
a-kTC: Integrating Topology Control into the Stack
Immanuel Schweizer, Ralf Zimmermann, Michael Stein, Max Mühlhäuser

Technische Universität Darmstadt, Telecooperation Lab
Email: schweizer@cs.tu-darmstadt.de

Abstract—Topology control for wireless sensor networks is a
thriving research field with no real-world adoption. This is partly
due to the fact that a large number of approaches is focused
on providing theoretical bounds. However, even more recent
practical approaches are not being implemented. Integrating
topology control with medium access control (MAC) and routing
into a standard communication stack seems to be a non-trivial
challenge. Some experts even doubt real-world efficiency gains.

In this paper, we present asynchronous kTC (a-kTC). It builds
upon the kTC topology control approach and integrates the
protocol into the standard Contiki communication stack. We
report up to 16% reduction in overall energy consumption in the
testbed for many-to-one and all-to-all communication. This is the
first topology control evaluation indicating real-world reductions
in total energy consumption.

Index Terms—topology control, wireless networks, communi-
cation stack, testbed

I. INTRODUCTION

Topology control in wireless networks does – in theory –
promise energy savings through a decrease in transmission
range. In wireless sensor networks (WSNs) small and battery-
constrained nodes coordinate to provide a common service.
One would assume ample deployments with and implemen-
tations of topology control. However, while, e.g., energy-
efficient medium access control (MAC) and routing protocols
are standard components, which are added to the relevant
operating systems, topology control has remained a largely
theoretical endeavor.

Nonetheless, topology control has been a thriving research
topic with a multitude of algorithms proposed in the past [1].
Most early approaches to topology control build geometric
structures with certain graph properties, like planarity and
bounded node degree. However, even though all approaches
promise energy-efficient and beneficial topologies, there is no
real-world adoption. A reason for this is that most topology
control algorithms rely on unrealistic assumptions. Conse-
quently, a considerable amount of researchers even argue that
topology control provides no real-world advantages.

This perception has not changed with more practical ap-
proaches like XTC [2] and kTC [3]. While most protocols
have a proven performance record in simulation [4], the leap
into real-world networks has been infeasible so far. To the best
of our knowledge there is no study showing any energy savings
integrating topology control in the communication stack, i.e.,
with state of the art routing and medium access control.

This paper presents asynchronous kTC (a-kTC), which
builds upon our earlier work, kTC [5]. a-kTC is implemented
on Contiki and integrates with ContikiMAC [6] and the

Rime communication stack. a-kTC, compared to kTC, further
reduces overhead by reducing the amount of broadcasted
message types to one, thus enabling piggybacking on any
standard discovery protocol. a-kTC also drops the assump-
tion of network synchronization to work with any real-world
deployment.

We evaluated a-kTC in the testbed based on two different
application scenarios: (i) wireless mesh network with a many-
to-many and (ii) wireless sensor networks with a many-to-
one communication pattern. Overall, we report average energy
savings of up to 16% per node, with a small decrease in packet
reception rates. These energy savings are in addition to the
already energy-efficient Contiki communication stack. This is
the first study able to show significant overall energy saving
with topology control integrated into the communication stack.

II. ASYNCHRONOUS KTC (A-KTC)

kTC [3] is a practical topology control algorithm. It is able to
deal with link inconsistencies, works with low overhead and is
able to produce stable and efficient topologies. Our simulations
in [3] illustrate the advantage of kTC against other state-of-
the-art approaches. However, kTC has one main shortcoming:
It requires time synchronization for the first two broadcasts.

The time synchronization requirement limits adaptation and
integration into existing communication stacks. Hence, this
paper contributes asynchronous kTC (a-kTC). a-kTC removes
the need for time synchronization while retaining the perfor-
mance of kTC. Why is synchronization required for kTC? kTC
requires a complete and consistent view of the 2-hop neigh-
borhood for any local decision. With kTC the synchronization
is required to ensure a consistent state among all nodes when
the local decision (Round 3) is taken. However, with some
adaptations we can remove the consistency constraint. If we
can then guarantee connectivity and even convergence against
the kTC topology over time, we can drop the synchronization
requirement and, thus, work in real-world deployments.

In kTC, different messages are exchanged in synchronized
rounds to build a consistent view of the 2-hop neighborhood.
In a-kTC only one message, the ONEHOPMESSAGE (OHM)
is sent periodically. Each node will store information about
1-hop and 2-hop neighbors and their respective edge weights
into a neighbor table N . A node will execute three methods,
which are as follows:
SEND ONEHOPMESSAGE Each node u will periodically
extract a subset N1 from N . This subset contains all 1-
hop neighbors of u and their edge weight to u. N1 is then
broadcasted as a OHM to all 1-hop neighbors. This broadcast

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 623

is sent using the maximal transmission power setting of a given
node, i.e., it will always reach all possible physical neighbors.
RECEIVE ONEHOPMESSAGE For each received OHM a
node will update the neighbor set N . Let s be the sender of
the message and u the receiver. u will measure the link quality
as edge weight w(s, u), e.g., using the RSSI. If s ∈ N then
u will update the edge weight in N with w(s, u) with an
aggregate function (e.g., average, min, max, etc.). Otherwise
it will add s and w(s, u) to N . All other vertices and edge
weights, which are contained in the OHM, are either updated
or added accordingly.
UPDATE TOPOLOGY Update topology is also executed
periodically by each node u. The method will copy N into N ′

and then check N ′ for triangles. Triangles are three vertices in
N ′, which are fully connected. The longest edge in the triangle
is removed from N ′, if it is adjacent to u and k times longer
than the shortest edge. u will then check all direct neighbors in
N ′ for the neighbor b with the highest edge weight (the lowest
link quality). u can reduce the transmission power such that b
is still connected.

As stated above, we can no longer guarantee that UPDATE
TOPOLOGY is executed on the complete 2-hop neighborhood.
This might impair the performance as some links might not be
removed, but it cannot lead to disconnects. a-kTC will remove
either the same or less links than kTC. As a-kTC collects more
information over time, a-kTC will gradually converge against
kTC. We will now formalize this convergence.

Convergence of a-kTC: a-kTC applies the same rules as
kTC. However, it might do so using an incomplete view of
the 2-hop neighborhood. We will now provide some results on
convergence of a-kTC to kTC. For this section the following
assumptions hold: First, a connected, symmetric, and static1

input topology G is given. G has m edges and n vertices.
Messages are transmitted in a finite time t < ∆t and are
delivered with a probability p > 0. kTC is executed once on
G with no message loss (p = 1). The output is GkTC . a-kTC
is also executed on G. Starting at time t = 0, each node
executing a-kTC periodically sends ONEHOPMESSAGES
(OHM) and updates the local topology. Ga−kTCt

is the output
topology for time t ≥ 0.

We observe the following: After all n nodes have received
at least one OHM per neighbor, each node has a complete
view of the 1-hop neighborhood. Let us denote the time all
nodes have at least received one OHM with t1. If all nodes
have received at least another OHM from each neighbor after
t1, each node is aware of the complete 2-hop neighborhood.
As akTC applies the same rule as kTC and given the static
topology assumption, having acquired the complete 2-hop
neighborhood results in the same edges being removed.

The following is immediately obvious:

Lemma 1. ∀ t : Ga−kTCt
⊆ GkTC .

Even under message loss (0 < p < 1) on one or more links,

1This includes no node failures and links are not changing with regard to
delivery rate and weight as utilized by (a-)kTC

we can prove the following result:

Theorem 1. limt→∞ Ga−kTCt
= GkTC .

Proof: To prove the theorem it suffices to show that their
are two distinct times t1 and t2, where all OHM messages
have been received. Distinct means that the time difference
t2−t1 is large enough such that each node can execute SEND
ONEHOPMESSAGE at least two times, i.e., send at least two
OHM messages. Let us denote the minimum time required for
distinction with t̃.

Let t̂1 denote the time all nodes have sent their first OHM.
We can now pick an arbitrary time ti > t̂1 + ∆t. The
probability for the last m messages (one last message per link)
to be received is pall = p1 ∗ p2 ∗ ... ∗ pm, where pi denotes
the delivery rate per link. Note that 0 < pall < 1, since all
pi > 0 and at least one pi < 1. Let us pick a second time
ti+1 = ti + t̃. Again, the probability for all m messages to be
received is pall.

Now, ti and ti+1 are independent identically distributed
Bernoulli trials and the outcome is either 1 (all nodes have
received the last OHM) or 0 (at least one node has not
received the last OHM) with probability pall and 1− pall = q
respectively. At any time t we can conduct up to n such trials
(ti to ti+n). The total probability P of two or more trials
yielding 1 is given as P = 1 − (1 − pall)n − n ∗ pall ∗ (1 −
pall)

n−1. Since limt→∞ n → ∞, we now need to prove that
limn→∞ P = 1 − qn − n ∗ pall ∗ qn−1 = 1. Observe that
limn→∞ qn = 0 and limn→∞ n ∗ pall ∗ qn−1 = 0, thus, the
proof is complete.

This concludes the proof on convergence. a-kTC allows for
an asynchronous execution on each node while converging
against kTC. Also, since there is only one message type
remaining, this information can be piggybacked onto any given
discovery protocol. This further reduces overhead and makes
the protocol more agile. The update period can be chosen by
each node based on the volatility of its neighborhood.

III. EVALUATION

We have implemented a-kTC for the well renowned Contiki
operating system2, and deployed the implementation in a WSN
testbed. To evaluate the practicality of a-kTC, we report results
for two different scenarios, wireless mesh and wireless sensor
networks, with two distinct communication patterns, all-to-all
and many-to-one, respectively.

A. Testbed Setup

We used the Piloty site of the TUDµNet testbed [7] in
Darmstadt to evaluate a-kTC. 20 TelosB-compatible nodes
were deployed over 8 rooms on a single floor. The nodes
are equipped with a CC2420 radio [8] for 802.15.4 compliant
wireless communication. The location of each node is dis-
played in Figure 1. In the many-to-one scenario, all sampling
nodes (hexagonal) are transmitting their data to the base station
(triangle).

2ContikiOS 2.5 was used

624

0

50.000

100.000

150.000

200.000

250.000

9 10 11 13 14 15 16 17 19 20 21 23 25 26 27 28 30 31 32

send

receive

lpm

cpu

(a) Without a-kTC

0

50.000

100.000

150.000

200.000

250.000

9 10 11 13 14 15 16 17 19 20 21 23 25 26 27 28 30 31 32

send

receive

lpm

cpu

(b) a-kTC with k = 1.41

Fig. 2: Energy consumption per node (Wireless Mesh Network)

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

9 10 11 13 14 15 16 17 19 20 21 23 25 26 27 28 30 31 32

send

receive

lpm

cpu

(a) Without a-kTC

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

9 10 11 13 14 15 16 17 19 20 21 23 25 26 27 28 30 31 32

send

receive

lpm

cpu

(b) a-kTC with k = 1.41

Fig. 3: Energy consumption per node (Wireless Sensor Network)

Fig. 1: Placement of nodes in the TUDµNet testbed

To implement a-kTC, we decided to use Rime [9] as com-
munication stack. Rime is the default communication stack of
ContikiOS. We used ContikiMAC [6] as MAC Layer.

In the TUDµNet testbed each node is connected to a
power outlet. Hence, it is not possible to measure energy con-
sumption directly. To this end, Contiki provides the Energest
framework [10] to evaluate the energy-efficiency of network
protocols. The Energest framework keeps track of the time (in
ticks) different system components are used by ContikiOS.
Based on this information, we are able to compute the energy
consumption for each node individually.

As explained before, topology control saves energy by
reducing the transmission range. For our implementation of

a-kTC, we use the Received Signal Strength Indicator (RSSI)
as edge weight. RSSI offers a good indicator of link quality
and can be read from the transceiver immediately after a
transmission is received. The challenge is to set the power
just high enough to reach the farthest neighbor based on the
measured RSSI value. We performed a thorough measurement
study to decide on this mapping manually. This also offered
a much better insight into the testbed. Next, we report on the
result of our deployment for both use cases.

B. Results

As mentioned before, we considered two scenarios: The
first scenario is a Wireless Mesh Network, and the second
scenario is a Wireless Sensor Network. Both scenarios offer
distinct communication patterns. In wireless mesh networks,
we study all-to-all communication, where each node can pos-
sibly transmit to any other node. In wireless sensor networks,
we study many-to-one communication, where each node will
transmit packets to a common base station. Our evaluation
is concerned with the reduction in total energy consumption
given topology control. Thus, we measured the total energy
consumption per node (in mWs). This includes consumption
of the three RF transceiver modes, sending, receiving, and low
power listening, and the consumption due to the CPU. We
also report the delivery rate to evaluate the effect of reduced
transceiver range.

625

1) Wireless Mesh Network: Wireless mesh networks enable
communication between arbitrary wireless nodes. They are,
for example, used in disaster response if other means of
communication fail. Here, a given node might communicate
with any other node. Each node will wait a given period of
time to choose a receiver uniformly at random. A predefined
payload is then sent to this random receiver.

Three runs, each with a duration of 4 hours, have been
conducted. Approximately every 30 minutes, each node sends
the a-kTC message and updates the topology accordingly. The
total energy consumption per node is given in Figure 2.

The configuration without a-kTC yields an average energy
consumption per node of 194, 351.05mWs. With a-kTC the
energy consumption per node is reduced to 169, 383.3mWs
on average. A total reduction of 12.85% over all runs. Since
we use a state of the art communication stack these energy
savings are additional savings realized by the topology control
applied here. The results are summarized in Table I.

cpu lpm receive send total delivery rate

without a-kTC 34,196.89 17,933.84 91,114.74 51,405.58 194,351.05 72, 89%
a-kTC (k=1.41) (1) 34,774 15,742 78,265.26 42,132.79 170,914.05 68, 57%
a-kTC (k=1.41) (2) 34,830.63 15,718.21 74,096.84 41,331 165,976.68 63, 15%
a-kTC (k=1.41) (3) 35,067.89 15,697.16 78,265.26 42,132.79 170,914.05 68, 32%

TABLE I: Metrics as average per user

The reduced transmission range seems to have an only
marginal effect on message delivery rates. Without a-kTC,
4, 482 messages out of 6, 149 messages total have been
delivered. This results in 72.89% delivery rate. The delivery
rates with a-kTC range from 63.15% to 68.57%.

In summary, delivery rates are low for this testbed no
matter if a-kTC is applied. Further studies with different MAC
protocols might yield better rates. The insignificant drop in
delivery rates is offset by energy savings of over 12%. The
savings are additional to the efficient communication stack
and are higher than expected.

2) Wireless Sensor Networks: In wireless sensor networks,
especially in urban environments, periodic reporting is the
most frequent application. All nodes report their environmental
measurements to a given base station. In this scenario, all
nodes will wait a given period of time to send a predefined
payload to node 25. Node 25 was chosen as base station as it
is located at the center of the testbed.

Again, three runs, with a duration of 4 hours each, have
been conducted. Each 30 minutes, a node runs a-kTC. The
total energy consumption per node is given in Figure 3.

Based on this configuration, the run without a-kTC yields
an average energy consumption per node of 196, 297.58mWs.
With a-kTC the energy consumption per node is reduced to
164, 074.7mWs on average. As illustrated, node 25 has a
higher energy consumption as it was set as the base station.
Overall we obtain a total reduction of 16.42%. Again, this is
additional to the energy savings already achieved by MAC and
routing. The results are summarized in Table II.

In this run the reduced transmission range seems to have
a marginally higher effect on message delivery. Without a-
kTC, 3, 807 messages out of 5, 752 messages total have been

cpu lpm receive send total delivery rate

without a-kTC 36,544.84 17,617.95 91,509.47 50,625.32 196,297.58 66, 19%
a-kTC (k=1.41) (1) 34,981 15,732.58 76,026.32 41,302.16 168,033.05 56, 17%
a-kTC (k=1.41) (2) 34,208.79 15,755.53 74,848.42 39,579.74 164,392.5 64, 58%
a-kTC (k=1.41) (3) 34,088.05 15,754.53 71,652.63 38,303.42 159,798.6 65, 06%

TABLE II: Metrics as average per user

delivered. This results in 66.19% delivery rate. With a-kTC,
the delivery rate ranges from 56.17% to 65.06%.

The energy saved in both runs was higher than 12%. An
exceptional result considering that the nodes already save
energy using very energy efficient MAC and routing protocols.

IV. CONCLUSION

In summary, this is the first paper to report significant energy
savings with applied topology control. This is mainly due to
our integration of a-kTC with the standard communication
stack, especially the MAC protocol. Given this integration,
we could evaluate the total energy consumption for two real-
world application scenarios, wireless sensor and wireless mesh
networks. We could show energy savings of 12% for all-to-all
communication (wireless mesh networks) and up top 16% for
many-to-one (wireless sensor networks).

Based upon this work, we want to study a-kTC on different
testbeds and integrate it into different communication stacks
to further evaluate the effect of topology control, especially
on packet reception rate.

ACKNOWLEDGMENT

This work has been funded by the German Research Foun-
dation (DFG) as part of project A01 within the Collaborative
Research Center (CRC) 1053 – MAKI.

REFERENCES

[1] Y. Wang, “Topology Control for Wireless Sensor Networks,” in Wireless
Sensor Networks and Applications, ser. Signals and Communication
Technology. Springer US, 2008, ch. 5, pp. 113 – 147.

[2] R. Wattenhofer and A. Zollinger, “XTC: a practical topology control
algorithm for ad-hoc networks,” in 18th International Parallel and
Distributed Processing Symposium, 2004.

[3] I. Schweizer, M. Wagner, D. Bradler, M. Mühlhäuser, and T. Strufe,
“kTC - Robust and Adaptive Wireless Ad-hoc Topology Control,” in
IEEE ICCCN, 2012.

[4] F. Fuchs, M. Völker, and D. Wagner, “Simulation-based analysis of
topology control algorithms for wireless ad hoc networks,” in Design
and Analysis of Algorithms. Springer, 2012.

[5] I. Schweizer, R. Bärtl, A. Schulz, F. Probst, and M. Mühlhäuser,
“NoiseMap - Real-time participatory noise maps,” in Second Interna-
tional Workshop on Sensing Applications on Mobile Phones, 2011.

[6] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, and
N. Finne, “The announcement layer: Beacon coordination for the sen-
sornet stack,” in Wireless Sensor Networks, 2011, pp. 211–226.

[7] P. E. Guerrero, A. P. Buchmann, A. Khelil, and K. Van Laerhoven,
“TUDµNet, a Metropolitan-Scale Federation of Wireless Sensor Net-
work Testbeds,” in 9th European Conference on Wireless Sensor Net-
works, Feb. 2012.

[8] A. S. Chipcon, “CC2420 datasheet.”
[9] A. Dunkels, “Rime - a lightweight layered communication stack for

sensor networks,” in European Conference on Wireless Sensor Networks
(EWSN), 2007.

[10] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the 4th workshop
on Embedded networked sensors, 2007.

626

