd(k) is set to negative infinity to signal FLOWER
to reduce to minimum its sending rate. Otherwise, FLOWER
will ramp-down at maximum one packet per RTT.

B. Fuzzification
Whenever the fuzzification module receives a numerical

value x, it converts this value into the degree of truth µAi
(x)

of the corresponding linguistic value.

C. Inference mechanism
The inference mechanism derives the firing strength of each

rule from the fuzzy inputs obtained by fuzzification. Using the

minimum rule inference, the firing strength of the ith rule is
given by

µRi = min{µAi(e), µBi(∆e)}

D. Defuzzification

Defuzzification is the process of combining results of the
inference mechanism to obtain a numerical output value y.
We use the “center-average” defuzzication method which
calculates the weighted average of the center values of the
output membership function centers:

∆cwnd =

∑M
i=1 biµRi∑M
i=1 µRi

E. Example of fuzzy controller operation

Consider the example in Fig. 3. Suppose that e(k) = 35 and
∆e(k) = 1. The fuzzification process gives µPV S(e(k)) =
0.25 and µPS(e(k)) = 0.75, whereas µPV S(∆e(k)) = 1.
Fig. 3 shows the degrees of truth of the membership functions
for the inputs and indicates with black vertical lines the numer-
ical values of e(k) and ∆e(k). In this case, the corresponding
rules are shown as the blue cell and the red cell in the rule
table. Thus, the inference mechanism gives µR1

= 0.25 and
µR2

= 0.75, which correspond to the blue and red regions of
the output membership functions, respectively. Lastly, since
the output membership function centers of the two rules are
b1 = 0.4 and b2 = 0.6, the numerical output given by the
defuzzication process is:

∆cwnd(k) =
0.4× 0.25 + 0.6× 0.75

0.25 + 0.75
= 0.55
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Fig. 4: TCP and LBE congestion windows and bottleneck queue length as a function of time.

V. EVALUATION OF FLOWER
We use the network simulator ns-2.35 to validate our new

protocol. For this purpose, we have implemented an ns-2
prototype of FLOWER based on LEDBAT module developed
by Valenti et al. [17]. The prototype is implemented as a
Linux congestion control module on top of the TCP-Linux
framework [18]. Therefore, simulation results are much closer
to a real implementation in the Linux kernel and would allow
to easy port our implementation inside the Linux kernel (this
also been the case for the LEDBAT module [17]).

We specifically focus on the FLOWER performance in
terms of respect to a LBE traffic and latecomer unfairness
which are the two major drawbacks of LEDBAT.

A. Simulation setup

We use a dumbbell topology where a TCP flow shares
a single bottleneck link with a LBE flow (either FLOWER
or LEDBAT). Note that to test our protocol, we follow the
scenario used in [12] for the sake of comparison. All sources
send packets with a size of P = 1500 B. The bottleneck link
has a capacity set to C = 10 Mb/s and a one-way propagation
delay owd ∈ [10, 50, 100, 150, 200, 250] ms. The bottleneck
router is a FIFO drop-tail queue with a size of B packets. For
convenience, we express the bottleneck buffer B as a ratio
to the bandwidth-delay product BDP in terms of packets.
Hence, we have B = dn∗BDP e = dn∗C ∗2∗owd/(8∗P )e,
where the ratio n ∈ [0.2, 0.4, 06, 0.8, 1.0] and dxe is the ceiling
function. Since B must be an integer, we use the ceiling
function to get the smallest integer not less than B. We also
convert the target τ from milliseconds to packets as follows:
τ (packets) = τ (ms)∗C/(8∗P ). Therefore, a target queuing
delay τ = 100 ms corresponds to 83.3 packets and is rounded
to 84 packets.

B. Interaction with TCP

In this section, we study the behavior of FLOWER in the
presence of TCP and more specifically, the interaction between
the FLOWER fuzzy controller and the TCP AIMD (Additive
Increase/Multiplicative Decrease) algorithm.

1) Scenario and metrics: two TCP and LBE flows start at
t = 0 s and stop at t = 75 s. In this scenario, owd = 50 ms and
B = BDP . To investigate the behavior of one LBE flow in
coexistence with one TCP flow, we consider their congestion
windows and the queue length of the bottleneck buffer.

2) Results: Fig. 4 shows both congestion windows (top)
as a function of time conjointly with the queue length and
the target queuing delay expressed in packets (bottom). The
interaction between TCP and FLOWER is shown in Fig. 4a.
In the slow-start phase, TCP and FLOWER increase expo-
nentially their congestion window. Thus, the bottleneck queue
fills up quickly until loss. Unlike TCP, FLOWER reduces
its congestion window to its initial value which equals to
one packet in our implementation. After the slow-start phase,
approximatively before t = 3 s, as the bottleneck queue is
half-filled but the resulting queuing delay is small compared to
the target, FLOWER and TCP congestion windows conjointly
grow. As the queue still increases because TCP keeps sending
packets, FLOWER reduces its sending rate (the target is almost
reached) and finally stabilizes its congestion window. After
exactly t = 7.5 s, (we obtained this exact value from the
simulation traces) when the queuing delay is close to the
target, FLOWER reacts by decreasing its sending rate. Finally,
FLOWER reaches the minimum sending rate of one packet
per RTT at t = 9.3 s. Slightly afterwards, TCP gets losses and
enters in its recovery phase. As a consequence, TCP halves
its congestion window and the bottleneck queue is drained.

TCP re-enters in the congestion avoidance phase at t = 10 s
while FLOWER grows at its maximum speed as the queue
is not fully filled. FLOWER prevents bottleneck overflow by
reducing its sending rate before the knee phase [19] (i.e.
when the rate increases gradually but slower than the delay).
When TCP halves its congestion window at t = 21.8 s, we
observe an abrupt fall of the queuing delay. Shortly afterwards,
FLOWER detects this fall with the help of the loss detection
scheme, hence it drops to the minimum its congestion window.
Therefore, the queue is drained and FLOWER enters in a new
cycle. Henceforth, both FLOWER and TCP are in steady state.
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(b) LBE vs. TCP Cubic

Fig. 5: Rate distribution of TCP and LBE flows.

This first experiment illustrates the good LBE behavior of
FLOWER in the presence of TCP. Clearly, the fuzzy controller
with the loss detection scheme allows FLOWER to be LBE
compliant. In this standard configuration (we recall that B =
BDP ), LEDBAT does not behave as a LBE protocol and is
too aggressive as shown in Fig. 4b. This figure also illustrates
that the LEDBAT P-type controller does not react correctly to
congestion events. We refer the reader to previous studies [6],
[15] for further details on the LEDBAT defective behavior.

In the next section, we extend these measurements to several
general networking use-cases in order to exhaustively illustrate
the good performance of our fuzzy controller scheme.

C. FLOWER versus LEDBAT performance in coexistence with
TCP New Reno and TCP Cubic

In this section, we evaluate the impact of FLOWER flows
on TCP flows (either New Reno or Cubic) in different network
conditions.

1) Scenario and metric: we consider 5 long-lived TCP
flows with 5 LBE flows. The simulation lasts 1200 s where
TCP flows start consecutively every 10 s from t = 0 s and
keep sending data until the end of simulation. LBE flows start
randomly between t = 350 s and t = 450 s in order for TCP
to reach the full capacity.

To assess the impact of LBE on TCP, we define the metric
rate distribution (X) as the total throughput achieved by all
flows Fk where k ∈ {TCP,LBE} over the total throughput
of all flows on the link:

Xk =
Fk

FTCP + FLBE
(1)

For each combination of network configuration {owd,B},
we run the simulation 10 times. After each run, we calculate
the rate distribution over the last 600 seconds. Then, the mean
of the 10 metric values is taken as the measured value.

2) Results: in Fig. 5, using histogram, we group the simula-
tion results into different categories of one-way delay (denoted
owd in Fig. 5), and then into subclasses of buffer size given
as a ratio to the BDP. For information purpose, note that at

the top of the histogram, the equivalent ratio to the BDP is
converted as the ratio to the target value given in packets as
explained in Section V-A. This means we express B as the
ratio to the target τ in the same way as with the BDP . For
instance, looking at Fig. 5, a buffer sized 0.4 of the BDP at
owd = 100 ms corresponds to 0.7 of target value in packets.
For each buffer size, each stacked column gives the sum of
the normalized rates obtained by both TCP and LBE flows.
Then, each slice inside a column, represents the part obtained
by 5 TCP and 5 LBE flows given by (1).

Fig. 5a shows the performance of LEDBAT and FLOWER
in the presence of TCP New Reno. We have selected a set
of network configurations following our previous study on the
LEDBAT performance issues [6]. These network configura-
tions illustrate a large number of use-cases where LEDBAT
performs (in Fig. 5a when the ratio of the bottleneck buffer size
to the target τ is largely greater than 1) or does not perform
correctly (resp. the reverse). As shown in Fig. 5a, LEDBAT
obtains sometimes more than TCP New Reno and crosses the
fair-share line represented by a dotted line. We then compare
the results obtained by FLOWER in these configuration.
Fig. 5a allows to easily compare the performance of both
protocols in identical situation. The results are unequivocal
and illustrate that FLOWER behaves as a LBE protocol where
LEDBAT fails in realistic cases.

Using the same network configurations as above, we now
study the performance of LEDBAT and FLOWER in coexis-
tence with TCP Cubic in Fig. 5b. TCP Cubic is more aggres-
sive than TCP New Reno but in those cases, the performance
of FLOWER is far better than LEDBAT in respect of the LBE
principle.

D. Intra-protocol fairness

We finally study the interaction between two FLOWER
flows to assess their intra-fairness and determine whether
FLOWER is not impacted by the latecomer issue.

1) Scenario and metric: in this scenario, the buffer size
B is set to twice the BDP . This configuration is favorable
to get the LEDBAT latecomer unfairness phenomenon. The
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Fig. 6: LBE congestion windows and bottleneck queue length as a function of time.

bottleneck link has a one-way delay owd = 50 ms. The first
LBE flow starts at t = 0 s and the second starts at t = 20s.
Both flows last 150 s. As in V-B, we draw their congestion
windows and the queue length of the bottleneck buffer.

2) Results: Fig. 6b shows the LEDBAT latecomer is-
sue [17]. The first LEDBAT flow starts when the bottleneck
queue is empty, and as a result, senses a base delay. When
the second LEDBAT flow starts at t = 20 s, the queue is filled
with ≈ 50 packets. Consequently, the second flow estimates
a higher base delay including the queuing delay of the first
one. Since its estimated queuing delays are below the target
delay, the second flow raises its sending rate. As a result, the
first one senses an increasing queuing delay and begins to
decelerate. Finally, it reaches its minimum rate at t = 131 s
as shown in Fig. 6b. On the contrary, FLOWER does not
inherit this latecomer issue thanks to the loss detection scheme
described in Section IV as shown in Fig. 6a. This experiment
demonstrates that two FLOWER flows can now share fairly
the link capacity.

VI. CONCLUSION AND FUTURE WORK

We propose FLOWER, a new delay-based congestion con-
trol protocol designed to provide a LBE service using results
from the fuzzy logic area. The main goal of FLOWER is to
overcome both major LEDBAT drawbacks: aggressiveness and
latecomer unfairness, while being LBE compliant. To the best
of our knowledge, FLOWER is the first solution that solves
both the aggressiveness issue inherent to LEDBAT protocol
and the fairness issue. Our preliminary simulation study
over a wide range of network use-cases shows that FLOWER
performs better than LEDBAT in case where it usually fails.

We are currently porting and testing this implementation
inside the Linux kernel. We expect to present and discuss these
results and this fuzzy logic mechanism proposal at the next
IETF meeting.
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