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Abstract

Vehicular networks are an emerging technology that offer potential for providing a vari-

ety of new services. However, extending vehicular networks to include IP connections is still

problematic, due in part to the incompatibility of mobile IP handovers with the increased

mobility of vehicles. The handover process, consisting of discovery, registration, and packet

forwarding, has a large overhead and disrupts connectivity. With increased handover fre-

quency and smaller access point dwell times in vehicular networks, the handover causes a

large degradation in performance. This thesis proposes a predictive handover solution, us-

ing a combination of a Kalman filter and an online hidden Markov model, to minimize the

effects of prediction errors and to capitalize on advanced handover registration. Extensive

simulated experiments were carried out in NS-2 to study the performance of the proposed

solution within a variety of traffic and network topology scenarios. Results show a signifi-

cant improvement to both prediction accuracy and network performance when compared

to recent proposed approaches.
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Chapter 1

Introduction

Rapid expansion of wireless networks has given rise to the development of vehicular net-

works for such services as infotainment, road safety, and traffic management. This develop-

ment has included advanced routing protocols for effective inter-vehicular communication;

however, providing IP services to vehicles remains challenging. In this chapter, we first

provide an overview of mobile IP and vehicular networks. This is followed by the problems

of the mobile IP handover within a vehicular network, and details on our contribution and

the thesis organization.

1.1 Background

Vehicular networks are a developing technology aimed to provide high-speed wireless com-

munication between vehicles. These networks, composed of vehicles and road-side access

points (APs), are similar to other wireless networks, but with some key differences re-

quired for handling the increased movement of vehicles. One such difference is the use

of vehicle-to-vehicle (V2V) communication in addition to infrastructure-to-vehicle (I2V)

communication. Having APs cover the entire area of a vehicle’s potential movement is

unrealistic, but gaps between coverage are resolved with V2V. There is also the develop-

ment of IEEE802.11p and numerous routing protocols to handle rapidly shifting network

topologies. However, vehicular networks continue to have many challenges that prevent

1



Chapter 1. Introduction 2

performance from reaching closer numbers to other wireless networks.

Figure 1.1: Mobile IP handover registration

Mobile IP is the procedure used for providing Internet access to wireless nodes as they

connect to different access points. When a moving node begins transitioning between AP

coverages, it conducts a mobile IP handover to continue its IP session through the new AP.

The mobile IP handover procedure consists of two main steps: access point discovery and

registration. Discovery, triggered by a weakening signal with the mobile node’s current

AP, is the process of the mobile node finding the closest neighbor AP to commit to. This

involves the mobile node listening on various channels for AP ad messages which contain

registration information. The mobile node choses an AP to commit to based on the signal

strengths of the different ads, and then initiate registration with that AP, as visualized in

Figure 1.1. Registration consists of the mobile node setting up a care-of-address (CoA)

with the new AP and notifying its home agent (HA) of the new location. The HA then

updates the location for the mobile node and begins forwarding IP packets to the new

CoA.

Completion of the handover process can be very slow, causing latencies up to one

second [23]. During this time, the mobile node is unable to receive any IP packets. Common

contributions to this delay include the time it takes the mobile node to discover the nearby
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APs, and the potentially large communication distance between the mobile node and its

HA, which increases the time to exchange packages during registration.

1.2 Problem

The problems addressed in this thesis are centered around performance issues of the mo-

bile IP handover and poor handover prediction accuracy within vehicular networks. While

the handover creates less of an issue for slow moving nodes, its high costs are unsuit-

able for the increased and frequent movement of vehicles. Providing an uninterrupted IP

connection, which is required for many IP services, mandates smooth transitions between

Internet access points, but the mobile IP handover’s expensive procedure causes service

interruption during the AP transfer. Because of this handover cost, a vehicle that is fre-

quently transferring between APs will suffer constant interruptions and large performance

degradation. For example, consider a vehicle moving at 30m/s that switches to a new AP

every 300m, spending approximately ten seconds within each AP. The handover would

consume up to 10% of the vehicle’s dwell time before IP services would be accessible again.

Additionally, every 10 seconds the IP services will be interrupted, making them unusable.

Different methods to improve the mobile IP handover have been investigated, but im-

proved performances have yet to meet IP service requirements. Popular approaches include

the fast handover (FMIP) [35], the hierarchical handover (HMIP) [34], and the proxy han-

dover (PMIP) [52]. These approaches focus on reducing the latency costs of the discovery

and registration processes, but mobile IP requirements make it difficult to reduce perfor-

mance costs enough for vehicular network compatibility. Additionally, if there is densely

populated AP, the packet overhead of the handover starts causing large packet drop rates.

Most approaches, however, add more overhead rather than reduce to improve the latency

issues. Properly balancing these different performance metrics remains a challenge because

improving upon one often involves sacrificing the other.

A potential solution to these issues is a predictive handover, because a correctly pre-

dicted handover can conduct the majority of the procedure in advance to produce a near-
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ideal handover performance. In addition, the additional overhead produced for the predic-

tion occurs before the handover, which has less consequence on the vehicle’s connectivity.

However, predictive approaches have had less popularity due to the difficulty of accurately

predicting a handover. To capitalize on advance handover benefits, a predictive handover

scheme must achieve a high success rate. Otherwise, the performance improvement is too

small to outweigh the extra costs for conducting a prediction. While vehicle movement is

limited by road restrictions, some aspects of a vehicular network are still problematic for

predicting a handover. One such issue is the difficultly of encompassing the large variety

of road and intersection scenarios to maintain prediction reliability. Another problem is

the road restrictions forcing vehicles to move in indirect directions, misleading prediction

algorithms. Other than prediction accuracy, there are also the issues of handling a predic-

tion error to minimize performance degradation, exchanging network information essential

to making a prediction, and approaching an advanced handover to achieve best perfor-

mance. All of these problems should be addressed to meet the performance requirements

of a vehicular network.

1.3 Contribution

In this thesis, a predictive handover using a robust prediction method is proposed to

improve mobile IP performance within vehicular networks. By improving the reliability

of the prediction method, the frequency of advanced handovers will reach a point where

a vehicle will experience few interruptions in its IP services. The central contributions of

this thesis are described as follows.

• A prediction method is proposed that combines vehicle movement projection with

stochastic probability analysis to determine the next handover. Vehicle projections

are made using a Kalman filter (KF) [66], which are then fed into a hidden Markov

model (HMM) [67] as observations. In combining the probabilistic and temporal

data, accuracy is maintained in a wider variety of situations, thus improving reliabil-

ity and accuracy. The KF and HMM are modeled to resolve previously problematic
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situations, such as misleading vehicle movement. Both of these tools have low calcu-

lation costs, ensures that the prediction is made efficiently for the small time frame

required to complete an advanced handover in a vehicular network.

• An online incremental learning method for the HMM is modeled and adjusted to the

mobile IP network to continuously learning the system probabilities and determine

the most likely neighbor AP for handover prediction. In addition, we propose an

initial HMM learning approach that takes advantage of the mobile network to improve

HMM convergence rates and include network metrics in probability calculations. The

latter improves network performance by having vehicles favor handovers with APs

that will provide better coverage.

• A information protocol within mobile IP is proposed for APs to gather necessary

neighbor information and HMMs to learn system probabilities. The protocol uses

information packets sent over the network between vehicles and APs. The approach

is self-maintaining, requiring no initial maintenance and allowing each AP to adapt

to their individual environments. This way, the protocol can be easily implemented

and self-maintained. The method advances a neighbor discovery approach previously

proposed by A. Mishra et al. [19].

• A predictive handover protocol is proposed and designed to capitalize on the benefits

of a successfully predicted handover and to minimize costs of a prediction error. This

includes handling problems such as ensuring early registration is completed before the

handover occurs and detecting when a prediction error has occurred. By addressing

these issues, performance is further improved beyond just the improved accuracy.

• Extensive simulations experiments are ran and illustrated to test the prediction and

network performance of the prosed predictive method in comparison with other recent

methods. The simulations are done using data from multiple road environments,

three different MAC layer routing protocols, and across a variety of vehicle densities.

This provides insight to the robustness of each handover approach and the effects that

different road environments and routing protocols have on the network performance.
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1.4 Thesis Organization

The rest of the thesis is organized as followed:

• Chapter 2 reviews related literature that discusses improving the mobile IP perfor-

mance. We organize the literature into different categories and analyze the differences

between them, as well as literature that combines multiple categorical approaches.

We also discuss the benefits and issues of the methods discussed within the literature,

and explain the relationships between these methods.

• Chapter 3 reviews the problems discussed in the related literature, and from these

problems we explain the theoretical concept and reasoning behind our approach.

This is followed by an illustrated example showing how our approach addresses and

resolves issues raised in other literature.

• Chapter 4 describes the mathematical tools used for the proposed predictive ap-

proach. This includes mathematically modeling the Kalman filter and hidden Markov

model, and deriving equations used for the prediction and online HMM learning.

• Chapter 5 proposes the prediction algorithm used for determining the next most likely

AP. This includes details on combining the derived mathematical tools and optimizing

variable parameters to perform better within a vehicular network. Discussion of the

decisions we made are also provided, explaining the benefits of our chosen approach.

• Chapter 6 proposes our predictive handover protocol and details how the prediction

method is implemented within the mobile IP network. This includes details on how

neighboring APs are discovered, how information is retrieved for HMM learning,

where the HMM and Kalman filter are located, the protocol followed for both correct

and incorrect predictions, and detection of a prediction error.

• Chapter 7 describes the evaluation environment and analyzes the proposed solution

compared to other methods. This includes separate analysis of the prediction accu-

racy and the network performance to provide more insight into the effectiveness of
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our approach. We simulate a large set of comparison methods, road networks, and

vehicular network routing protocols to test the robustness of our approach.

• Section 8 concludes the thesis, where we review our proposed approach and a sum-

mary of what we derived from simulation analysis. This is followed by a discussion

on potential research topics to continue the work presented this thesis.



Chapter 2

Related Work

Literature on improving mobile IP handover performance is reviewed. Surveys on handover

literature can be found in [32] and [33], with a survey specifically on the used algorithms

in [114–116]. The handover methods proposed by the literature can be organized into

the four categories: hierarchical, fast, proxy, and predictive; all of which are focused on

resolving one or more of the problems in the mobile IP handover. In Section 2.1, we provide

a summary of the hierarchical handover and related literature that propose methods of

improving it. We then detail the fast handover by the same approach in Section 2.2. This

is followed by the proxy handover in Section 2.3 and hybrid approaches of the hierarchical,

fast, and proxy approaches in Section 2.4. In Section 2.5, we analyze the literature of the

different predictive method, which we then follow with our conclusion in Section 2.6.

2.1 Hierarchical Handover

H. Soliman et al. [34] introduce the hierarchical mobile IP handover, which utilizes mobility

anchor points (MAP) to decrease registration costs for vehicles that are distant from their

HA. An overview of the HMIP architecture is shown in Figure 2.1.

A MAP acts a temporary local home address for a vehicle within a foreign network.

The MAP is located within close distance of the vehicle, allowing registration between APs

to be completed through only local communication. This prevents communication with a

8
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Table 2.1: Hierarchical Handover Approaches

Article Approach Advantages Drawbacks

H. Soliman et
al. [34] (2003)

Adds MAPs to
act as local HAs

Reduces
registration
tunneling

Large latency costs
for MAP
transitions

H. Teng et
al. [1] (2011)

Context
messaging

between MAPs

Smoother MAP
transitions

AP discovery costs,
still suffers if

MAPs are distant

P. Nath et
al. [2] (2012)

MAPs use AP
tables, uses

vehicle movement
for management

Smoother AP and
MAP transitions

Low scalability due
to maintaining

tables, movement
unreliable

K. Kawano et
al. [3] (2002)

Adds a
hierarchical tree
structure to

MAPs

Improved MAP
coordination,

balancing MAP
loads

Increased overhead
for MAP

coordination

T. You et
al. [4] (2003)

Vehicles connect
to a primary and
secondary MAP

Improves reliability
and consistency of

handover
performance

Increased overhead
and network loads

J. Lee et
al. [7] (2003)

Adds IP paging
extension

Reduces
unnecessary MAP

and vehicle
communication

Increased latency
delay when MAP
needs to forward IP
packets to vehicle

M. Yi et al. [5]
(2003)

Use dwell-time
estimation to
reduce binding

updates

Reduces packet
overhead for

vehicle tracking

Large performance
costs when

estimation error
occurs

E. Mirzamany
et al. [6]
(2012)

Two-layer MAPs
for intra-domain

handovers

Reduced
intra-domain

latency, reduced
inter-domain
frequency

Costly
inter-domain
transitions,
increased
complexity
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Figure 2.1: HMIP handover architecture

distant HA that would cause large registration latency. Each MAP covers a set number

of APs within an region, and so the vehicle’s HA must only be contacted upon switching

between MAPs. By reducing the frequency of HA communication, the average registration

latency is also reduced. The issues that remain within the HMIP approach are the MAP

transition costs, optimizing a vehicle’s MAP selection to prevent frequent MAP transitions,

and reducing the MAP overheads.

2.1.1 Mobility Anchor Point Transition Costs

The costly procedure of a vehicle switching between MAPs may create inconsistent han-

dover performances. When a switch happens, the handover procedure becomes more ex-

pensive than the standard mobile IP handover, due to the latency and overhead costs for

contacting the HA and also setting up the new MAP. To address this problem, H. Teng et

al. [1] add a context message protocol between anchor points. The context messages allow

MAPs to communicate information directly to each other during a MAP transition. This

reduces the required registration exchange between the vehicle and MAP, and additionally
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lowers the registration delay since one MAP can directly begin forwarding IP packets to

the vehicle’s new MAP. One issue of this approach is the additional network load produced

by the context messages.

Another approach that uses context messages to reduce transition costs is proposed by

P. Nath et al [2]. In their approach, the MAPs maintain tables of all nearby APs and

that AP’s related MAP. The vehicle’s current MAP uses the vehicle’s general movement to

estimate which AP it will connect to next. The MAP will then check its tables and see if

the vehicle is about to leave to another domain. If it is the case, the MAP will send context

messages to the new MAP to reduce the registration costs of MAP transitions. This allows

for smoother MAP transitions when successful; however, the problem is two fold. First,

having MAPs maintain tables on all nearby APs can be difficult to maintain or update

and is not scalable if AP density is high. Second, a vehicle’s movement is unreliable, which

will cause many incorrect assumptions about which AP is next.

2.1.2 Optimizing Mobility Anchor Point Selection

There is also the issue of a vehicle connecting to a MAP that is not optimal for performance.

This would occur when a vehicle moving on the line between two MAP domains. K. Kawano

et al. [3] introduce a multilevel HMIP approach which adds a tree structure to MAPs that

allows improved MAP coordination and better distribution of network loads. This shows

to improve MAP performance, but suffers from the increased overhead required for MAP

coordination. Another approach to this issue is by T. You et al. [4], who propose a robust

HMIP where a vehicle registers with a primary and secondary MAP at the same time. If

failure to connect with the primary MAP occurs, or if the vehicle quickly transitions away

from that MAP, it can quickly recover by switching to the secondary MAP. This reduces

the recovery time that occurs when the wrong MAP is selected. However, registering with

two MAPs incurs additional overhead and network loads to the MAPs.
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2.1.3 Reducing Mobility Anchor Point Overheads

When vehicle densities increase, the high overhead and network loads for MAPs can put

large stress on the network. This issue is amplified by methods adding more overhead and

MAP loads to resolve other HMIP issues. J. Lee et al. [7] add an IP paging extension to

HMIP to reduce the amount of vehicle tracking otherwise required by the MAP. The central

idea is the MAP pages for the vehicle’s location upon receiving packets destined for it. By

having a paging system, the MAP only needs to keep close track of active vehicles. This

reduces the unnecessary tracking otherwise required for vehicles that are idling within a

MAP’s domain. One issue of this approach is the additional delay before a vehicle receives

the first wave of IP packets upon becoming active.

Another method to decrease overhead and load costs is discussed by M. Yi et al. [5],

who propose a dwell-time estimation method to reduce binding updates, which are used for

vehicle tracking. The method estimates how long a vehicle will remain within the MAP’s

region and the current AP’s range by observing the vehicle’s current mobility. Binding

updates can then be sent according to this estimation instead of at predefined increments,

thus reducing the packet exchanges require for the MAP to track a vehicle. However,

large performance costs can occur if a vehicle changes location in less time than what was

estimated.

E. Mirzamany et al. [6] propose using a two-level MAP system to distribute the MAP

load without affecting communications with the corresponding node. The two-level system

is composed of global MAPs (GMAP) and local MAPs (LMAP), where GMAPs are located

at the standard MAP location, and LMAPs are setup between the GMAP and APs. This

allows each MAP to have a lower load, since LMAPs handle fewer APs than a standard

MAP, and the GMAP only has to communicate with the vehicle during LMAP transitions.

Another benefit of this approach is it reduces intra-domain handover latency, since LMAPs

are even more local and with lower MAP loads, their response will be near-instant. One

issue with this approach is it would incur additional overhead upon a domain transfer, as

the vehicle would then have to establish connection through an LMAP and GMAP.
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2.1.4 Summary

In summary, the HMIP’s reduction of HA communication improves the handover registra-

tion costs when a vehicle is within a single MAP’s region. However, some HMIP aspects,

such as switching between MAP regions and its additional overhead, remain problematic

and limit its improvement to network performance. In addition, HMIP approaches do not

address the performance issues of the handover’s discovery process.

2.2 Fast Handover

Vehicle
Current

AP
Next
AP

RtSolPr

PrRtAdv

FBU
HI

HAck

FBAck
FBAck

Vehicle
Detached

Forward packets

Vehicle
Attached

FBU

Deilver packets

FBU

Figure 2.2: Proactive fast handover protocol
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Table 2.2: Hierarchical Handover Performance Comparison

Article
Han-
dover

Latency

MAP
Transition

Cost

Over-
head

Network
Load

Consis-
tency

H. Soliman
et al. [34]
(2003)

Medium Large Medium Medium High

H. Teng et
al. [1]
(2011)

Medium Low Medium High Medium

P. Nath et
al. [2]
(2012)

Medium Low Low High Low

K. Kawano
et al. [3]
(2002)

Medium Medium High Low High

T. You et
al. [4]
(2003)

Medium Low High High High

J. Lee et
al. [7]
(2003)

Medium Medium Low Low Low

M. Yi et
al. [5]
(2003)

Medium Large Low Low Medium

E.
Mirzamany
et al. [6]
(2012)

Low Medium Low Medium Low
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Table 2.3: Fast Handover Approaches

Article Approach Advantages Drawbacks

G. Tsirtsis et
al. [35] (2003)

MAC triggers to
initiate handover

Minimize AP
discovery costs

Unreliable
cross-layer

communication

M. Boutabia
et al. [10]
(2013)

Ensure FBAck
message delivery

with media
independent
protocol

Improve reliability
of FMIP

Additional
overhead, only
improves FBAck

reliability

A.S. Sadiq et
al. [11] (2014)

Increase accuracy
of signal strength

prediction

Improve reliability
of FMIP

Additional
overhead and

calculation, only
improves AP
selection

H. Huang et
al. [12] (2009)

Pre-binding
update packets
exchanged for
establishing

earlier connection

Increases FMIP
success rate

Increased overhead
and latency

N. V. Hanh et
al. [39] (2008)

AP initiates HA
registration

instead of vehicle

Reduces
registration latency

Amplifies
consequences of an

FMIP error

H. Kim et
al. [13] (2006)

Neighbor AP info
found in advance,

used to send
early binding
update packets

Improves FMIP
reliability and

reduces handover
latency

Increases overhead
for added packets
and neighbor
discovery

S. Kim et
al. [31] (2011)

Adds packet
buffering in APs

after MAC
triggers

Reduces handover
latency

High overhead and
large memory costs

for buffering
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Vehicle
Current

AP
Next
AP

RtSolPr

PrRtAdv

Vehicle
Detached

Vehicle
Attached

FBU

FBU

FBAck

Forward packets

Deilver packets (incl. FBAck)

Figure 2.3: Reactive fast handover protocol

The fast handover, introduced by G. Tsirtsis et al. [35], utilizes MAC layer triggers

to notify the mobile IP layer of an upcoming handover. Since the MAC layer handover

occurs first, the early trigger allows the vehicle to discover its upcoming AP and reserve

a CoA before the mobile IP handover starts. Reserving a CoA in advanced allows earlier

packet-forwarding to the new AP, which produces a smoother transition with fewer packets

dropped. However, MAC triggers can often be incorrect, and communication between

layers is unreliable. Thus, the fast handover relies on proactive and reactive protocols

followed when either the handover is successful or unsuccessful.

The steps of the two fast handover protocols are shown in Figures 2.2 and 2.3, where

dashed lines represent wireless communication and solid lines represent communication

over the wired network. Both protocols begin with a router solicitation for proxy adver-

tisement (RtSolPr) and a proxy router advertisement (PrRtAdv) message. These messages

are exchanged every time the vehicle receives a new MAC-layer advertisement from a neigh-
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boring AP. The vehicle sends a RtSolPr message to its current AP, requesting the related

IP information with the newly discovered AP’s IP information. In a proactive situation,

the vehicle chooses which AP it will connect to next before it disconnects with its current

AP. It will send a fast binding update (FBU) message to its current AP, which will then

establish a new CoA with the next AP using a handover initiate (HI) and a handover

acknowledge (HAck) message. The current AP then sends a fast binding acknowledg-

ment (FBAck) message to both the next AP and vehicle for confirmation. The current

AP then forwards the IP packets to the next AP, which delivers the vehicle upon its re-

connection. In the case of a reactive protocol where the vehicle fails to send the FBU

before disconnecting, it sends the FBU to the next AP, which then forwards the FBU to

the previous AP, and the same handover procedure is followed.

A proactive fast handover can reduce latency and packet drop rates, but there still

exists a few performance issues that prevent the fast handover from meeting IP require-

ments. These problems include the unreliability of the proactive protocol and reducing the

delay of the proactive handover exchange.

2.2.1 Improving Reliability

An issue that arises in the FBAck message is it is also sent through the MAC layer. This

results in the FBAck message to not always be delivered, which causes the vehicle to

incorrectly assume a failure. This is particularly a problem within vehicular networks, as

their frequent movement makes them regularly susceptible to interference [106]. A solution

to this problem is proposed by M. Boutabia et al. [10], who utilize the media independent

protocol to ensure delivery of the FBAck message. Since the media independent protocol is

not linked to a specific layer, it can communicate with both the MAC and network layers.

This allows it to more reliably check packet delivery, thus reducing the chances of a fast

handover failure.

There is also the issue of choosing the wrong neighboring AP because of unreliable MAC

signal readings. This issue is approached by A.S. Sadiq et al. [11], who propose using a

curve fitting model to accurately interpret changing signal strengths of neighboring APs.
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This prevents any brief signal disruptions causing the vehicle to choose the wrong AP, and

also stops the MAC trigger from occurring at an inappropriate time. Since a vehicle may

be moving fast, frequent small disruptions could occur, showing how this approach could

be useful within the context of vehicular networks. A similar approach is proposed by

S. Samarah et al. [90]. Their method uses sequential patterns instead of a curve fitting

model to track the signal strengths. However, an issue with these approaches is the proper

setting of the curve fitting model, which could prove to be difficult with the variety of

environments a vehicle network may be operating in. A different method to ensuring

correct AP selection is discussed by A. Boukerche et al. [89,92,111] and Y. Ren [102,112],

who both introduce agent-based trust methods and reputation management schemes. This

would provide vehicles insight into which AP is more reliable to connect to.

Another approach that focuses on improving reliability of the fast handover is inves-

tigated by H. Huang et al. [12]. They add a pre-binding update scheme to establish

connection with the next AP before the fast handover packets are exchanged. With a

pre-established connection, the fast handover exchange has a much higher chance of suc-

cess. In addition, the approach add a packet forwarding trigger that is separate from the

fast handover. This approach waits for confirmation of a successful AP connection before

redirecting packets to the new AP. Thus, the trigger prevents a fast handover error from

forwarding packets to the wrong AP. An issue with this approach is it does not address

the case of a pre-binding packet consistently failing to transfer, possible if a certain chan-

nel is very crowded. A method that addresses this issue is proposed by A. Boukerche et

al. [93,94], who use an efficient distributed algorithm to better distribute bandwidth within

an AP. Similarly, T. Antoniou et al. [100] utilize a variable transmission range protocol to

manage each APs bandwidth and reduce the number of dropped packets.

2.2.2 Reducing Delay

In addition to unreliability, the fast handover process can also often fail to finish within the

handover time frame, especially within a vehicular network where the faster moving vehicles

reduce the AP transition time. N.V. Hanh et al. [39] address this issue by simplifying the
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fast handover procedure to ensure registration completion before the AP transition. The

approach has the AP reserve the CoA instead of the vehicle, thus the AP can initiate the

registration process earlier and the number of exchanged packets is reduced. However, in

reducing the costs of the fast handover, the consequences for an error are amplified. By

having the AP initiate registration earlier without more confirmation, both the chance and

number of packets forwarded to the wrong AP increase.

S. Kim et al. [31] also approach the issue of the fast handover delay by implementing

registration buffers inside the APs to reduce packet exchanges. These buffers are used by

APs to store neighboring AP registration information, which is shared by AP advertise-

ments sent over the network. By having this information available in advance, vehicles

can skip packet exchanges otherwise required to initiate the early registration and reserve

a CoA. The reduced exchanges improves the FMIP latency costs for handling vehicular

movements. However, this approach suffers similar unreliability problems as [39].

Both reliability and latency are addressed by H. Kim et al. [13], who consider the

methods proposed in [31] and [12]. In this approach, similar AP advertisements sent over

the network are used to discover neighboring AP information. This information is used by

the vehicle to send early binding update packets, which are used to improve the reliability

of the MAC layer trigger, and to improve the response time of the FMIP registration. The

consequence of this approach is the additional binding update and advertisement packets

add up to large overhead costs.

2.2.3 Summary

Considerable improvements have been made to certain aspects of the fast handover, but

usually at an expense of another performance issue. For example, in [10] the reliability is

improved, but overhead and delay is increased due to the increased exchange required for

ensure successful message exchanges. In addition, the fast handover does not address the

potentially large registration latencies, which can additionally cause a proactive handover

failure.
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Table 2.4: Fast Handover Performance Comparison

Article
Han-
dover

Latency

Packet
Drop
Rate

Over-
head

Network
Load

Consis-
tency

G. Tsirtsis et
al. [35] (2003)

Medium Medium Medium Medium Low

M. Boutabia
et al. [10]
(2013)

Medium Low High Medium Medium

A.S. Sadiq et
al. [11] (2014)

Medium Low High Medium Medium

H. Huang et
al. [12] (2009)

Medium Medium High High High

N. V. Hanh et
al. [39] (2008)

Low Medium Medium Medium Low

H. Kim et
al. [13] (2006)

Low Medium High High High

S. Kim et
al. [31] (2011)

Low Low High High Low
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2.3 Proxy Handover

Figure 2.4: Proxy handover architecture

The proxy handover takes a different approach than the fast and hierarchical handover.

Instead of a mobile node-based approach, PMIP is network-based, where the network

manages the vehicle and conducts the handover in full. PMIP is first proposed by S.

Gundavelli et al. [52], who introduce local mobility anchors (LMAs) and mobile access

gateways (MAGs) that manage IP mobility for the vehicles. An overview of the new

architecture is illustrated in Figure 2.4. The LMA acts similarly to an HA, but keeps more

detailed tracking on each individual vehicle. Additionally, it is guaranteed to be more

local than an HA, as it only manages a specific network domain. LMAs communicate with

MAGs, which can be compared to MAPs within the HMIP protocol but which conduct

additional processes. MAGs track a vehicle’s movement as it moves between APs, and

conducts the handover with the LMA for the vehicle when a MAG transition occurs.

Instead of the handover re-registering and the vehicle generating a new CoA, the process

instead involves the LMA updating the vehicle’s location within its cache. The goal behind

this approach is to minimize wireless communication. Since it is more expensive and
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Table 2.5: Proxy Handover Approaches

Article Approach Advantages Drawbacks

S. Gundavelli
et al. [52]
(2008)

Introduces LMAs
and MAGs for APs

to manage
handovers

Minimizes wireless
communication

Expensive domain
transfers

K. Lee et
al. [53] (2010)

Adds intermediate
MAGs to handle
domain transfers

Reduces
inter-domain

transfers to similar
costs as

intra-domain

Determining
placement of
intermediate
MAGs is

problematic

S. Ro et
al. [54] (2015)

Introduces
overlap-MAGs to

maintain IP
connection

Improves handover
consistency

Added complexity
for determining
placement and
number of

overlap-MAGs

N. Neumann
et al. [55]
(2009)

IP Packet
forwarding between

LMAs

Reduces latency of
domain transfers

Circuitous packet
routes

T. Chiba et
al. [56] (2008)

Optimize packet
routes by

recognizing close
MAGs

Reduces LMA
communication

Increases penalty
for MAG
transitions

H. Jung et
al. [57] (2011)

Increases MAG
communication

with broadcasting
messages to reduce

LMA loads

Reduces LMA
communication
and overhead

Additional MAG
overhead and

increases domain
transfer costs

S. Son et
al. [58] (2014)

Use vehicle speed
to determine

handover priority

Reduces overhead
and network load

Vehicle speed is
unreliable, costly

errors
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Figure 2.5: Proactive PMIP handover

limited than wired communication, minimizing wireless exchanges reduces latency and

performance costs.

Similar to FMIP, PMIP also has a proactive and reactive protocol. These protocols are

summarized within Figures 2.5 and 2.6, respectively. In the case of PMIP, the proactive

protocol is followed when the current MAG successfully recognizes that the vehicle is about

to leave the MAG’s signal range. Upon this realization, the current MAG notifies the LMA

with an proxy binding update (PBU) message indicating that the vehicle is unregistering

with that MAG, and to update the LMA with information on the vehicle. The LMA replies

with a proxy binding acknowledgment (PBA) message to confirm. Once the vehicle has

connected with the next MAG, the MAG sends a PBU to the LMA, which then completes

the handover process by forwarding the information provided by the current MAG and

setting up a tunnel with the next MAG.

In the event the current MAG does not recognize the vehicle disconnecting, the han-
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Figure 2.6: Reactive PMIP handover

dover protocol then begins with the next MAG sending a PBU to the LMA. Upon receiving

this PBU, the LMA then requests IP information pertaining to that vehicle from the cur-

rent MAG using the ”subscr query” message. Upon receiving the response, it forwards the

information to the new MAG and completes the handover. The central issues faced by the

PMIP handover are LMA transitions and LMA overhead.

2.3.1 Reduce LMA Transition Costs

A problem with the proxy handover is the costly handling of a vehicle moving between the

domain of two LMAs. This requires a complete reconfiguration with the new LMA that

does not occur until the vehicle has already connected with the new LMA’s domain. K.

Lee et al. [53] address this issue by introducing intermediate-MAGs, which keep the vehicle

connected as it transitions between LMAs. These MAGs are located between two LMA

domains, and are connected to both. This allows the vehicle to conduct the handover with
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the new LMA while still connected with its original LMA. The vehicle thus never loses

connection and the latency cost is reduced to similar values as in intra-domain handovers.

A similar approach is proposed by S. Ro et al. [54], who use overlap-MAGs between LMAs,

but also take advantage of this overlap period to conduct route optimization. The problem

that arises in these approaches is determining the placement of the intermediate-MAGs.

To do this requires accurate knowledge of LMA and MAG placement, and understanding

of vehicular behavior within the network.

An alternative approach to handling inter-domain transitions is introduced by N. Neu-

mann et al. [55], who propose LMA communication for forwarding IP packets between

domains. The first LMA that a vehicle connects to becomes its session mobility an-

chor (SMA), which acts similarly to an HA within standard mobile IP. The SMA follows

standard proxy handover procedure until a vehicle transfers into a new domain. The new

LMA then establishes a tunneling route with the LMA for forwarding IP packets directed

to that vehicle.

2.3.2 Reducing LMA Overhead

With all IP packets traveling through the LMA before being redirected to the appropriate

vehicle, there arises the need for route optimization. For example, if two vehicles are

physically close to each other, standard PMIP will still have packets routed all the way

to the LMA. T. Chiba et al. [56] and L. Villas et al. [113] address this need by proposing

multiple route optimization techniques, which are designed to improve PMIP performance

by updating circuitous packet routes. One of the proposed methods uses the LMA to

recognize if two corresponding vehicles have MAGS close to one another. If true, the LMA

notifies the MAGs, which then send the packets directly to each other instead of redirecting

to the LMA. The other approaches are a MAG query system, where neighboring MAGs

communicate with each other to optimize their route, and a binding-cache system where

the LMA sends MAGs regular updates of vehicles within that domain. These systems

include both inter-domain and intra-domain systems.

Reducing the amount of data transmission though the LMA is also addressed by H.
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Jung et al. [57], who propose multiple MAG communication methods. These methods

are similar to the MAG query system of [56], but with an increased focus on removing

LMA communication rather than path optimization. Instead of determining the location

of a corresponding vehicle by communicating with the LMA, the MAGs communicate with

each other through broadcasting messages. The packets are then directly sent between

the corresponding MAGs. This removes unnecessary distanced LMA communication, and

additionally reduces the load on the LMA that otherwise has to maintain its entire domain.

Instead of increasing MAG communication, S. Son et al. [58] propose removing un-

necessary LMA communication by estimating the urgency for LMA communication and

changing packet rates accordingly. The urgency value is calculated by the speed at which

the vehicle is moving. If a vehicle is moving quickly, they will be committing a handover

at much more frequent rate, and so will require more regular LMA checks. This allows

removal of unnecessary LMA communication with vehicles that are moving slowly or not at

all and that will not switch APs for a longer time. The central issue with this approach is

the unreliability of depending on a vehicle’s speed. If a slow vehicle moves just on the edge

of APs, causing frequent handovers, the lowered LMA communication could cause large

delays and packets dropped due to the uninformed LMA. A. Boukerche et al. [109] propose

a similar approach to removing unnecessary communication with the vehicles, however

suffers from the same issues of unreliable vehicle movement causing errors.

2.3.3 Summary

The PMIP handover approach attempts to minimize wireless overhead from the mobile

IP handover, reducing network performance costs. However, implementing PMIP causes

issues within the wired network, such as LMA transitions and the required network load

for tracking each vehicle. Approaches that attempt to resolve these issues often resort to

including some wireless communication with the vehicle. This can indicate that a hybrid

of PMIP that includes reduced, but not minimal, wireless communication could perform

better.
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Table 2.6: Proxy Handover Performance Comparison

Article
Han-
dover

Latency

Domain
Transfer
Cost

Over-
head

Network
Load

Consis-
tency

S. Gundavelli
et al. [52]
(2008)

Medium Medium Low Medium Low

K. Lee et
al. [53] (2010)

Medium Low Medium High Medium

S. Ro et
al. [54] (2015)

Medium Low Medium High Medium

N. Neumann
et al. [55]
(2009)

Medium Low High High Medium

T. Chiba et
al. [56] (2008)

Medium High Low Low Low

H. Jung et
al. [57] (2011)

Medium Low Medium Medium Low

S. Son et
al. [58] (2014)

Medium Low Medium Medium Low
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2.4 Hybrid Handovers

In this section, we explore the multiple methods which have been investigated to combine

the FMIP with HMIP and PMIP methods and benefit from the performance improvements

of both. This is possible since the FMIP operates on the wireless end of operations, and

HMIP and PMIP operate within the wired network structure, making them compatible.

2.4.1 FMIP and HMIP

R. Hsieh et al. [62] recognize the complimentary nature of FMIP and HMIP, and propose

the Seamless handover, which utilizes both approaches. In addition to the two methods

working together, the hierarchical approach further amplifies the fast handover’s benefits

by providing additional time for the fast handover to confirm success through because of

the quicker MAP registration procedure. The additional time increases the fast handover’s

success rate and minimizes the chances for a incorrect failure assumption. A similar ap-

proach that utilizes both the MAC layer and MAP is proposed by Z. Zhang et al. [63,64],

who use IP addresses to distinguish between MAP domains, and conduct intra-domain

handovers done only with MAC protocol.

The method proposed by R. Farahbakhsh et al. [8] similarly uses both the hierarchical

and fast handover, but adds MAP context messaging for the hierarchical handover to take

advantage of the fast handover. Upon receiving a MAC trigger, the vehicle initiates its

current MAP to forward registration information while the vehicle conducts the handover.

The additional time provided by the fast handover, in addition to the context transfer

between MAPs, allows a much smoother inter-MAP transition.

A similar idea to [8] is proposed by L. Zhang et al. [9], who propose setting up bi-

directional tunnels between APs before the handover occurs. This is done by having the

two APs establish a tunneling route when the MAC layer trigger of the FMIP first occurs.

The APs can then exchange registration information as the vehicle transitions between

them. Additionally, the tunnel reduces packet-drop rates and allows additional time for the

vehicle to begin receiving IP packets through the new AP. This method improves both MAP
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Table 2.7: HMIP, FMIP, and PMIP Hybrid Handover Approaches

Article Approach Advantages Drawbacks

R. Hsieh et
al. [62] (2003)

Uses HMIP and
FMIP together

Reduces costs of
entire handover

Limited by IP
requirements, has

additional
complexity

Z. Zhang et
al. [63, 64]
(2013)

Uses MAC for
intra-domain, IP
for inter-domain

Minimizes
inter-domain

handover latency

Still suffers in
inter-domain
handovers,

additional MAC
management

R.
Farahbakhsh
et al. [8]
(2009)

Adds AP context
transfer protocol

that utilizes
MAC trigger

Further reduces
registration latency

High costs and
slow recovery if

FMIP fails

L. Zhang et
al. [9] (2011)

Setup
bi-directional

tunnels between
APs at MAC

trigger

Reduced packet
drop rate,

increased reliability
Increased overhead

L. Zhuang et
al. [40] (2011)

Use decision
engine for MAP

selection

Improved handover
performance
consistency

Added complexity
and overhead

H. Yokota et
al. [41] (2010)

Uses FMIP to
pre-establish
tunneling

between MAGs

Reduces packet
drop rate and

latency

Increased overhead,
depends upon

vehicle
communication

A. Morave-
josharieh et
al. [42] (2014)

Use GPS
threshold triggers
to initiate MAG

tunnels

Lower packet drop
rate and latency

Large error cost
and inconsistent

Y. Wang et
al. [43] (2009)

Uses MAC
trigger to initiate

MAG route
optimization

Reduces latency
from route
optimization

Increased overhead
and wireless

communication

S. Moon et
al. [44] (2011)

Neighbor MAGs
maintain tunnels,
tunnel initiated
with FMIP

Reduces latency of
registration costs
in MAG switches

Higher overhead to
maintain tunnels

C. Huang et
al [45] (2015)

Use MAC trigger
to initiate route
optimization

Reduces latency
from route
optimization

Increased overhead
and wireless

communication
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inter-domain and intra-domain handovers, thus also increasing reliability. The proposed

approach also includes a backup procedure if a fast handover fails. This procedure allows

IP packet forwarding between APs immediately after the vehicle establishes connection

with the new AP. While the procedure has less performance improvement, it still reduces

the delay for IP packet exchanges.

A problem caused by combining the FMIP and HMIP is the increased probability of

poor MAP selection caused by an FMIP’s incorrect assumption. A solution to this issue

is proposed by L. Zhuang et al. [40], who add a decision engine to improve upon MAP

selection and increase handover consistency. The decision engine uses the vehicle’s mobility

and acquired network information to ensures the vehicle connects with the MAP that will

provide the best performance. This minimizes the occurrence of false assumptions made

by FMIP that otherwise cause reduction to HMIP performance, in addition to general

improvement to HMIP performance.

2.4.2 FMIP and PMIP

The other hybrid approach is proposed by H. Yokota et al. [41], who introduce the proxy-

based fast handover. This implements the fast handover within the proxy architecture

to reduce the packet loss and latency costs of PMIP. However, different from FMIP and

HMIP, the vehicle is not involved within the PMIP handover. Thus, the FMIP and PMIP

require more adjustments to be used together. This is approached within [41] by having the

vehicle forward the MAC layer trigger to the AP. The AP then pre-establishes a tunnel with

the next MAG instead of the vehicle conducting an early registration protocol. Upon the

vehicle connecting with the new MAG, the old MAG can send the new MAG registration

information and also begin forwarding IP packets immediately. The tunnel thus reduces

the overhead and packet-drop rate of the handover process. A. Moravejosharieh et al. [42]

propose a similar method as [41], but use GPS signals instead of MAC triggers. The

vehicles send periodic GPS updates to the AP, which then derives which MAG the vehicle

is moving towards and how soon the vehicle will switch MAG domains. Using GPS triggers

instead of MAC triggers allows for a much earlier handover initiation; however, this method
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is inconsistent because its performance relies on vehicles not making any changes to their

direction or speed.

A slightly different approach to combining the FMIP and PMIP is proposed by Y. Wang

et al. [43], who take advantage of the FMIP to improve the PMIP route optimization.

They initiate the routing optimization procedure when the MAC trigger occurs. This way,

the route optimization is able to complete by the time the handover occurs. By having

the better route set up for the handover, latency is reduced and overall performance is

increased. Additionally, the advanced route optimization is used to buffer packets at the

new AP to reduce the packet drop rate. An issue of this approach, however, is it does not

resolve the previously discussed issues of the FMIP and PMIP. The problems faced of each

individual approach is not resolved by the other’s benefits.

S. Moon et al. propose the FPMIP-PT [44] to also enhance the fast-proxy mobile IP

handover by reducing latency times. The FPMIP-PT involves each MAG pre-configuring

tunnels with its neighboring MAGs, separate from the handover. The tunnels between its

neighbors are then activated when the handover is initiated, requiring less time and costs

than having to establish a new tunnel. This reduces the overall registration latency when

MAG changes occur, thus making the handover more consistent.

Instead of focusing on early-initiation of proxy procedures, the method proposed by C.

Huang et al. [45] utilizes the fast handover to improve MAG selection. In this approach,

the MAC layer information is used by the current MAG to decide the next best MAG for

the vehicle to connect to. Since the MAC information arrives early and provides insight

into network performances, the MAG can make a well educated selection. In addition,

once the new MAG is chosen, the LMA begins multicasting packets to both MAGs. The

multicasting reduces the packet drop rate, but also largely increases overhead.

2.4.3 Summary

Overall, hybrid approaches improve the handover latency and packet drop costs compared

to the single approaches. However, hybrid approaches do suffer from additional complexity

and often times additional overhead. There also is the issue that all of these approaches
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Table 2.8: Hybrid Handover Performance Comparison

Article
Han-
dover

Latency

Packet
Drop
Rate

Over-
head

Network
Load

Consis-
tency

R. Hsieh et
al. [62] (2003)

Medium Medium Low Medium Low

Z. Zhang et
al. [63, 64]
(2013)

Medium Medium Low Medium Low

R.
Farahbakhsh
et al. [8]
(2009)

Medium Low Medium High Medium

L. Zhang et
al. [9] (2011)

Medium Low High High Medium

L. Zhuang et
al. [40] (2011)

Medium High Low Low Low

H. Yokota et
al. [41] (2010)

Medium Low Medium Medium Low

A. Morave-
josharieh et
al. [42] (2014)

Low Low Medium Medium Low

Y. Wang et
al. [43] (2009)

Low Low High High Low

S. Moon et
al. [44] (2011)

Low Low High High Low

C. Huang et
al [45] (2015)

Low Low High High Medium



Chapter 2. Related Work 33

are reactionary and initiate at the time of a transition between APs, resulting in a small

time frame to complete the handover procedure before network performance drops. This

is particularly problematic when there is high network traffic causing higher packet drop

rates and for vehicles that have much smaller transition times between APs.

2.5 Predictive Handover

In contrast to the fast, hierarchical, and proxy methods, the predictive handover aims to

conduct the process in advance instead of directly modifying the mobile IP architecture.

This is done by predicting which AP the vehicle will connect to next, before the vehicle

begins transitioning between APs. By knowing the next AP so far in advanced, the han-

dover process can easily be completed ahead of time to provide a smooth AP transition.

This resolves the issues faced by the other approaches, as mentioned in Section 2.4.3. The

largest issue the predictive approach is the unreliability of the advanced handover, mostly

caused by poor AP prediction performance. Methods for handover prediction can be cat-

egorized as probability analysis, pattern-matching, and movement projection. Figure 2.7

illustrates the different variables to be considered (statistical and movement) for handover

prediction.

(a) Movement-based prediction (b) Statistical-based prediction

Figure 2.7: Movement and statistical variable differences
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Table 2.9: Predictive Handover Approaches (Probability Analysis)

Article Approach Advantages Drawbacks

F. Lassabe et
al. [59] (2006)

Use Markov
renewal processes

to compare
vehicle’s AP

history

Accurate in
consistent scenarios

Cannot adjust to
new information

H. Kim et
al. [14] (2009)

Analyzes
vehicle’s physical
movement history

Physical movement
can provide more
insight than AP

history

Errors when
physical history is

misleading

M. Kyriakakos
et al. [18]
(2003)

Adds learning
automaton to
improve from

errors

Improves
performance
consistency

Suffers from
misleading
information

Z. Becvar [21]
(2009)

Uses AP’s
handover history

Less likely to have
misleading
information

Cannot distinguish
between vehicles

N.V.D.
Wijngaert et
al. [16] (2005)

Predict the top 3
most-likely APs

Higher accuracy
Large overhead

costs

M. Al Masri et
al. [17] (2014)

Predict session
activity to
determine

handover timing

Reduces packet
drop rate

Added complexity
not justified by
small benefits

S. Pack et
al. [50] (2004)

Use a handover
database for
prediction and
dwell times

Ensures consistent
handovers if dwell

time is small

Added overhead
and complexity,
requires accurate

data

I.F. Akyildiz
et al. [22]
(2004)

Weighs vehicle
history against
AP history

Improved accuracy
and consistency

Limited by each
method’s best

performance in a
scenario

P. Fazio et
al. [48] (2013)

Use vehicle’s
location history
within AP range

Reduced
calculation and less

misleading

Cannot
differentiate similar
AP probabilities



Chapter 2. Related Work 35

2.5.1 Probability Analysis

Statistical analysis for predictive handovers most commonly uses a probability modeling

or pattern matching technique to determine the next AP. Probability modeling and pat-

tern matching both apply previously gathered information for the prediction. The main

differences between these two approaches are what information is gathered and how it

is interpreted. Probability modeling considers sample statistical information of vehicle

movement for prediction.

One approach to probability modeling is proposed by F. Lassabe et al. [59], who use

Markov renewal processes for prediction. The Markov renewal processes are used to model

the probabilistic relationship between APs based on what previous APs a vehicle has

connected to. First, the Markov renewal processes are trained with a set of sample vehicle

data to determine the probability values. After training, the final values are used to

calculate a vehicle’s most likely next-AP based on what previous APs it has connected

to. This approach is expanded upon by A. Boukerche et al. [110], who use the Markov

models to predict AP congestion levels. A problem with these approaches is the situation

where a vehicle’s AP history is misleading. With roads restricting the directions a vehicle

can go, it may often have to take indirect routes, which will often cause prediction errors.

In addition, various AP coverage methods [91, 101, 103, 104] could lead to AP connections

that do not match with vehicle’s history.

In an attempt to resolve the issue of misleading history, Z. Becvar [21] reduces the size

of the system being predicted. Instead of considering a vehicle’s entire AP history, only the

vehicle’s current AP and its probability relationships to neighboring APs are used. This

greatly simplifies the prediction requirements by reducing the probability calculations and

the AP memory a vehicle would otherwise maintain. However, a problem that arises in

this approach is its inability to distinguish between individual vehicles.

M. Kyriakakos et al. [18] also choose to consider only local AP variables as done in [21],

but include the previous AP as well to provide some distinction between vehicles. They also

introduce a learning automaton to improve long-term performance by adjusting probability

variables. The automaton updates the variables according to a trial-and-error method,
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which adds weight to neighbor AP probabilities if the prediction is correct, and removes

weight from the predicted AP if it is wrong. The prediction result is retrieved by vehicles

informing the learning automaton by communicating over the network. Two learning

automatons are used, one for global AP probabilities and one that keeps track of individual

vehicle path results. The goal of adding the second automaton is to learn each vehicle’s

paths, since vehicles are more likely to follow the same path as they have previously. The

learning automatons show improvement to accuracy as time passes, but require additional

overhead for communication prediction results. In addition to overhead, the second learning

automaton requires a large database to maintain probability information for every passing

vehicle.

N.V.D. Wijngaert et al. [16] use a similar approach as [21], but extend the prediction

to determine the next three most-likely APs. It is shown that predicting the next three

APs instead of only one greatly improves the accuracy, partly because a vehicle will most

commonly have around that many realistic options. The problem of this method, however,

is the large overhead increase. To conduct an early handover with three APs requires a

default of two APs to waste resources. Once APs begin reaching saturation in high-density

traffic scenarios, this additional overhead will have large performance costs, reducing the

benefits of handover prediction.

A separate method to using probability analysis to improve the handover is proposed

by M. Al Masri et al. [17]. In their approach, they use a Markov model to probabilistically

model the session activity, and then use this information to determine the best moment to

conduct the handover. If the handover is conducted when network activity is low, overall

performance will be less affected. However, a vehicle’s activity is very unpredictable,

making this approach unreliable. In addition, there is also the risk of predicting a late

handover timing that will cause more performance degradation than the standard handover.

The idea presented by [16] is expanded upon by S. Pack et al. [50], who propose a

handover database used for prediction. The database records which neighbor AP the

vehicle moves to and the dwell time the vehicle spends within that AP. First, the most

likely APs are derived based on the handover frequency, as done in [16]. Next, the recorded
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Table 2.10: Predictive Handover Performance Comparison (Probability Analysis)

Article
Processing

Cost
Memory
Cost

Over-
head

Network
Load

Consis-
tency

F. Lassabe et
al. [59] (2006)

Medium Medium Low Low Low

H. Kim et
al. [14] (2009)

High Medium Low Low Medium

M. Kyriakakos
et al. [18]
(2003)

Medium Medium Medium Medium Medium

Z. Becvar [21]
(2009)

Low Medium Low Low Low

N.V.D.
Wijngaert et
al. [16] (2005)

Medium Medium High High High

M. Al Masri et
al. [17] (2014)

Medium Low Medium Low Low

S. Pack et
al. [50] (2004)

Medium High High Medium Medium

I.F. Akyildiz
et al. [22]
(2004)

High High Medium Low Medium

G. Yavas et
al. [47] (2005)

Medium Low Low Low Low

P. Fazio et
al. [48] (2013)

Low Low Low Low Low
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Table 2.11: Predictive Handover Approaches (Movement Projection)

Article Approach Advantages Drawbacks

E. Hernandez
et al. [23]
(2004)

Utilizes GPS
movements to
project next
handover

Temporal vehicle
information

resolves ambiguous
probabilities

Difficult to predict
sudden movement

changes

W. Su et
al. [37] (2001)

Predicts the
dwell time using
vehicle movement

Reduces packet loss
and latency from
packet forwarding

Difficult to predict
sudden movement

changes

R.
Gunasekaran
et al. [38]
(2014)

Adds route
database to dwell
time prediction

Reduces packet
loss and packet

overhead

Large performance
costs if error occurs

F. Fang et
al. [26] (2004)

Replaces GPS
with network
measurements

Remove GPS
reliability

Unreliable within a
mobile IP network

S. Bhaskar et
al. [27] (2015)

Use signal
strength

measurements to
predict

Reduced
requirements,

improves timing

Unreliable due to
inconsistent, noisy
measurements

A.S. Sadiq et
al. [28] (2013)

Use both network
and movement
measurements

Improves reliability
+ network
performance

Poor performance
if sudden behavior

changes

M. Almulla et
al. [29] (2014)

Adds turn
detection with

angle calculation

Improves accuracy
and turn detection

Unreliable when
sudden changes or

misleading
behavior

H. Park et
al. [46] (2005)

Early handover
conducted and
managed with

HA

Reduces handover
packet loss and

latency

Large overhead for
multi-casting

packets, increased
costs if prediction

error
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dwell times and network information is used to determine how many APs the vehicle

should predict. If a dwell time is small for the predicted AP, the algorithm then extends

the number of APs for early registration to ensure a smoother connection. By using a

more dynamic approach to determining the number of APs for the vehicle to commit to,

additional accuracy is attained without also producing too much overhead.

The method proposed by I.F. Akyildiz et al. [22] uses both the handover history method

from [21] and the AP history method from [59] in parallel. After calculating the next most

likely AP using both methods, the two results are then weighed against each other based on

their determined reliability. These reliabilities are calculated based on how confident each

method is with the information used in its prediction. The proposed approach thus outputs

whichever of the two methods perform better in a specific situation. Since these methods

have strengths in different scenarios, an overall improvement to prediction is observed.

But, this parallel approach is still limited by the maximum individual performances of the

other methods, improving performance by only a small amount.

G. Yavas et al. [47] propose a similar movement matching method to [49], but uses

vehicle regional movements instead of trajectories. The method divides the roads into

small, discrete segments, and then compares a vehicle’s recent segment history to previous

vehicle segment history. The approach then assumes the vehicle will next move to the

road segments of the closest matching segment path. By dividing the road into discrete

segments instead of directly considering a vehicle’s continuous movement, the number of

possible observations is greatly reduced. This reduces the calculation cost for comparing

path-history because of the fewer potential combinations and the simpler math required for

comparing discrete values. However, a setback is that the method then does not consider

vehicle speed or acceleration, which can often be telling of a vehicle’s intentions.

A half-way point of using trajectories and regions is proposed by H. Kim et al. [14], who

predict the next AP by considering a vehicle’s AP history and its general direction. At each

handover, the vehicle’s location and AP is recorded. When more than one measurement

set is recorded, the angle between the two locations is calculated to determine a vehicle’s

general projection. The angle information is then compared to previous vehicles who have
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connected to the same set of APs. The vehicle is then assumed to next connect to the

same APs as the vehicle that has the closest-matching angles. By using a bit of regional

history and general direction, some improvement can be seen in prediction performance.

Although, this approach suffers from a similar issue as [59], where road restrictions can

often cause a vehicle to move in indirect paths. A road that causes the vehicle to move

in an indirect path will disrupt the AP to angle pattern matching, producing prediction

errors.

P. Fazio et al [48] propose analyzing a series of location measurements while the vehicle

is within a single AP, instead of using AP history and direction analysis. They use dis-

tributed Markov chains to calculate the next most probable AP based on what path the

vehicle is taking. This requires much less calculation than [14], since it only requires local

location information. Additionally, there is the benefit of local location information being

less misleading than long-term history analysis because temporal data is more likely to

represent a vehicle’s next movement. Despite these benefits, however, there is the large is-

sue of being unable to differentiate between two APs of similar probabilities. For example,

a T intersection can result in two vehicles with the same path, but with different resulting

direction.

2.5.2 Movement Projection

Movement projection approaches use temporal data related to a vehicle’s current movement

to predict its future location, opposed to deriving the most probable future movement

through considering recorded statistical information. The benefit of this approach is it does

not suffer from the issues as a statistical approach. Misleading history is not a problem

because only temporal data is considered, and two options with similar probabilities can

be distinguished using temporal data that differentiates between these options.

An example of movement projection is proposed by E. Hernandez et al. [23], who use

the vehicle’s location and velocity to determine its future AP. The next AP is chosen by

projecting the vehicle’s location and finding the AP that provides coverage to that location.

The method also introduces the concept of ghost agents, which are entities that are added
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Table 2.12: Predictive Handover Performance Comparison (Movement Projection)

Article
Processing

Cost
Memory
Cost

Over-
head

Network
Load

Consis-
tency

E. Hernandez
et al. [23]
(2004)

Low Low Medium Low Low

W. Su et
al. [37] (2001)

Low Low Medium Low Low

R.
Gunasekaran
et al. [38]
(2014)

Low Medium Low Low Low

F. Fang et
al. [26] (2004)

Low Low Medium Low Low

SBhaskar et
al. [27] (2015)

Low Low Low Low Low

A.S. Sadiq et
al. [28] (2013)

Medium Low Medium Low Medium

M. Almulla et
al. [29] (2014)

Medium Low Medium Low Medium

H. Park et
al. [46] (2005)

Low Low High Medium Low
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to APs to be used after a prediction is made. These agents reserve resources and initiate an

early registration procedure before the handover begins to reduce handover latency times.

W. Su et al. [37] extends the prediction introduced by [23] to also use a vehicle’s location

and speed to project a vehicle’s remaining dwell time for its current connection. Projecting

the remaining dwell time is used to determine the handover’s timing, thus allowing packet-

forwarding to the new AP to begin without requiring a trigger from the vehicle. This

reduces packet-loss that would otherwise occur from misdirected packets, and additionally

reduce the latency caused by a vehicle waiting for its forwarded packets. An approach that

expands upon [37] is proposed by A. Bamis et al. [105], who aim to reduce the processing

costs of the projection by categorizing vehicles into mobility classes and determining the

dwell time based on their class.

These projection approaches have high prediction accuracy when the vehicle move-

ment is consistent, but begin to suffer large performance consequences in situations where

changes in movement are common. Both [23] and [37] are unable to predict if a vehicle is

about to turn or rapidly change in speed. Therefore, if one of these events occurs, a predic-

tion error will occur almost every time. For [37], where handover timing is also predicted,

an additional spike in packets-dropped will also occur. One attempt to remove these issues

is by R. Gunasekaran et al. [38], who propose also cross-referencing the vehicle’s route

according to a road database. This reduces the number of possibilities for being misled;

however, a vehicle that behaves differently from the expected route will suffer very large

performance degradation.

F. Fang et al. [26] propose removing the reliability on GPS measurements by deriving

the vehicle’s movement and the next AP through use of temporal network measurements

instead. This is done by the vehicle interpreting its current AP’s and surrounding AP’s

change in signal strengths to estimate its movement. Instead of projecting its specific move-

ment, it predicts what AP it will most likely connect to next based on the projected signal

strengths. This is not to be confused with the fast handover, which also uses signal mea-

surements to recognize an upcoming handover. The predictive method takes current signal

strength changes and estimates what AP it will connect to next, whereas the fast handover
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Table 2.13: Predictive Handover Approaches (Pattern Matching and Hybrid)

Article Approach Advantages Drawbacks

G. Jeney et
al. [24] (2009)

Uses database to
compare

movement to
previous vehicles

Better detection
of turns and
movement
changes

High memory and
overhead costs

W. Hu et al. [49]
(2004)

Compares partial
trajectories to

database

More consistent,
unlikely to be
misled by

probabilities

Large processing
and storage costs
for comparing
trajectories

G. Yavas al. [47]
(2005)

Compare vehicle
regional

movements to
database

Reduced
calculation and
memory costs

Less reliable
without projection

consideration

A. Bohlooli et
al. [15] (2011)

Matches vehicle’s
turn choices at
intersections

Reduces
processing costs,
predicts longer
segments of
vehicle’s path

Incorrect
predictions have
large costs, lack of
temporary data
reduces accuracy

E.K. Paik et
al. [30] (2003)

Weighs
movement
projection

against handover
history

Small
improvement to

accuracy

Limited by
individual

performances, does
not justify added

complexity

T. Liu et al. [25]
(2002)

Projection for
short-term

prediction, and
regional matching

for long-term

Projection
improves pattern

choosing,
consistency
improved

Accuracy still
limited by
individual
approaches’
accuracies
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waits for the AP change to already begin occurring. The problem of this approach, how-

ever, is the signal interference of the environment can easily cause noise problems much

worse than GPS measurements. This noise can then cause prediction errors when the

method tries to project the signal changes. In addition, AP coverage ranges are relatively

small, often leaving the vehicle to not have enough data to determine its next AP.

The method proposed by S. Bhaskar et al. [27] also utilize network measurements

to project the next AP. However, the method does not attempt to derive the physical

movement with the signal; instead, they analyze the changing signal strengths to determine

the next AP. This removes the requirement of having multiple nearby APs and reduces

the calculation costs for prediction, but maintains enough information for predicting the

handover timing. The consequence of this approach is it amplifies the noise issues also

faced by [26]. Since it analyzes fewer signals than [26], disruptions in the signal will cause

more regular and more disruptive prediction errors. In addition, the dependency on fewer

signals is less reliable due to the natural inconsistency of a signal reading. One approach

that attempts to improve upon this is proposed by A. Boukerche et al. [88,96], who propose

an event-driven and query-based protocol to ensure a high delivery of packets.

A.S. Sadiq et al. [28] introduce an approach for using both signal strength and move-

ment projection to predict the next best AP. This approach includes the use of a vertical

handover with an intelligent network selection scheme to resolve the issues of the shorter

AP transmission ranges. However, the used projection approach does not consider po-

tential sudden changes in the vehicle’s behavior. M. Almulla et al. [29] aimed to resolve

this issue by adding a turn detection scheme that examines a vehicle’s movement angles

to determine if a turn is about to occur. This method improves recognition of a vehicle

turning, but still suffers when abrupt movement changes occur.

The method proposed by H. Park et al. [46] uses a similar GPS-based prediction ap-

proach as [23], but has a different protocol for handling the prediction. Once the next AP

has been predicted, the vehicle uses binding update packets, similar to the fast handover,

to notify the next AP and prepare the handover in advanced. The binding update is sent to

the HA, which then establishes a connection with the next AP and multi-casts the packets
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Table 2.14: Pattern Matching and Hybrid Performance Comparison

Article
Processing

Cost
Memory
Cost

Over-
head

Network
Load

Consis-
tency

G. Jeney et
al. [24] (2009)

High High Medium Low Medium

W. Hu et
al. [49] (2004)

High High Low Medium Medium

G. Yavas et
al. [47] (2005)

Medium Low Low Low Low

A. Bohlooli et
al. [15] (2011)

Low Low Low Low Low

E.K. Paik et
al. [30] (2003)

Low Low Medium Low Medium

T. Liu et
al. [25] (2002)

High Medium Low Medium Medium

to both the old and new AP. After the vehicle connects with the next AP, a notification

is sent to the HA to stop sending packets to the old AP. This way, the packets dropped

during the handover are greatly reduced, and the handover latency is reduced. However,

this approach requires large overhead for the multi-casting, which can potentially occur for

extended periods of time if the prediction occurs prematurely.

2.5.3 Pattern Matching and Hybrid

Pattern matching and hybrid approaches are discussed together since pattern matching

uses either probability analysis or movement projection as the patterns. Pattern matching

records individual vehicle movements and then matches the current vehicle’s movement to

the closest related recorded movement. The approach then assume the current vehicle will

continue to follow the recorded related pattern. Pattern matching can often provide more

insight into a vehicle’s future movement, but has higher calculation costs than probability

modeling approaches. An example of pattern matching is the method proposed by W.

Hu et al. [49], who match partial trajectories to determine a vehicle’s future location. At

each time interval, a trajectory is calculated based on the vehicle’s current movement.
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After a series of trajectories are collected, they are compared to a database of previous

vehicle trajectories and the most common paths related to those trajectories. A problem

of this approach, however, is the high cost of comparing a vehicle’s trajectories to an entire

database when there are time-restrictions to provide an output. Also, the large variety

of potential vehicle movements can make it difficult to match trajectories to a specific

pattern.

G. Yavas et al. [47] propose a similar movement matching method to [49], but use

vehicle regional movements instead of trajectories. The method divides the roads into

small, discrete segments, and then compares a vehicle’s recent segment history to previous

vehicle segment history. The approach then assumes the vehicle will next move to the

road segments of the closest matching segment path. By dividing the road into discrete

segments instead of directly considering a vehicle’s continuous movement, the number of

possible observations is greatly reduced. This reduces the calculation cost for comparing

path-history because of the fewer potential combinations and the simpler math required for

comparing discrete values. However, a setback is that the method then does not consider

vehicle speed or acceleration, which can often be revealing in regard to a vehicle’s intentions.

G. Jeney et al. [24] compare a vehicle’s GPS measurements to a database of previous

to predict the next AP. A series of GPS measurements recorded by the vehicle are sent

over the network to be compared to a database. The database is then used to determine

the closest matching vehicle, and return the next most-likely AP. In addition to the GPS

prediction, the vehicles also record network information that is stored within the database.

This includes dwell times, signal-to-noise ratios, and handover timing. By also having

access to the network information, the handover timing can be predicted, and packets can

be forwarded appropriately to further reduce handover costs.

Instead of using GPS measurements, A. Bohlooli et al. [15] take advantage of the

road movement restrictions in their pattern matching. A vehicle can only move straight

except at road junctions, where there is then turn possibilities. Thus, the method uses

vehicle turning directions and the length of road segments for prediction. A vehicle’s

turning sequence is recorded and compared to previously recorded turn sequences. The
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closest-matching sequence is then used to predict the vehicle’s future turn decisions. With

the additional information on road lengths, the vehicle’s path between road junctions is

predicted with minimal calculation. The method proposed by R. Batista et al. [97] also

uses sequences matching, but uses a z-align method to optimize the pattern matching

performance. The benefit of this approach is it provides details on a vehicle’s entire path

with only having to do pattern comparisons at each intersection. But, an incorrect turn

prediction will lead to large errors in path prediction. Additionally, this approach also

suffers from not considering individual vehicle speed and acceleration. This makes two

similarly-probable path options difficult to distinguish between.

Statistical analysis and movement projection prediction approaches have shown to

perform accurately under certain circumstances and also have problematic scenarios. The

strengths and weaknesses compliment one another, providing. One example of using these

approaches together is found in E.K. Paik [30], who conducts movement projection and

probability individually, then weighs them against each other based on a confidence vari-

able. They also introduce a threshold value to ensure a prediction is not made based on

faulty network data. The threshold represents the distance the vehicle should travel before

making a prediction, otherwise, signal interference could cause the vehicle to prematurely

output a prediction. By having the vehicle wait a certain distance, enough information

is acquired to produce a more reliable prediction. Although a major issue of having a

distance threshold is if a vehicle changes direction in an unexpected way. This could result

in a much shorter distance till the handover, and the threshold preventing any prediction

from being made.

T. Liu et al. [25] use movement projection for short-term prediction and a pattern-

matching cell prediction for long-term prediction. First, the movement projection is used

to determine the next most-likely AP by considering the vehicle’s current movement while

within the area of an AP. After the vehicle has moved through multiple APs, its overall

AP pattern is compared to previous vehicle AP history. This is used to determine a

more generalized projection of the vehicle’s movement. Determining this generalized path

is done with a similar learning method described by A. Boukerche et al. [87, 108] These
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two operations are conducted separately, as done in [30], except the pattern matching

approach will sometimes use the movement projection’s predicted AP to help differentiate

between similar pattern predictions. By including some overlap between the two prediction

methods, the prediction is more informed and accuracy is improved.

2.5.4 Neighbor Discovery

Beyond addressing prediction accuracy, other aspects of the predictive handover have also

been investigated in literature. One such aspect is discovering neighbor AP information,

which is required for the vehicle to begin an early handover registration before actually

reaching the AP. A popular approach for discovering neighbors was developed by A. Mishra

et al. [19], who introduce neighbor graphs that are populated through the use of context

message communication between vehicles and APs. Whenever a vehicle conducts a han-

dover between two APs, it sends two context messages: the first is sent to its new AP

with information on its previous AP, and the second is sent to the previous AP providing

information on its new AP. The APs are then able to find out about neighboring APs that

a vehicle may potentially connect to next. A large benefit of this approach is it only relies

on the network information. This allows the neighbor graphs to be built without outside

influence, and still allows APs to discover neighbors that are potentially far away. A dif-

ferent method for neighbor discovery is proposed by A. Boukerche et al. [98], who have the

nodes send out context messages over the network to find one another. The issue with this

approach, however, is the additional network load required to conduct the process.

An example prediction approach that uses the neighbor discovery method is proposed

by S. Hadjiefthymiades et al. [20], who also introduce a datagram relocation coordinator to

conduct the prediction and manage resources. The coordinator utilizes the vehicle’s past

movement and the neighbor graphs to predict the most likely APs for the handover. The

coordinator then initiates packet buffering at these APs, minimizing packet loss. By having

neighbor information and predicting multiple neighbor APs, the approach provided a reli-

able improvement to packet loss. However, the approach requires high overhead to buffer

packets at multiple neighbors, and begins to experience large performance degradation as
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the vehicle density is increased.

2.5.5 Summary

Literature on predictive handovers has mostly focused on proposing methods to improve the

prediction accuracy. Using probability analysis, movement projection, or pattern matching,

the methods attempt to determine which AP the vehicle will connect to next. However,

issues remain within each of these approaches, which are often overlooked depending on

the mobility model [95, 99, 107] the prediction method is tested against. First, probability

analysis experiences difficulty when two AP options have similar probabilities due to its

inability to differentiate between the vehicles. Next, movement projection fails when there

are sudden turns, as it is unable to consider a probability of a vehicle changing direction.

Last, pattern matching requires very high complexity and calculation requirements to

maintain and compare many different patterns, while still experiencing, to a lesser extent,

the issues of the other approaches.

2.6 Further Improving Mobile IP

As mobile technology expands, the demand for improved Internet connectivity increases.

Mobile IP is the most widely deployed approach for providing IP services to wireless de-

vices, however the mobile IP handover is an expensive process with performance costs too

great for such environments as vehicular networks. A large amount of research has been

committed to resolving the handover issues such as HA communication, AP selection, and

packet overhead. In this chapter, we categorized this research into the hierarchical, fast,

proxy, and predictive handovers, and presented these approaches found within the litera-

ture of mobile IP research. We also provide discussion of the benefits and drawbacks of

each approach, and their relation to one another.

While these approaches have exhibited improvements to the standard mobile IP han-

dover, each method still has drawbacks that prevent it from providing a smooth AP tran-
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sition. Possible directions for future research to attain a handover with low latency and

packet drop rate include:

Addressing Inconsistencies All approaches suffer from inconsistencies that reduce the

performance reliability. In HMIP, MAP transitions remain a point of issue. FMIP

faces the unreliability of using MAC layer communication, and the possibility of

assuming the wrong AP for advanced handover. PMIP suffers consistency issues

similar to both HMIP and FMIP, due to it having LMA transitions and relying on

MAGs to accurately detect AP transitions. Of all approaches, the predictive handover

suffers the largest inconsistencies due to the difficulty of accurately predicting the

next AP in advance. Providing a reliable handover is particularly important for

fast moving vehicles, where the frequency of AP transitions largely increases the

possibility of handover failures.

Improving Scalability Some approaches have achieved greatly reduced latency with con-

sistency, but at the cost greatly increasing overhead. This works if there is a very

low density of mobile nodes, but APs will reach saturation quickly, and performance

quickly drops as node population increases. Potential exists in researching scalable

approaches to these methods, which would then be able to provide smoother AP

transitions in any condition.

Further Exploration of Hybrid Approaches Hybrid approaches have shown potential for

resolving current mobile IP issues, as different methods are often complimentary to

one another. However, there still are many possible combinations that have not been

fully explored. For example, predictive methods being utilized with HMIP, FMIP, or

PMIP approaches.



Chapter 3

Motivation

In this chapter, the reasoning behind the proposed approach is explained in terms of the

issues faced by the related literature. We propose our predictive handover method, and

discuss how this solution addresses the existing problems.

The central problem of non-predictive handover approaches is the requirement of mobile

IP mandating a minimum performance cost. This cost is still higher than IP service

requirements, and is an unaddressed problem in both fast and hierarchical approaches.

Both approaches are initiated when the vehicle begins its transition between access points,

which limits improvement in performance to the minimum cost [32]. If the process is

conducted in advance, the required steps can be completed before performance degradation

occurs. However, initiating a handover early requires a correct prediction of the AP to

which the vehicle will connect to next.

Accurately predicting a handover requires a robust method capable of handling a

variety of traffic and road scenarios, while also differentiating between the intentions of

individual vehicles. Common and effective variables used by the approaches discussed

in Chapter 2 include vehicle movement and historical probability. However, the problem

with these variables is that each only performs well in specific scenarios, which can result

in an unreliable prediction. If the variables can be utilized to combine their benefits while

also resolving each other’s problems, a more reliable prediction can be achieved. This is

illustrated and further explored in Appendix A.
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Our proposed method uses a combinational approach to resolve problematic scenar-

ios, achieved by probabilistically determining a vehicle’s most likely future AP through

observation of its current movement. In combining the probabilistic and temporal data,

accuracy is maintained in a wider variety of situations, thus improving reliability. This

is implemented through the use of an online hidden Markov model and a Kalman filter,

both having low calculation costs to ensure that the prediction is efficient for the small

time frame required by the advanced handover. The HMM is used to model the relational

probability distributions between the APs based on observations of vehicle movements,

and the Kalman filter is used to track the vehicle’s location, velocity, and acceleration for

movement projection.

HMMs have proven to be effective for learning system probabilities, but are particu-

larly susceptible to noise and are not designed to handle multi-variable observations [76].

The Kalman filter’s approach to smoothing out noisy input, in addition to tracking the

multiple variables of vehicle movement, compliments the HMM restrictions, further im-

proving learning and prediction performance. By first using the Kalman filter to refine

and interpret the incoming measurements to projections, the HMM can then accurately

determine the probability distributions. Attempting to use a standalone HMM otherwise

will result in unreliable behavior. In addition, the Kalman filter’s covariance estimation

provides further refinement by filtering out unreliable inputs with high noise levels. Noisy

observations could otherwise negatively alter the probability distributions from misleading

data. Observation filtering is also used in the prediction process to prevent outlying data

from causing an inaccurate prediction output.

The handover prediction process can be broken down into three components: project-

ing the vehicle’s movement with the Kalman filter, calculating the AP probabilities using

the HMM, and deriving the most likely AP using a probability threshold. Probability cal-

culations are performed using a modified online expectation-maximization (EM) learning

algorithm for adapting to environmental changes. Together, these components provide a

low-cost prediction method that effectively considers probability and movement, producing

an informed prediction for improving reliability in otherwise problematic situations.



Chapter 4

System Modeling

The prediction approach introduced in the previous chapter is mathematically modeled

by defining the system variables and deriving the associated probabilities. These models

are then used in Chapter 5 for the predictive handover. First, the hidden Markov model

matrices in (4.1), (4.2), and (4.3) are derived, in which neighbor AP probabilities represent

the hidden states, and vehicle projections represent the observations. This is followed by

the derivation of the online learning method, defined by equations (4.13) to (4.15), and the

initial HMM estimation method, defined by equations (4.17) to (4.20), which are based on

the derived HMM and the mobile IP environment. Finally, the Kalman filter is modeled

for vehicle movement projection.

4.1 Hidden Markov Model

We model the HMM matrices defined in equations (4.1), (4.2), and (4.3), based on the

system shown in Figure 4.1a. These matrices represent the probabilistic relationships of

the system variables, derived to be used for learning and AP prediction. In our system, we

consider that there are a total of N neighboring APs and M possible observations. The

definitions of the variables are provided below.

φ(0) =
(

π1 π2 π3 . . . πN

)

(4.1)
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A =























a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

a31 a32 a33 . . . a3N
...

...
...

. . .
...

aN1 aN2 aN3 . . . aNN























(4.2)

B =























b11 b12 b13 . . . b1M

b21 b22 b23 . . . b2M

b31 b32 b33 . . . b3M
...

...
...

. . .
...

bN1 bN2 bN3 . . . bNM























(4.3)

Let yt be the movement observation of the vehicle at time t and xj be the vehicle

resulting in connection with the jth neighboring AP. The relational probability between the

observation yt = k, and the vehicle being in state xj , is denoted as bjk where
∑M

k=1
bjk = 1.

Matrix B = {bjk} represents all movement-to-AP relational probabilities, defined as

bjk = P (yt = k|x = j) 1 ≤ j ≤ N ; 1 ≤ k ≤M (4.4)

where P (y = k|x = j) represents the probability of both the observation being k

and the state being j. There also exists a relational probability between the vehicle’s

previous state, xt−1, and its current state, xt, that represents any change in the most

likely neighbor. Let aij represent the probability of the occurrence of xt−1 = i and xt = j,

where
∑N

i=1
aij = 1. Note that there is also the probability that the state does not change

from time t − 1 to t and i = j, therefore requiring N aij values instead of N − 1. The

transition matrix A representing all aij is described as

aij = P (xt−1 = i|xt = j) 1 ≤ i ≤ N ; 1 ≤ j ≤ N (4.5)

The matrices A and B are used to update the total probability of being in state i

at time t, which is further explained in Section 4.2. The probability for being in state i
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at time t is represented by γi(t), where
∑N

i=1
γi = 1. The set φ = {γi(t)} represents the

probabilities for all states where

γi(t) = P (xt = i|yt, θ) 1 ≤ i ≤ N (4.6)

θ represents the HMM containing matrices A, B, and π, where π is the initial distri-

bution of φ(0) used to determine φ(1) with the first observation yt=1. This distribution is

defined as

πi = P (x1 = i) 1 ≤ i ≤ N (4.7)

The probabilities of equations (4.4), (4.5), and (4.7) compose the HMM for predicting

the most likely neighbor AP. The relationship between these probability values and the

prediction variables, visualized in Figure 4.1b, can then be represented by the matrices

in (4.1), (4.2), and (4.3).

4.2 HMM Learning

We derive a learning method to accurately determine the probability values based on

system observations, while also functioning effectively within the mobile IP network. Our

learning method has two main components: an online learning method and an initial matrix

estimation. From our analysis, we derive that the AP probability at time t is determined

by equation (4.8), and the AP’s initial value is based on equation (4.9). The variables

defining the online method are detailed in Section 4.2.1, and the variables describing the

initial HMM method are explained in Section 4.2.2.

γj(t) =
γj(t− 1)× axt−1,j(t− 1)× bj,yt(t− 1)

∑N

i axt−1,i(t− 1)× bi,yt(t− 1)× γi(t− 1)
(4.8)

πi =
w(i)× δ(i, xa)

∑N

j=1
πj

(4.9)
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(a) System variables considered in the predic-
tion

(b) Relational HMM probabilities between N states and M observa-
tions, described by matrices A and B

Figure 4.1: Deriving the hidden Markov model
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An online symbol-wise expectation-maximization algorithm, based on the method pro-

posed by Mongillo et al. [69], is chosen for the learning method. EM is chosen because

it has been shown to provide more accurate state estimates than other online learning

methods, has low memory requirements, and is easy to implement. B. Anderson et al. [75]

discuss this further in their recent survey of online learning. Additionally, other meth-

ods, such as minimum divergence and minimum prediction error, utilize metrics that add

complexity and distract from the observation-focused prediction of the proposed method.

Between block-wise algorithms that update the HMM with a set of T observations, and

symbol-wise algorithms that update every observation, a symbol-wise algorithm is chosen

for its better fit memory and time complexity. Block-wise methods generally have a time

complexity of O(N2T ) and a memory complexity of O(NT ), while symbol-wise methods

have a time complexity of O(N4) and a memory complexity of O(N) [70]. In the mobile

IP network, the number of neighbors is relatively small with N ≈ 8, while the number of

observations is much larger, and will differ according to the vehicle’s speed and movement.

Therefore, the additional calculation of the symbol-wise method is minimal compared to

the memory saved; it also provides updated γ values at each time step, which improves

the prediction response.

The recursive algorithms that compose the chosen online learning method are adjusted

in this thesis according to the mobile IP environment. In addition to online learning

using observations, the method takes advantage of the mobile IP network to observe state

information after the prediction is made, which facilitates the update of initial probability

values over time. The manner in which this state information is obtained for initial variable

calculation is explained in Section 6, as are the details of the handover protocol.

The offline EM algorithm is first derived and then converted to an online incremental

system. The EM method is based on inferring a probability distribution through maximiz-

ing the likelihood of a series of observations. In the case of an HMM, this is achieved by

using the Baum-Welch equations. With a total of T observations and initially estimated

parameters θ = (A,B, π), the values of matrices A and B are determined with the following

equations:
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aij =

∑T

t=1
P (xt−1 = i, xt = j|y1...T , θ)

∑T

t=1
P (xt−1 = i|y1...T , θ)

(4.10)

bjk =

∑T

t=1
P (xt = j, yt = k|y1...T , θ)

∑T

t=1
P (xt = j|y1...T , θ)

(4.11)

These values are then used to estimate the temporary state probabilities at time t,

represented by φ(t) = {γi(t)}, as calculated with equation (4.12) where ai =
∑N

j=1
aij

and bi =
∑M

k=1
bik.

γi(t) =
ai(t)× bi(t)

∑N

j=1
aj(t)× bj(t)

(4.12)

4.2.1 Online Learning

The goal of our online method is to improve the learning convergence rate while min-

imizing performance costs. The offline method necessitates storing the observation se-

quence, {y1...yT}, and waiting for a full batch of information before beginning calculations.

To remove these requirements in an online symbol-wise method, the equations are altered

to be recursive, relying only on the previous time step to update each incoming observa-

tion. First, the original probabilities at t = 1 are determined in order for the recursive

functions to operate. The original state estimates π1...N , defined by equation (4.7), are

used to calculate φ(1) as done with

γi(1) = πi × bi(y1)× ai(1) (4.13)

where the values of πi, bi(y1), and ai(1) are determined using the method described

below in Section 4.2.2. After calculating φ(1), equation (4.8) is used for each incoming yt,

where γi(t − 1), aij(t − 1), and bjk(t − 1) are the estimated HMM parameters from the

previous time step, and xt−1 is the estimated state at t−1. With φ updated to the current

time step, matrices A and B are then recalculated using xt, yt, and φ(t) values and the

equations
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aij(t) =
aij(t− 1) + δ(xt−1, i)× δ(xt, j)× γj(t)

∑N

n=1
ain(t− 1)× γn(t)

(4.14)

bjk(t) =
bjk(t− 1) + δ(xt, j)× δ(yt, k)× γj(t)

∑N

i=1
bik(t− 1)× γi(t)

(4.15)

which are derived by using equation (4.12) to update equations (4.10) and (4.11) into

incremental calculations of a and b, where 1 < i < N , 1 < j < N , 1 < k < M and δ(l, m)

is the Kronecker delta, defined as

δ(l, m) =







1 l = m

0 l 6= m
(4.16)

This equation ensures the learning process updates the correct values. The learning

process, composed of equations (4.8), (4.14), and (4.15), is used to update HMM θ for each

received observation. These equations, and the resulting φ(t) matrix, are used in the AP

prediction process described in Chapter 5.

4.2.2 Initial HMM Estimation

An initial HMM estimation method is added to improve the accuracy and convergence

rate of the learning process. Initial HMM matrix values in A, B, and π are normally set

according to a probability distribution that is loosely related to the real system. In our

case, the mobile IP network is used to determine and update the initial matrix values, done

by packet transmissions that include state, movement, and prediction information. The

equations are derived from the online learning method to update the initial HMM values

according to the information provided. Since the state is observed, a weight value is used

instead of likelihood calculation. The weight value w(i) for the ith packet is calculated by
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w(i) =



























1 i = 0

w(i− 1)

w(i− 1) + 1
1 ≤ i < I

1/I i ≥ I

(4.17)

where i is correlated to the sequential arrival number of that packet, and I is a maximum

sequential number to prevent w(i)→ 0. Maintaining a minimum w(i) ensures continuous

variable adjustment when different probability distributions may occur due to environ-

mental changes. The matrices of the HMM are then updated similarly to the equations

in (4.14) and (4.15), but replacing γi with w(i) to calculate the new values based on the

observed state instead of the most likely state. This is done as according to

aij =
aij + δ(i, xp)× δ(j, xa)× w(i)

w(i) +
∑N

n=1
ain

(4.18)

bjk =
bjk + δ(j, xa)× δ(k, kf)× w(i)

w(i) +
∑N

i=1
bik

(4.19)

where xp is the predicted access point, xa is the resulting AP, and kf is the recorded

Kalman filter output at the time of prediction. Note that the value of N is not constant

during early iterations since it increases with the discovery of new neighbors, as discussed

in Section 6.1.

Overlapping AP coverage, caused by certain AP deployment schemes, could cause a

vehicle to have multiple candidate APs that are indistinguishable within the HMM. This

scenario is assumed to have occurred when multiple vehicles report similar movements, but

connect to different APs, and transition probabilities between these two APs approach 0.5.

The value of 0.5 indicates that half of the predictions between the two APs resulted in the

vehicle moving to the other AP. To differentiate between them, network metrics throughput

and dwell time are added to the weight calculation. We consider a vehicle moving to APj ,

reporting a dwell time of td(j) and average throughput of thkbps(j) while within APj .

The new weight, wj, is calculated with equation (4.20), where J is the total number of

overlapping APs and winit is the original weight calculated in equation (4.17).
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wj = J × winit ×
thkbps(j)× td(j)

∑J

i=1
thkbps(i)× td(i)

(4.20)

Thus, the weights are adjusted based on the performance ratio between the overlapping

APs. This will result in the prediction method choosing the AP that is most likely to

provide better network performance.

4.3 Movement Projection

Movement projection is orchestrated using a Kalman filter. The filter is modeled to track

and project the vehicle’s movement based on incoming GPS measurements, which is then

used by the learning and prediction methods for probability calculations. The final vehicle

state values and noise estimation are described by equations (4.21) and (4.22), respectively.

xk = x−

k +Kk(zk −Hx−

k ) (4.21)

Pk = (I −KkH)P−

k (4.22)

These variables are obtained by smoothing incoming GPS measurements and providing

an accurate estimation of the vehicle’s location, velocity, and acceleration. Measurements

are smoothed by first projecting both the vehicle’s movement and signal noise, then compar-

ing these projections to the GPS reading. The movement observation at time k is described

as the vehicle’s position (rk), velocity (vk), and acceleration (ak), which are maintained in

state matrix xk. These values are initially estimated from time k− 1 with equation (4.24),

where A is the transitional matrix derived from kinematic equation (4.23), ∆t is the size

of the time interval from k − 1, and x−

k is the state estimation before GPS consideration.

To simplify the explanation, our definition of these values show only one dimension of the

two-dimensional tracking.
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xt = xt−1 + v ∗ t+ 0.5 ∗ a ∗ t2 (4.23)

x−

k = Axk−1 xk =











rk

vk

ak











A =











1 ∆t 0.5∆t2

0 1 ∆t

0 0 1











(4.24)

Before weighing the estimated state x−

k against the GPS measurement, we estimated

the noise level to predict the accuracy of the incoming GPS measurement. The error

estimation, P−

k , of actual error, Pk, is found with equation (4.25), where A is the matrix

from equation (4.24) and Q is the initial covariance estimate at t = 0.

P−

k = APk−1 +Q (4.25)

The estimated error P−

k is then used to determine the weight between xk and GPS

measurement zk. This weight is denoted as the Kalman gain, Kk. This is calculated with

equation (4.26), where R is the covariance and H is the scaling matrix between x−

k and zk.

Kk = P−

k HT (HP−

k HT +R)−1 (4.26)

The results from equations (4.24)-(4.26) are used in equation (4.21) to determine final

state estimation xk from the noisy measurement zk. The estimated noise is then updated

using equation (4.22) for the next time step k + 1, where I represents an identity matrix.

The modeled Kalman filter for the defined system is tested to ensure its precision

for tracking a vehicle. A scenario was created to test performance in extreme conditions

where an acceleration range of 25m/sec2 is used with velocity values reaching 150m/sec

and noise values ranging from −20m to 20m. The Kalman filter is looped at intervals

of 1.0sec. Functionality in the extreme scenario ensures the Kalman filter’s reliability

when applied to normal vehicle movement. The results are shown in Figure 4.2a which



Chapter 4. System Modeling 63

illustrates the Kalman filter’s output versus the actual location.
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Figure 4.2: Modeled Kalman filter testing

The modeled KF produces accurate estimations of the vehicles location with max

divergence of 8m until acceleration of ≈ 25m/sec2 is reached. Since a vehicle would not

normally reach this acceleration rate, especially for an extended period of time, the modeled

Kalman filter’s performance proves to be accurate.

The Kalman filter is additionally tested for its accuracy in projecting future movement

to determine how far in advance the algorithm should consider. The projection should look

as far in advanced before a large distance error causes the projection to be indeterminate.

Figure 4.2b displays the test results of the distance difference between the projection and

the actual future location. A spike in the distance error occurs immediately after 3 thus a

projection of 3 seconds is chosen as the best balance between time and error.

In addition, Figure 4.2b provides evidence for the statement in Section 3 that move-

ment projection is unreliable for AP prediction. When looking in advance for next node

determination the distance error is too large for reliable AP selection, which necessitates

using the Kalman filter within the HMM. The projection then does not have to be accurate

but instead must only distinguish the movement enough to clarify which AP the vehicle

will move to. Prediction results shown in Chapter 7 support this statement.



Chapter 5

Prediction Method

In this chapter, we propose and analyze the prediction method using the mathematical

tools derived in the previous chapter. First, we explain and discuss using the Kalman

filter and hidden Markov model together, with details on their complimentary nature.

This is followed by details of the proposed prediction algorithm, which makes the final

decision of what AP is predicted for the handover. Finally, we analyze the prediction

method in context of the mobile IP environment, and discuss adjustments made to the

prediction method accordingly. An overview of the prediction method and its variable flow

is illustrated in Figure 5.1. Note that many of the variables mentioned within the figure

are detailed in the previous section.

Figure 5.1: Prediction method overview
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5.1 Combining the Kalman Filter and the HMM

We first detail the communication between the Kalman filter and hidden Markov model

before the prediction algorithm is discussed. This includes discussion of the HMM learning

algorithms interacting with the Kalman filter, and a proof-of-concept that demonstrates

the benefit of using these two methods together.

The Kalman filter is first used to project the vehicle’s movement based on incoming

GPS signals, which is done according to the matrices and equations detailed in Section 4.3.

The output of the Kalman filter’s movement projection is then categorized into a discrete

set of predefined movement ranges. The resulting movement range value is then sent as

an observation to the HMM, where learning equations from Section 4.2.1 are then used

to update the HMM matrices. The ranges allow the use of a discrete HMM instead of a

continuous, which would have much higher calculation requirements.

The Kalman filter and HMM are chosen for their individually proven effectiveness [67,

77] and for their complementary nature to each other. First, the Kalman filter is able to

handle multi-variable observations the HMM is not designed to maintain. For an HMM

to handle the multiple observation variables of vehicle movement, there would be a large

increase in its calculation and memory complexities due to the large number of additional

probability relationships. Second, the Kalman filter solves the issue of a noisy signal

causing incorrect observation detection by the HMM. Consider the scenario illustrated in

Figure 5.2 with vehicle movement shown in Figure 5.2a and the noisy GPS measurements

in Figure 5.2b. If the HMM interprets the GPS measurements without the Kalman filter,

Figure 5.2c shows the result are first very different from the actual occurrence. When the

observations are first interpreted by the filter, as done in Figure 5.2d, the original state of

the vehicle is accurately observed. Third, the Kalman filter covariance estimation for noise

reduction benefits the HMM by unreliable data removal. The Kalman filter estimates the

covariance of each incoming GPS measurement and the actual location. If the Kalman filter

estimates a covariance below a certain threshold, the HMM disregards that measurement

in the learning process, removing any potentially misleading data. This is also utilized

in the prediction method to ensure predictions based on inaccurate measurements are
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Figure 5.2: HMM observations with(d) and without(c) the Kalman filter

avoided. Utilizing the Kalman filter and HMM with these complimentary additions ensures

prediction consistency even in less-than-ideal situations.

5.2 Prediction Algorithm

The prediction algorithm is derived using the learned HMM probabilities and the Kalman

filter readings. This is achieved by using equations (4.8), (4.14) and (4.15), and the initial

HMM values from Section 4.2.2. The most likely subsequent AP can then be determined

upon observation of the vehicle’s movement. The prediction process, shown in Algorithm 1,

first updates φ(t− 1) using the incoming Kalman filter movement projection at time t and

the online learning equations, denoted here as LearningAlg(). The updated γ(t) values
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are then compared to the probability threshold, pth. If a γ(t) meets the threshold, then

the AP matching that value is used as the prediction. Otherwise, the algorithm resets a

timer, to, to repeat the process at each time step until the prediction is made.

Algorithm 1: Prediction algorithm

input : HMM θ, Kalman filter measurement (kf(t)), probability threshold (pth),
timer timeout (to), number of neighbors (N), previous state
probabilities (φ(t− 1))

output: Predicted AP, xp

foreach to do
φ(t) = LearningAlg(kf (t), φ(t− 1), θ)
for i = 0 to N do

if γi(t) >= pth then
pth ← γi(t) // set new threshold to return highest value

xp = i

if xp 6= null then
return xp // output prediction, if it exists

else
reset to // no state probability meets threshold, reset timer

Using a probability threshold ensures enough learning has occurred before a prediction

is decided, reducing the chance of a premature prediction.
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Predictive Handover Protocol

In this chapter, we adopt the proposed prediction method of Chapter 5 into the mobile

IP system and propose a new predictive handover. The method for APs discovering their

neighbors and exchanging information for online HMM learning is first discussed. The

proposed predictive handover protocol is then discussed, including details on how to handle

and detect prediction errors.

In our system, we choose to have APs manage the initial HMM values, and have

vehicles use the Kalman filter to conduct the online learning and prediction procedures. We

divided the tasks in this way for three central reasons. First, by having each AP maintain

the HMM for its local area, system information retrieval is simplified and the required

memory is much smaller. If vehicles were to maintain the HMMs for the surrounding

network, large amounts of overhead and data storage would be required to transfer and

process the information. Second, making prediction from within the vehicle reduces the

frequency of packet exchange between the APs and vehicles. If a prediction was conducted

by the AP, constant communication of the Kalman filter output would be required from

the vehicle to the AP. Third, the vehicle will immediately know the predicted AP, removing

the possibility of an AP failing to transmit the predicted AP information to the vehicle.

This would otherwise be a costly situation, in which detection of and recovery from the

failure would be difficult.

The rest of the chapter details the implementation and utilization of the prediction
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method within the mobile IP network, including the retrieval of information for HMM

learning, neighbor discovery, and prediction. This is followed by the changes made to the

handover protocol to include the prediction and utilize performance benefits of a predicted

handover.

6.1 Neighbor Discovery and HMM Updating

We first detail the neighbor discovery and HMM updating methods. The prediction

process first requires APs to build their HMMs using information on neighboring APs

and recorded vehicle movements. This is done by using information packets transmitted

through the network between the vehicles and APs so that no manual setup is required.

These packets are sent to a vehicle’s original AP when the vehicle begins moving away

from its new AP. The information packets contain the new AP’s IP address, the vehicle’s

Kalman reading at the time of prediction, it’s originally predicted AP, its throughput at

the new AP, and its dwell time.

For each of these packets received, the AP follows Algorithm 2 for discovering neighbors

and updating the HMM. The AP first checks whether the prediction is correct and if there is

a previously undetected neighbor. According to the result of these checks, the HMM is then

updated according to equations (4.17)-(4.9), which are denoted as UpdateInitialHMM()

within the algorithm. A neighbor list matrix L stores neighboring AP IP addresses used to

distinguish between APs, where the nth IP address within matrix L relates to the nth state

of the HMM. The neighbor list thus functioning as the connection between the network

and the HMM.

6.2 Predictive Handover Protocol

The predictive protocol is derived through use of the learned HMM, the AP neighbor

list, and the prediction algorithm from Section 5.2. The sequential diagram, shown in

Figure 6.1, illustrates the overall procedure for the proposed predictive handover. When
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Algorithm 2: Neighbor and HMM updating

input : predicted AP’s IP (IPP ), actual AP’s IP (IPA), Kalman filter
output (kf), number of neighbors (N), neighbor list (L)

output: Updated HMM matrices π, A, B, neighbor list (L)

foreach Inc. info packet do
if IPA == IPP then vehicle committed to predicted AP

forall the n < N do
if L[n] == IPA then

xa = n // find IP in list

UpdateInitialHMM(xa , kf , N)

else vehicle committed to different AP
if L /∈ IPA then neighbor AP not in L, add new neighbor

L[N ]≪ IPA

N = N + 1

forall the n < N do
if L[n] == IPA then

xa = n

if L[n] == IPP then
xp = n // also need predicted AP for update

UpdateInitialHMM(xa , xp, kf , N)



Chapter 6. Predictive Handover Protocol 71

the vehicle first connects with the current AP, the AP transmits the initial HMM matrices

and AP neighbor list L. The vehicle then replaces its previous HMM and neighbor list, and

begins conducting the learning process from Section 4.2.1 with the Kalman filter outputs.

While connected with an AP, prediction algorithm 1 from Section 5.2 is conducted after

each movement projection until a prediction is returned. Note that the Kalman filter is

independent of the network, and therefore continuously tracks the vehicle regardless of the

current protocol step.

Current
AP Vehicle

Predicted
AP HA

HMM

Predict
AP ∈
{x1....xn}

e reg

e reg

e rep

reg req

reg rep

info pkt

notif pkt

info pkt

Figure 6.1: Predictive handover protocol

Once an AP’s probability reaches the threshold value, the vehicle sends an early regis-
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tration request (e req) packet to the predicted neighbor. This is done through the current

AP and over the physical network. Upon receiving the e req packet, the predicted AP

sends an early registration (e reg) to the HA. The HA then finishes registration with the

predicted AP without disconnecting from the original and the predicted AP reserves a

care-of address (CoA) for the incoming vehicle after a registration reply message (reg rep)

from the HA is received. This is to prevent packet drops from an incorrect handover timing

estimation. A timer is then set by the AP which will cancel the registration upon expira-

tion to prevent endless waiting in the event of an error. Sending the e req directly to the

HA from the vehicle was considered to reduce packet exchanges, but was not done to avoid

delays for the predicted AP to be prepared for the vehicle. If the e req is lagged, the HA

may not contact the AP until after the handover has been initiated. This would disrupt

the predicted discovery phase. Additional load onto the wired network is worth avoiding

this possibility.

When the vehicle begins to lose connection to its current AP, it begins to broadcast a

registration request (reg req) to the predicted AP with an indication that a prediction to

this AP was made. When it receives an ad from the predicted AP, the vehicle recognizes the

address and sends a registration request (reg req) with a notification of early registration.

The notification triggers the AP to check for a reserved CoA for the vehicle. If it exists,

the AP replies to the vehicle with a registration completion message and concludes the

handover procedure. After establishing a connection with the AP, the vehicle will then send

an information packet (info pkt) to its previous AP, containing the variables described

in Section 4.2. The AP also sends a notification packet (notif pkt) to the HA to stop

sending packets to the previous AP, completing the handover. When successful, the process

removes the costly discovery phase and minimizes registration costs. By having both the

vehicle and AP contain knowledge of the other, searching for a new connection is not

needed. The registration process with the HA is also already complete, so only one packet

exchange occurs with immediate response. Therefore the handover overhead and latency

are significantly reduced.

There exists the case of a prediction error and the vehicle does not enter the range of the
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predicted AP after early registration is conducted. Prediction errors must also be properly

handled to minimize their expensive performance costs. This requires early recognition

of an error and a backup protocol to be followed upon recognition. Figure 6.2 shows the

error protocol followed, where dashed lines represent wireless communication and solid

lines represent communication across the network. The error cannot be detected until the

vehicle begins searching for the predicted AP. Thus, the process is the same up until the

vehicle begins broadcasting the e reg packets. Due to an error, the vehicle will not enter

the predicted AP’s range and will continue to wait, during which the vehicle starts building

an ad list. A prediction error is assumed once the end-to-end delay of packets received from

the vehicle’s current AP reaches a set threshold, triggering the vehicle to check the next

two highest γ values within its φ matrix. If one of these two APs exist within the vehicle’s

ad list, the vehicle will send a registration request to that AP. If neither of the next two

APs are within the ad list, the vehicle then conducts the original handover protocol.

A prediction error is noted within the registration request. When the HA receives

the request, it sends a cancellation message, (cncl pkt), to the predicted AP and stops

forwarding packets to it. The predicted AP can then remove the vehicle from its early

registration list and free up space for other vehicles. While an error is costly, the reli-

able performance of the prediction method reduces the error frequency to where overall

performance is minimally affected.
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Figure 6.2: Prediction error protocol
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Performance Evaluation

In this chapter, we evaluate the proposed HMM-KF predictive handover by analysis of

results generated through simulation. The vehicle prediction and mobile IP performance is

analyzed and compared with methods of other recent literature. We first detail the network

and road environments used for evaluation, then analyze the simulation results. Our anal-

ysis begins with parameter optimization and evaluation of online learning; the prediction

accuracy is then evaluated, and finally the network performance is analyzed. This order

ensures that an improved prediction method is used for analyzing the predictive handover.

The common network metrics latency, throughput, and packet-drop rate are chosen as

performance measures for analysis. These metrics are considered within the simulation of

multiple road and network environments. Simulation of Urban Mobility (SUMO) [71] is

used to generate vehicle traffic data within a road network, and Network Simulator (NS-

2) [72] is used to simulate the wireless network. Table 7.1 summarizes the environment

parameters for the simulation.

7.1 Environment Setup

The environment used for simulation is set up to represent a realistic vehicular network.

The details for the environment are chosen to provide useful analyses of both prediction

network performances. First, the road environment and vehicle movement is discussed,
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followed by details of the mobile IP network and routing protocols. The compared methods

from other literature are described in Sections 7.4 and 7.5, since different methods are used

for prediction analyses and network analyses.

7.1.1 Road and Traffic

For the road and traffic environments, we use six separate road environments to observe

the robustness of the prediction and handover methods. The first two simulated envi-

ronments are a 1200m by 1200m urban road network taken from a section of downtown

Toronto and Boston, as shown in Figures 7.1a and 7.1d. The urban network tests situations

of high turn possibility and large road intersection variation. It also contains a high den-

sity of traffic lights which cause less predictable movement due to inconsistent speeds, an

important aspect to test for a method that relies on movement. The second environment

are sections of Highway 80 and Highway I-95, shown in Figures 7.1c and 7.1f, where vehi-

cles reach much higher top speeds but maintain more consistent movement. This provides

isolated observation of the effects of increased speed and more frequent handovers. The

last environments are a combination of the previous two environments, where a highway

overlaps an urban street network. These are taken from a section of the Bronx, NY that

intersects with Highway I-95, as shown in Figure 7.1b, and a section of Highway I-66 going

over northern Virginia, shown in Figure 7.1e. The added intricacy of overlapping roads

and the dramatic variation in vehicle movement complicates the learning process, testing

difficult-to-predict situations.

The road data for the three environments is downloaded from OpenStreetMap [73] and

imported into SUMO to generate vehicle routes and traffic flow. The number of vehicles

is changed for each simulation in increments of 50, ranging from 100 to 500 vehicles. For

our simulations, we choose to categorize our vehicle density by the number of vehicles

instead of by vehicles per km2. Since our goal is to simulate realistic environments, the

vehicles and APs do not maintain an even distribution across the map[74]. As a result,

vehicle density varies greatly between APs, which would make the specification of vehicles

per km2 misleading.
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The specific vehicle movement and behavior is determined according to the Krauss

car-following model. In this model, vehicles maintain safe following distances and accel-

eration while following speed limits. Vehicle speeds have a range of 0 − 20m/s in urban

environments and 25− 30m/s in highway environments.

7.1.2 Network

To implement the network environment with our road and traffic environments, vehicle

movement information is imported into NS-2 for simulation. 802.11p is selected as the

protocol to be followed in the MAC layer, since its design improves vehicle connectivity.

Vehicular networks utilize both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V)

communication due to common gaps of AP coverage. To evaluate compatibility with this

combination, the routing protocols AODV [79], OLSR [80], and GPSR [81] are chosen for

both prediction accuracy and network performance analysis. AODV, OLSR, and GPSR

are popular routing protocols within mobile ad hoc networks, and represent three differ-

ent methods to V2V communication. Recent research has been dedicated to testing and

adjusting these protocols for vehicular networks [82–85]; therefore, testing these protocols

will ensure our predictive handover will be compatible within vehicular networks. AODV,

OLSR, and GPSR were modified in this thesis for compatibility with mobile IP, based

on the method detailed in [86]. In this method, the V2V routing is used for local packet

forwarding for vehicles within close range. If the packet is being sent further than the set

range, the packet is sent through the AP using mobile IP.

The Kalman filter, online HMM, and prediction algorithm are implemented within NS-

2 as an extension to mobile IP. The NS-2 mobile IP implementation was adjusted according

to the procedure detailed in Section 6. GPS measurements of the vehicles are provided

by NS-2, with noise added artificially. The predefined HMM parameters are defined in

Table 7.4.
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(a) Toronto, ON

(b) Bronx, NY (c) Highway 80, NY

(d) Boston, MA

(e) I-66 going over northern Virginia (f) Highway I-95, NY

Figure 7.1: Road networks imported into SUMO
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Table 7.1: Simulation Parameters

Mobility Simulator SUMO

Mobility Model Krauss Car Following Model

Number of Vehicles 100− 500

Vehicle Speeds 0− 30m/s

Road Network Urban/Highway/Combined

Network Simulator NS-2.35

PHY / MAC IEEE 802.11p

Routing Protocol AODV/OLSR/GPSR

Transport Protocol UDP

Packet Size 160 bytes/packet

Packet Frequency 250 packets/s

AP Coverage Spatial Coverage/200m Range

Simulation Time 600s

Repetitions 100 (10× 10 vehicle increments)
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7.2 Parameter Optimization

Before we evaluate the performance of our proposed method, we first use the simulation

environment to optimize variable values that are otherwise considered NP-hard to derive.

This is due to the complex nature of a vehicular network and the infinite number of possible

values for these variables. The two variables we consider are the number of segments we use

to divide the readings, and the threshold value that determines what prediction confidence

results in the most accurate performance.

The number of neighbors, N , is static and decided by the AP distribution, but vehicle

movement is continuous, thus allowing it to be divided into a flexible value of M ranges.

The goal for determining M is to balance the probability dispersion of matrix B, ensuring

that observations are useful and insightful. If the movement is divided into too few ranges,

the observation will be unable to properly distinguish between the states; however, if the

movement is divided into too many ranges, then bjk → 0 will occur for all j and k, and

observation will again provide little insight. Therefore, setting M must maximize bjk values

while maintaining variation in observation. A range of M values are tested against the

algorithm’s accuracy, P , using the urban environment. The results, shown in Table 7.2,

reveal that the highest prediction accuracy is reached when M is of value 9.

The threshold also requires a similar balance to produce the most accurate results.

The threshold prevents premature predictions from being made, thus improving accuracy.

However, if the threshold is set too high, it may delay the prediction too much, preventing

early registration from being completed in time. Therefore, the threshold pth should, at a

minimum, balance the probability for a delayed prediction pd and a wrong prediction pw

for best performance. This threshold value is described by equation (7.1). The error

probability P of 7.1 is found using equation (7.2), where ed(t) = 1 when the prediction

is delayed for too long, ew(t) = 1 when the prediction is wrong, and T is the size of the

sample prediction set.

pth <= Min(P (pd|th) ∪ P (pw|th)) (7.1)
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Table 7.2: Observations M versus Prediction Accuracy P

M P

1 0.61

2 0.68

3 0.73

4 0.78

5 0.83

6 0.87

7 0.89

8 0.91

9 0.92

10 0.90

11 0.87

M P

12 0.85

13 0.82

14 0.78

15 0.76

16 0.73

17 0.70

18 0.68

19 0.67

20 0.65

21 0.64

22 0.63
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Table 7.3: Threshold Values

Threshold pw pd P (pd ∪ pw)

0.2 0.66 0 0.66

0.25 0.48 0 0.48

0.3 0.34 0.01 0.35

0.35 0.2 0.02 0.22

0.4 0.13 0.03 0.16

0.45 0.08 0.03 0.11

0.5 0.06 0.03 0.09

0.55 0.05 0.07 0.12

0.6 0.04 0.28 0.31

0.65 0.04 0.59 0.6

0.7 0.03 0.84 0.85

P (pd|th) ∪ P (pw|th) =

∑T

t=1
ed(t) + ew(t)

T
(7.2)

Solving (7.1) is done by a simulation based on the environment defined in Section 7. pth

values between 0.2 and 0.7 were tested, and the results are displayed in Table 7.3. It is

found that pth ≈ 0.5 results in the lowest prediction error, at a rate of about 0.09.

7.3 HMM Learning Analysis

Online learning and initial HMM estimation methods are evaluated to ensure their func-

tionality within the vehicular network. Since neighboring APs are discovered online, the

number of states will change throughout the simulation, and early HMM values will not

represent the final system. For this reason, final state probabilities and the prediction
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Table 7.4: HMM-KF Parameters

Number of states(N) ≈ 8

Number of observations(M) 9

KF sampling rate ∆t = 0.2s

Threshold p = 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 50  100

E
rr

o
r 

ra
te

Simulation time(s)

 

Online
Offline

(a) Prediction error over time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250

γ

Simulation time(s)

 

Online
Offline

(b) State convergence of γ = 0.2 to γ = 0.7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100  150  200  250  300  350  400  450  500

A
c
c
u

ra
c
y
(%

)

Number of Vehicles

 

Online
Offline

(c) Online versus offline prediction results

Figure 7.2: Testing the HMM learning in the mobile IP network

algorithm’s accuracy are used as performance measurements instead of probability conver-

gence rates. Initial HMM updating is analyzed through observing the speed and accuracy

of converging to a state probability, whereas the overall online learning method is analyzed

through observing the prediction accuracy convergence of the prediction algorithm. Both

are compared to the equivalent offline learning version of the proposed method.
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Figure 7.2 illustrates the average performances of the HMM initial value estimation

and the online learning method, taken across the varying vehicle densities. Note that

the performances are considered against simulation time, instead of HMM iterations, to

consider the performance within the context of the mobile IP network. As shown in

Figure 7.2a, the prediction error convergence rate of the online method is higher than the

offline method, with the online method reaching below 0.2 error twice as fast as the offline

method. The online method adjusts more quickly to the vehicle movement patterns because

it handles new data as it arrives. The offline mode does, however, show less variance in

its convergence rate, since batch learning is more likely to produce a balanced set of data.

The incremental update of the online method depends on the accuracy with which the

temporal data represents the system, thus varying more in performance.

Figure 7.2b shows the proposed method’s π estimation from Section 4.2.2 compared

to the standard offline γ learning described in Section 4.2. The starting value is set to 0.2

within a system where the value is 0.7. The average values of the initial estimation reach

within 0.02 of the system probability at about 120s into the simulation, showing much faster

convergence than the offline method, which does not reach similar accuracy until 240s,

again showing a 50% improvement in convergence. This proves how the proposed method

can adjust quickly to any potential changes within the network. One setback with this

method is the large variance observed in the initial estimation results, which occurs when

randomized vehicle movement fails to reflect the final probability at different moments

within the simulation. However, this variance is expected, and is not reflected within the

final prediction results. The initial HMM estimation is a precursor to the online learning

method, which adjusts these values before a prediction is made.

The short-term prediction benefits of using our online method are illustrated in Fig-

ure 7.2c, which displays the overall performance accuracy of the prediction method using

the offline and online learning methods. Results show that the online method increases

the overall prediction accuracy to over 90%. This improvement over the offline method oc-

curs in the absence of any changes to vehicle traffic patterns or network topology partway

through the simulation. This demonstrates that while the online method is designed to
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adjust to changes in the road and network, it still increases average accuracy in comparison

to the offline method when no changes are made. This is a result of traffic simulations

with sample learning data that is not representative of traffic patterns, where the online

method can adapt its variables as the simulation continues, but the offline method makes

predictions with inaccurate information.

7.4 Prediction Analysis

We analyze the performance of the HMM-KF prediction method after initial HMM values

have converged. Four recent vehicle prediction methods are implemented for comparison.

One method uses multiple order Markov chains [60] to analyze a vehicle’s AP history and

determine its next most likely AP. The other is a greedy algorithm [61] that uses maximum

likelihood to project a vehicle’s long-term path with a greedy algorithm to predict the next

road segment. These methods are outside mobile IP research, but are chosen so that the

proposed method is compared with more recent vehicle prediction methods.

7.4.1 Urban with AODV

Figure 7.3a displays the result of the prediction performances using AODV within the ur-

ban environment. The accuracy of the proposed method for urban prediction outperforms

both the greedy and Markov methods, with an overall success rate of 91%, reducing pre-

diction error compared to the other methods by about two-thirds. The two other methods

have similar results in accuracy to each other; the greedy method with an average accuracy

of 66% and the Markov method with averages at 61%.

The proposed method’s improvement is accredited to the inclusion of temporary move-

ment data and the focus on local variables. The proposed method can ascertain a vehi-

cle’s intentions in probabilistically uncertain scenarios while maintaining reliability, since

movement information provides more recent insight than history. Otherwise, options with

similar probability values and vehicles with misleading history are problematic, issues for

both the Markov and greedy methods. The greedy method attempts to resolve the issue
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(b) Highway environment with AODV protocol
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(d) Urban environment with OLSR protocol
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Figure 7.3: Prediction accuracies versus traffic density

of similar probabilities by using a vehicle’s path history to determine its general projected

direction, but this method is still affected by misleading vehicle history. One example of



Chapter 7. Performance Evaluation 87

this is when road networks force a vehicle to move in circuitous directions to reach its final

destination, which is often the case with one-way streets. Another issue that arises from

failing to consider temporal movement is the inability to attain more information when

there is otherwise insufficient data to make a prediction. The greedy and Markov methods

resort to an uninformed guess, while the proposed method can delay for more movement

readings until enough data is collected for a well-informed decision. A problem delaying

can cause is when a short AP dwell time, combined with too much prediction hesitation,

results in a late prediction. However, the frequency of this occurrence is minimized by the

tested threshold selection, as discussed in Section 4.

The effects of traffic density on vehicle movement minimally affect the accuracy of

all three methods. This is expected for the greedy and Markov methods, since they do

not depend on any variables changed by traffic; however, the prosed method does depend

on such variables. The accuracy consistency of the proposed method is due to a balance

maintained across different vehicle densities. In higher traffic density, the fluctuation of

vehicle movement increases because of vehicles avoiding collision with each other, and at

a similar rate the vehicle average speed decreases. This reduces the urgency to make

a prediction when movement predictability is also reduced; therefore, more data can be

collected to maintain consistent accuracy.

7.4.2 Highway and Urban/highway

Figure 7.3b displays the accuracy results from the highway scenario, where all three meth-

ods demonstrate much higher performances. In this scenario, the proposed method shows

an accuracy of about 98% while the greedy and Markov methods sit at approximately 94%

and 93%, respectively. Improved accuracy compared to the urban scenario is due to the

easy predictability of a highway, where vehicles have very limited path options. The pro-

posed method still reduces prediction error by about 65%. The slightly higher performance

of the proposed method is a result of detecting when a vehicle exits the highway. While

rare, the extreme change in speed gives a clear indication of a vehicle exiting, a change

that the greedy and Markov methods can not detect.
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Despite the performance increase in the isolated highway scenario, a large decrease

in performance occurs when the urban roads and highway overlap. Figure 7.3c shows all

three methods performing more poorly than in other environments. The proposed method

has about an 85% accuracy, the greedy with about 60% accuracy, and the Markov chain

showing a 55% accuracy.

The added complexity of having a highway pass over urban streets makes AP predic-

tion much more difficult. The prediction algorithms only consider two dimensions, and,

therefore, cannot directly observe on which street the vehicle is located since they are

blind to the third dimension. Here, the proposed method demonstrates a 60% reduction

to the prediction error compared to the greedy method, 10% less than the reduction in the

urban environment. The proposed method suffers more degradation in accuracy due to

the increased variety of movement the HMM must account for, since one AP may observe

two different vehicular movement patterns of different speeds. This could potentially be

of no concern when implemented in the real world, because the elevation may cause signal

differences that cause vehicles to only connect with APs on their elevation.

7.4.3 OLSR and GPSR

Figure 7.3d shows the results in accuracy when using the OLSR routing protocol within

the urban scenario. Accuracies within OLSR are similar to AODV with few vehicles, but

performance reduces as traffic density increases. From 100 to 500 vehicles, this results in

about a 15% increase in error for the proposed and greedy methods, and a 5% increase

for the Markov method. This reduction is due to the increased occurrence of multi-hop

routing, where the hierarchical packet forwarding may cause vehicles to move farther from

the current AP without needing to conduct a handover. The vehicle may then commit

to a different AP that would otherwise not be predicted. However, this event occurs

infrequently, and the disruption to prediction accuracy is relatively small. The GPSR

results shown in Figure 7.3e display overall higher accuracy compared to OLSR. GPSR’s

location-based packet forwarding is performed based on the closest node, causing vehicles

to consistently commit to the nearest AP and increasing the handover predictability. The
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greedy and Markov methods have similar accuracies between AODV and GPSR, but the

proposed method shows a small improvement in accuracy. The GPSR location-based

forwarding compliments the proposed method, and incorporates GPS information resulting

in improved predictability of network behavior.

7.4.4 Vehicle Location Predictions

The prediction method was also tested outside of the network for analysis of its general

vehicle prediction accuracy. This includes predicting a vehicle’s regional area and its exact

location. Two other recent methods, deemed more appropriate for this analysis, are also

implemented and tested for comparison and analysis to the proposed method. One is a

cell-frequency method which utilizes the cell movement frequency of past vehicles to proba-

bilistically determine the next cell [21], the other is a path comparison method that matches

the vehicle’s current path with other vehicle paths to predict the future movement [15].

The results from the described simulation are presented here for analysis. Figure 7.4a

illustrates the accuracy results for each of the ten sets of traffic simulations as well as their

respective standard deviations.

The results show the proposed method consistently performing better than the cell

frequency and path comparison methods with about 20% increase in accuracy compared

to the closest competitor. The KF-HMM’s consideration of temporal movement data and

probability relationships to increase the performance reliability largely contributes to this

improvement. By taking the highest probability of what the vehicle is currently doing,

instead of what it has previously done, the method produces better accuracy in situations

where the vehicle is taking a less predictable path. Similarly, the temporal data resolves the

issue of misleading historical information, of which other methods do not address. When

using path comparison, the event of a vehicle starting a similar path but then veering away

results in the method assuming an incorrect path and predicting incorrectly. When instead

considering cell frequency, only vehicles taking the most common path will be predicted

correctly.

The path comparison outperforms the cell frequency method due to the inclusion of
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path information within its probability evaluation. This information is historically based

on previous vehicles, but it still provides additional insight into the individual vehicle’s

future movement. The cell frequency method only observes neighboring region probability

and so it has no method of distinguishing between individual vehicles.

Figure 7.4b shows the accuracy and standard deviation of the methods across differ-

ent vehicle densities. The average prediction performance for all three methods remains

consistent across the different traffic densities. However, there is a large difference in the

standard deviation due to the path comparison and cell history methods relying on traf-

fic consistency for performance. In lower traffic densities, their overall accuracy is much

more affected by the chance of individual vehicles choosing less likely paths. Since vehicle

consistency is random, the resulting accuracy varies widely. The proposed method does

not depend on the regularity of a vehicle’s route, and shows much smaller performance

variance.

In addition to regional accuracy, the accuracy of predicting the vehicle’s location is

also considered. Figure 7.4c illustrates the distance error between the predicted location

and the actual location versus the time in advance in which the method is predicting.

The methods all perform similarly when predicting within the first two seconds because

of the vehicle’s physical restrictions. However, as predictions are made farther into the

future, performance begin to differ in accordance with how accurately they predict the

correct region. The proposed method maintains the lowest error since the consideration

of movement improves the ability to estimate the vehicle’s future location in addition to

its high regional accuracy. The path comparison method performs better than the cell

history for its ability to compare to previous vehicles; however, the error spikes if it picks

the wrong path. This spike is why the differences in distance-error between cell history

and path comparison are smaller than the differences in regional accuracy.
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Figure 7.4: Prediction accuracies versus traffic density

7.5 Network Performance

In this section, we consider the predictive handover using the improved vehicle prediction

method in terms of network performance. The recent handover methods E-FMIP [10],

context P-CSF [8], FPMIP-PT [44], and C-HMIP [1] are implemented and tested for com-

parison. The E-FMIP handover extends the fast handover by adding additional FBACK

retransmissions through a media independent handover, ensuring FBACK delivery to the

mobile node and improving its consistency. The context P-CSF, comparable to the seam-

less handover, adds context messaging between IP multimedia subsystems (IMS), which act

as equivalents to MAPs. The context messages sent between the IMS improve transitions

to new IMS by the direct transfer of registration information to reduce HA communica-

tion. FPMIP-PT enhances the fast-proxy mobile IP handover by pre-establishing tunnels
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between neighboring mobility access gates (MAG) before the handover begins. MAGs are

similar to MAPs of the HMIP, but further track the vehicle to reduce the vehicle’s in-

volvement in the handover. By minimizing the tunneling time, the FPMIP-PT reduces

registration latency when the vehicle switches between MAGs. The last method is the

C-HMIP, which improves upon the hierarchical handover by adding context messages be-

tween the vehicles and APs to improve vehicle and AP network awareness. The context

messages provide vehicles with knowledge of surrounding APs before the handover, allow-

ing them to skip the discovery phase of the handover. FPMIP-PT and C-HMIP results

are shown separately from P-CSF and E-FMIP results for clearer analysis.

7.5.1 Urban

First we consider the latency, throughput, and packet drop rate within the urban en-

vironment. Latency represents the amount of downtime a vehicle may experience before

receiving IP packets at its new IP address. If it is too large, it will disrupt IP services.

Figure 7.5 displays average latency values tested across different routing protocols, where

the proposed method shows a 40% improvement compared to the closest other method.

E-FMIP has the largest latency of the three, with an average of ≈ 80ms across the differ-

ent scenarios, as it provides no improvement to the costly tunneling process and it relies

on a MAC layer trigger. The MAC trigger occurs when the vehicle has already begun

transitioning to a new node without enough time in advance to avoid mobile IP latency,

particularly when considering vehicle speeds. The context P-CSF performs better than the

E-FMIP with an average latency of 60ms, due to its improvement to both the discovery and

registration processes. The reduction of registration latency by using IMS also provides

the MAC trigger of the fast handover with a larger time frame for success, adding further

improvement and consistency. However, unavoidable mobile IP handover processes, such

as creating the tunneling route between the IMS and the current AP, still cause the results

to be less than optimal. This latency is avoidable with a predicted handover, allowing the

proposed method to reduce average latency to 35ms, which is 40% less latency than P-

CSF. An issue imposed by the predictive method is the inconsistency compared to the fast
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Figure 7.5: Latency results versus vehicle density

or seamless handover, since an incorrect prediction causes a latency as high as the original

handover. However, this is minimized by the method’s improved prediction accuracy.

Figure 7.5a shows the impact of traffic density on latency, using AODV in the urban

environment. The latency values are consistent until the APs begin reaching full saturation

at about 350 vehicles, when high collision rates and longer AP access times occur. Be-

tween 350 and 500 vehicles, we observe a 5ms latency increase for the proposed method, a

15ms increase for P-CSF, and a 15ms increase for E-FMIP. Traffic density affects E-FMIP

and P-CSF latency the most due to their added overhead to the handover, the E-FMIP

adding packets for MAC layer exchanges and P-CSF adding packets for context messages

to HA’s. The predictive handover maintains the most consistency because it removes the

ping-pong packet exchange that otherwise occurs during the handover, reducing the costs of
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collision rates and AP access times. Figure 7.5b illustrates the results when OLSR is used

instead of AODV. Here, the E-FMIP experiences the least latency increase at about 15ms,

compared to the proposed and P-CSF methods that experience a 15ms and 20ms increase,

respectively. Despite maintaining the highest latency, E-FMIP is least affected by OLSR,

since it is independent of network topology and is thus unaffected by the additional topo-

logical complexity and packet forwarding in OLSR. In contrast, Context P-CSF’s latency

performance is greatly affected because its adjusted IP topology in conjunction with OLSR

requires higher overhead and information exchange for IMS transitions. The IMS must of-

ten track the vehicle through multiple nodes. The proposed method does not suffer from IP

and topological complexity, but still experiences performance reduction due to the added

prediction error from OLSR. This is opposite to the GPSR results in Figure 7.5c, where the

results are closer to AODV in performance consistency with latencies lower than OLSR.

Both AODV and GPSR are reactionary protocols, but GPSR’s use of GPS measurements

instead of sequence numbers functions results in slightly reduced performance. For the

predictive method, a slower increase in latency is observed between 300 − 400 vehicles,

where the benefits of the improved prediction accuracy within GPSR slows the effects of

AP saturation.

Due to increased overhead required for proactive hierarchical packet forwarding, traffic

performance costs are amplified when switching to OLSR, as shown in Figure 7.5b. Despite

maintaining the highest latency, E-FMIP is least affected by OLSR, since it is independent

of network topology and is thus unaffected by the additional topological complexity and

packet forwarding in OLSR. In contrast, Context P-CSF’s latency performance is greatly

affected because its adjusted IP topology in conjunction with OLSR requires higher over-

head and information exchange for IMS transitions. The IMS must often track the vehicle

through multiple nodes. The proposed method does not suffer from IP and topological

complexity, but still experiences performance reduction due to the added prediction er-

ror from OLSR. When then using GPSR, the results are closer to AODV in performance

consistency with latencies lower than OLSR, as shown in Figure 7.5c. Both AODV and

GPSR are reactionary protocols, but GPSR’s use of GPS measurements instead of sequence

numbers functions results in slightly reduced performance. For the predictive method, a



Chapter 7. Performance Evaluation 95

slower increase in latency is observed between 300-400 vehicles, where the benefits of the

improved prediction accuracy within GPSR slows the effects of AP saturation.
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(b) Latency versus vehicle density

Figure 7.6: FPMIP-PT and C-HMIP compared latency results

Figure 7.6 presents the latency performances for FPMIP-PT and C-HMIP in com-

parison with the proposed method. The averages from the different routing protocols and

road networks are illustrated in Figure 7.6a. Similar to the other comparison, the proposed

method consistently has the lowest latency average in all scenarios. With the higher accu-

racy, the occurrence of a predicted handover is frequent enough to lower the average latency

below the FPMIP-PT and C-HMIP results. This performance difference is amplified when

on the highway, where latency is lowered further for the proposed method and increased

for the other two methods. This is due to the predictability of the highway increasing the

accuracy of handover prediction, improving the early registration consistency. On the other

hand, the proposed method suffers the worst latency degradation in the highway/urban

road network and the OLSR routing protocol where prediction becomes more difficult. The

overlapping roads of the road network and the hierarchical routing of OLSR make it more

difficult to predict the next handover.

The second set of average latencies versus traffic density are averaged and observed

in Figure 7.6b. The proposed and C-HMIP methods are similarly affected by the density,

unlike FPMIP-PT, which begins to suffer much larger latencies as density increases. The

predictive handover and C-HMIP require minimal packet exchange during the actual han-
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dover since the context messages of the C-HMIP and the early registration of the predictive

handover allow removal of the discovery phase. Without discovery overhead, network loads

caused by increased traffic minimally affect the average handover latency. The FPMIP-PT

struggles due to the higher overhead it requires for vehicle tracking, making it difficult to

handle multiple vehicles conducting handovers at similar times.

Figures 7.7a, 7.7b, and 7.7c show the effects of traffic density on throughput using

AODV, OLSR, and GPSR, respectively. As expected, the throughput performance closely

mirrors the latency results but with smaller differences between methods. The proposed

method shows about a 10% gain in throughput over Context P-CSF. This smaller gain

is because handovers only make up a small portion of the total time a vehicle is receiv-

ing packets. It is also observed that throughput performance begins deteriorating at a

lower vehicle density than for latency. This results from the occurrence of packet collision

before saturation is reached, which only has a noticeable effect on throughput. Further

deterioration is observed in OLSR, as the additional overhead causes an increase in the

collision rate. The proposed method in GPSR again shows a similar performance difference

between 300− 400 vehicles, as is explained in the latency discussion.

The other set of throughput results is displayed in Figure 7.8. Figure 7.8a shows the

throughput versus traffic density, where similar performance patterns to the latency and

packet drop results are observed. A larger performance gap between the proposed method

and C-HMIP is observed because of the higher overhead required by C-HMIP between

handovers. In C-HMIP, context messages are exchanged at a regular rate, compared to

the proposed method, which only requires the exchange of the HMM values and the early

registration packet. Figure 7.8b shows the average throughput performances across routing

protocols and road scenarios. The one scenario where the proposed method has similar

performance to the C-HMIP method is when the OLSR protocol is being used on the

highway. The performance costs of the lower prediction accuracy caused by OLSR routing

is amplified by the higher vehicle speeds on the highway because of the latency caused

by a wrong prediction having a larger impact with the lower AP dwell times. C-HMIP’s

network awareness improves its handling of both speed and topological changes, allowing
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(a) Urban environment with AODV protocol
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(b) Urban environment with OLSR protocol
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(c) Urban environment with GPSR protocol

Figure 7.7: Throughput results versus vehicle density

it to maintain a closer performance.

The packet drop rates in Figure 7.9 show slightly greater variation in performance

than the throughput. Overall, the results show our proposed method reduces the average

packet drop rate by about 10% and reduces the packet drop increase caused by satu-

ration by about 55%. Before AP saturation is reached, the proposed method performs

more poorly than the E-FMIP and P-CSF, due to incorrect predictions producing greater

chances of packet loss regardless of vehicle density. The other methods benefit from the E-

FMIP establishing an early connection with the next AP to provide a smoother handover;

however, packet loss begins to increase for the E-FMIP and P-CSF at a much quicker pace

than the proposed method as saturation is reached. Once again, this is due to the higher

handover overhead of the E-FMIP and P-CSF methods.
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(a) Throughput versus vehicle densities
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Figure 7.8: FPMIP-PT and C-HMIP compared throughput results

Figure 7.9 illustrates the results of the average packet drop rate for individual vehicles.

The effect of traffic density on the average packet drop rate is displayed in Figure 7.9. At

lower vehicle densities, the proposed method has a higher packet drop rate than the other

two methods. This is due to the packets dropped from a wrong prediction, which occurs

independently of the vehicle density. As no current solution exists for preventing packet

drop due to a prediction error, packet drop rates will always be above zero. Both C-HMIP

and FPMIP-PT have added security to ensure fewer packets are dropped, which brings

packet drop rate to nearly zero at low densities. However, as traffic density increases, the

C-HMIP and FPMIP-PT packet drop rates rise at a faster pace due to packet overhead.

FPMIP-PT is the most affected due to its high overhead and a MAG’s inability to handle

a high rate of handovers. The C-HMIP conducting information exchanges before the

handover helps to lower its drop rate, but it still has a larger overhead than the predictive

method, causing it to have higher packet drop rates. Figure 7.11c compares the packet

drop averages between the three methods, where less variation is seen compared to the

latency results. The largest contributing factor to packet drop rates is the traffic density.

While the road network and routing protocol has some varying effect on the drop rate, the

performance pattern of Figure 7.9 is similar in all scenarios. Otherwise, the average packet

drop rates closely follow the latency results.

Figure 7.10 illustrates the results of the average packet drop rate for the FPMIP-PT
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Figure 7.9: Packet drop rate versus vehicle density

and C-HMIP methods. The effect of traffic density on the average packet drop rate is

displayed in Figure 7.10a. Similar to E-FMIP and Context P-CSF, both C-HMIP and

FPMIP-PT have added security to ensure fewer packets are dropped, which brings packet

drop rate to nearly zero at low densities. As traffic density increases, the C-HMIP and

FPMIP-PT packet drop rates rise at a faster pace due to packet overhead. FPMIP-PT is

the most affected due to its high overhead and a MAG’s inability to handle a high rate of

handovers. The C-HMIP conducting information exchanges before the handover helps to

lower its drop rate, but it still has a larger overhead than the predictive method, causing it

to have higher packet drop rates. Figure 7.10b compares the packet drop averages between

the three methods, where less variation is seen compared to the latency results. The largest

contributing factor to packet drop rates is the traffic density. While the road network and

routing protocol has some varying effect on the drop rate, the performance pattern of

Figure 7.10a is similar in all scenarios. Otherwise, the average packet drop rates closely

follow the latency results.

7.5.2 Highway and Urban/highway

The effects of traffic density is minimally altered between road environments, therefore

we compare only averages between the urban and highway scenarios to avoid redundancy.

Figures 7.11a, 7.11b, and 7.11c display average performances between the scenarios using
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(a) Packet drop rate versus vehicle density
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Figure 7.10: FPMIP-PT and C-HMIP compared packet drop results
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Figure 7.11: Performance averages across all environments
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latency, throughput, and packet drop rate, respectively. Within the highway environment,

the proposed method shows an average latency reduction of 5% compared to its urban per-

formance. This is due to the improved prediction accuracy reducing the handover latency.

This is unlike the other two methods, which both suffer about a 10% increase in latency due

the increased speeds making it difficult to complete their processes in time. The higher

frequency of handovers increases the additional costs of the added P-CSF and E-FMIP

packets, thus amplifying the performance degradation within the highway scenario. This

frequency cost is nullified for the proposed method due to the improved prediction accuracy.

For throughput and packet drop rate, all three methods suffer similar performance differ-

ences from urban to highway, which is expected, as performance costs from an increased

frequency of handovers is unavoidable. Bigger losses are seen for the proposed method and

P-CSF than for E-FMIP when using OLSR in the highway environment, as the problems

created by the hierarchical proactive routing are also amplified by the increased handover

frequency. Performance is still reduced when using GPSR, but less so. Although OLSR has

higher overhead issues, the reactionary routing of AODV and GPSR has a slower response

time, which has a large performance cost on the highway. In addition, GPSR’s movement

calculations are affected by higher rates of movement, thus resulting in worse performance

when using GPSR compared to AODV. The proposed method is affected slightly less with

GPSR than with other methods, due to the small improvement in prediction accuracy with

GPSR, further avoiding prediction error costs.

In consideration of the highway/urban scenario, the additional complexity has lit-

tle effect on E-FMIP and P-CSF because of their independence from the road network.

Both methods do not depend on knowing which direction the vehicle will move to next.

As expected, their performance falls in between the results from the highway and urban

scenarios due to the variation of vehicle speeds. The proposed method’s performance re-

duction is larger due to reduced prediction accuracy, as discussed in Section 7.4. This

reduced accuracy has a greater performance effect on the highway because wrong predic-

tions have higher costs when the dwell time is lower. Overall, the change in road scenarios

have larger performance effects on the predictive method. However, it still outperforms

the other methods in all scenarios, demonstrating its improved compatibility.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

The potential for vehicular networks calls for IP compatibility to provide additional ser-

vices. However, the mobile IP handover is an expensive process, with performance costs

too great for vehicular network implementation. Recent methods aimed to resolve the

handover issues suffer from the minimum requirements required, which is recognized to be

resolvable with a predictive handover. In this thesis, we proposed an HMM-KF predictive

handover which utilizes both movement projection and probability to attain higher han-

dover prediction accuracy and resolve the mobile IP issues. A Kalman filter and an online

HMM were modeled according to the variables available within a vehicular network. A

predictive handover protocol that uses the derived models was then introduced for con-

ducting the advanced handover and reducing network costs of a prediction error. The

proposed method was tested and analyzed in comparison with other recent methods using

simulated routing protocols and road networks taken from map data. Results gathered

from the simulations illustrate that our proposed KF-HMM method reduced prediction

error by about 70%, and reduced handover latency by about 40%.
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8.2 Future Work

This thesis has proposed a predictive mobile IP handover that shows significant improve-

ment to predicting handovers and network performance. For our future work, we plan

to extend upon and improve our predictive handover by exploring the following possible

research directions.

Prediction Timing An area to explore would be to also predict the timing of the han-

dover. This would prevent early registration from occurring too far in advance before

the handover occurs. In addition, timing prediction could be used to improve pre-

diction error detection by recognizing if the vehicle does not detect the predicted AP

within the given time frame.

Dynamic Threshold Calculation Our current threshold calculation includes only con-

sidering the overall prediction accuracy of the entire simulation. However, individual

AP environments vary greatly, and an encompassing threshold does not produce the

best accuracy for each AP. Therefore, having each AP dynamically calculate its own

threshold would improve overall accuracy.

Caching at Next AP Caching future IP packets at the vehicle’s predicted AP could

further improve performance. If the upcoming IP packets can be predicted, caching

them at the next AP would produce near-zero delay in the IP handover. For example,

if a vehicle is downloading a video, an algorithm could determine to have a section

of it cached at the predicted AP.

Addressing Inconsistencies Our method suffers from inconsistencies that reduce the

performance reliability. Especially in comparison to other methods, the predictive

handover suffers the largest inconsistencies due to the difficulty of accurately predict-

ing the next AP in advance. Providing a reliable handover is particularly important

for fast-moving vehicles, where the frequency of AP transitions largely increases the

possibility of handover failures.



Chapter 8. Conclusion and Future Work 104

Further Exploration of Hybrid Approaches Hybrid methods have shown the poten-

tial to resolve current mobile IP issues, as different methods are often complimen-

tary. However, there still are many possible combinations that have not been fully

explored. For example, our predictive method being utilized with HMIP, FMIP, or

PMIP methods. In methods that provide low latencies but high overhead, correctly

predicting some of them in advance could nullify the overhead issues.



APPENDICES

105



Appendix A

An Illustrative Example

(a) Incorrectly predicting turn due to
slightly higher turn probability

(b) Correctly predicting forward move-
ment by observing vehicle movement

(c) Movement projection incorrectly as-
suming straight movement

(d) Correctly predicting turn based on ve-
hicle slowing down

Figure A.1: Problematic scenarios (left) resolved by proposed prediction method (right)

The example scenarios in Figure A.1 are used to illustrate the proposed prediction’s
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solution to previous issues. Probability distributions commonly found within realistic road

environments show where previous prediction approaches perform poorly, and how the

proposed method is able to better predict in the given situation. By reducing the number

of problematic scenarios, the reliability and prediction accuracy of the proposed solution

is improved.

First, consider the example in Figure A.1a, where probability of moving to region 1, p1,

and moving to region 3, p3, are approximately equal, but with p1 being slightly higher. If

a probability-based algorithm is used, it will always predict region 1, and will be wrong

about 50% of the time. Without temporal data to consider, the probability-based approach

cannot further distinguish between region 1 and region 2, and thus its performance suffers.

If we also include a probability for region 2, p2, and assume p1 ≈ p2 ≈ p3 ≈
1

3
, prediction

accuracy is even worse. This problematic scenario is resolved with the proposed method’s

conjunction of temporal and probabilistic data, which increases the information used in

the prediction. As shown in Figure A.1b, the additional consideration of the vehicle’s

movement allows the method to distinguish the otherwise similar options. Observation of

the speed and acceleration of the vehicle will reveal when it intends to continue straight,

and predict accordingly.

Second, consider the example of Figure A.1c, which illustrates a problematic scenario

when only vehicle movement is the measure for determining the next region. If we assume

that very few vehicles continue straight to region 3, but report a projection of forward

movement, the movement-based approach will still predict region 3. This will result in a

very low accuracy close to zero. The lack of probability consideration results in significant

performance costs in situations with large turn probabilities and where the movement is

misleading of the vehicle’s intentions. However, as illustrated in Figure A.1d, our proposed

approach is not misled by this movement projection. With the learned probability dis-

tribution revealing a small p3 and the movement projection reporting the vehicle slowing

down, the proposed approach will accurately predict region 1. By example of these two

scenarios, it is shown that the performance degradation caused by previously problematic

scenarios is avoided.
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