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Abstract—Today’s cloud storage services must offer storage
reliability and fast data retrieval for large amount of data
without sacrificing storage cost. We present SEARS, a cloud-
based storage system which integrates erasure coding and data
deduplication to support efficient and reliable data storage with
fast user response time. With proper association of data to storage
server clusters, SEARS provides flexible mixing of different
configurations, suitable for real-time and archival applications.

Our prototype implementation of SEARS over Amazon EC2
shows that it outperforms existing storage systems in storage
efficiency and file retrieval time. For 3 MB files, SEARS delivers
retrieval time of 2.5 s compared to 7 s with existing systems.
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I. INTRODUCTION

Data from connected devices today are flowing into data

centers with an unprecedented rate. More than half of the

companies in the survey of global enterprise market currently

store at least 100 TB of data and one-third expect their data

to double in the next two to three years [3].

The cloud infrastructure enables low-cost and scalable file

storage that provides global file access. Any file system must

offer reliable storage whether through file duplication that

requires more space but less computation complexity such as

GFS [8] or through erasure coding that requires less space but

more computation complexity such as RAID systems [5]. At

the same time, raw data exhibit redundancy across files. This

redundancy can be explored to reduce storage cost mainly for

backup systems [11], [14], [17]. Using these techniques, data

are divided into chunks and unique data chunks are stored once

and referenced multiple times. Different from archival systems,

cloud-based storage systems are required to support interactive

user access with reasonable response time.

We propose a cloud-based file system named SEARS-Space

Efficient And Reliable Storage system that exploits the dedupli-

cation technique to reduce storage and traffic cost as well as the

erasure coding technique to increase both the data reliability

and the file retrieval speed. Given a file, there are different

ways to associate data chunks with available storage servers

and retrieve data. Archive-based backup systems mainly care

about storage efficiency and reliability. However, interactive

cloud storage systems also care about file retrieval speed. To

meet different application needs, we propose two data-server

binding schemes with different performance goals: (1) faster

file access speed or (2) higher storage efficiency.

We aim for SEARS to serve as a reference design for a

flexible cloud storage framework that can support customized

level of deduplication, modes of coding and server binding,

and the mix of different modes. Its flexibility handles different

application scenarios, from batch-centric archival to real-time.

Related Work: Recent studies have reported that erasure

coding can guarantee the same level of content accessibility

with lower storage than replication [9], [10], [16].

File deduplication relies dividing files into chunks and elim-

inating the need to store or transfer identical chunks multiple

times. LBFS [14] introduced content based chunking with

Rabin fingerprints [15]. Various work improves on the idea by

compressing data chunks [17], comparing chunks belonging to

highly related files [11], switching between large and small

chunk sizes to discover more overlapping regions [13].

The tradeoff between increasing data reliability and dedupli-

cating data poses great challenge to the design of a reliable and

space efficient storage system. The archival storage system R-

ADMAD [12] combines the content-based chunk deduplication

with erasure coding. However, it uses large and fixed-size data

chunk containers, which reduces deduplication efficiency and

makes it ill-suited for delay-sensitive applications.

II. SEARS ARCHITECTURE
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Fig. 1. SEARS system overview. One end device (laptop) uploads a file where
the file is chunked at end device and the meta-data for the file is uploaded
to the switching node for the user. Unique chunks for the file missing from
SEARS are sent to and coded at the coding node which is one of the server
nodes in the cluster storing code pieces of the chunks for the file. Another
end device (smart phone) downloads a file where code pieces of each unique
chunk are retrieved from multiple storage nodes in SEARS concurrently.

Figure 1 shows the SEARS system architecture consisting

of storage server nodes operating in a data center. Users use

SEARS as any file system by storing (or uploading) files to

server nodes; and retrieving (or downloading) files from server

nodes. Each user accesses SEARS through a designated storage

server node we call switching node for the user and all the

user’s files. Each user end device is configured with host name

or the IP address of the the user’s switching node since it
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is the first node to reach SEARS. We consider a total of N
nodes in SEARS divided into non-overlapping clusters of size

n. The reason of forming cluster of nodes is due to the need

of storing coded chunks at multiple nodes for reliability. We

assign each cluster with a unique cluster id. We focus on

the single data center configuration in this work. However, the

concept of SEARS can be naturally extended to multiple data

centers.

Content-based Chunking Operation: Before storing data,

SEARS first removes redundant content. Files are divided

into chunks and unique chunks are stored only once. We use

content-based chunking to better capture redundancy [7]. Using

smaller chunk size can result in more duplicate chunks thus

achieving higher levels of deduplication. However, it also re-

sults in larger number of chunks and therefore larger overhead

in meta-data management and reduced system performance.

Furthermore, disk operations benefit from continuous data

access, while smaller chunks lead to less efficient random

access pattern. To balance the tradeoff, we choose average

chunk size of 4 KB [6] [14] and enforce the minimum and

maximum chunk sizes to be 1 KB and 8 KB respectively. For

each chunk, we apply the 160-bit SHA-1 hash function [6] to

generate a fixed-size hash value to serve as the chunk id.

File Storage Operation: Ahead of data storage, SEARS

explores both intra-file and inter-file content redundancy and

eliminates all redundant content. In the first step, SEARS

eliminates intra-file redundancy as follows. Before a user file

is uploaded into SEARS, the end device applies content-based

chunking to the file, and generates chunk id for each chunk, and

produces file chunk-meta-data for the file, which is composed

of a sequence of entries for all chunks in the file and each

entry consists of a chunk id and a cluster id specifying the

cluster that stores the chunk. The file chunk-meta-data is stored

at (1) the user’s end device and uploaded to (2) the SEARS

switching node serving the user. After this process, only non-

repeating chunks will be kept so that intra-file redundancy can

be eliminated.

A file in SEARS is represented by its file chunk-meta-

data. Each unique chunk is stored as n code pieces in an n-

node cluster. The user’s switching node keeps a chunk-meta-
data-table that stores one file chunk-meta-data for each file

belonging to the user. As a chunk can appear in multiple files,

we define the reference count for a chunk as the number of

files in SEARS that the chunk appears in. The chunk reference

count is updated as SEARS evolves with file addition, removal

and update.

In the second step, SEARS eliminates inter-file redundancy

across the set of nodes responsible for storing the file as

follows. The user’s switching node in SEARS removes chunk

ids already in the set of nodes and forms a list of ids of missing

chunks for the end device to upload directly to the set of storage

nodes. This means only unique chunks that are not present in

the set of SEARS nodes are uploaded from the user’s end

device. As a result, bandwidth between the user’s end device

and SEARS is only required to transfer non-redundant data.

File Retrieval Operation: Whenever an end device retrieves

a file from SEARS for the first time, the requesting end device

does not have the file chunk-meta-data and the retrieval request

is sent to the user’s switching node. The switching node first

sends back the file chunk-meta-data. The end device then

checks the list of chunk ids in the file chunk-meta-data against

the list of chunk ids already in its local storage, and determines

the missing chunks needed to construct the file. The end device

then only requests the missing chunks from SEARS.

File Chunk-Meta-Data Synchronization Operation: In the

case when the end device and its responsible switching node

in SEARScloud each has a version of the file chunk-meta-

data, synchronization is required to resolve any conflicts. We

follow the policy for the copy with the latest time-stamp to

overwrite the one with an earlier time-stamp. We assume clock

synchronization between the user’s end device and SEARS is

provided with mechanisms such as NTP [4].

Erasure Coding and Decoding Process: In SEARS, each

unique chunk first reaches a node in the cluster that stores the

code pieces of the chunk, we call coding node. The coding

node then divides the chunk into k equal-sized pieces and codes

it into n code pieces through (n, k) erasure coding with n ≥ k.

These n code pieces are associated with a cluster of n storage

nodes and exactly one piece is stored in one node in the cluster.

Note that any node in the cluster can serve as the coding node

for a chunk to be stored at the cluster.

Whenever the user’s end device requests a missing chunk in

a file based on the file chunk-meta-data, it issues n concurrent

requests to the n nodes in the cluster identified by the cluster

id and as soon as k code pieces are received, it reconstructs the

chunk and terminates any ongoing connection to the remaining

n − k nodes. This design benefits from parallel download of

data to reduce SEARS response time as we show in Section IV.

III. SERVER BINDING SCHEMES
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Fig. 2. Illustration of the binding schemes.

Consider SEARS nodes grouped into M clusters of size

n. A file to be stored in SEARS is divided into chunks and

each chunk is coded into n code pieces to be stored in a

cluster. A key design question for SEARS is to determine

how to associate data to clusters. We call this the binding
process. Different applications have different requirements for

cloud-based storage services, including fast file retrieval, small

space usage in order to reduce storage cost. We design bind-

ing schemes across the spectrum of application requirements

namely Chunk Level Binding and User Level Binding with

examples in Figure 2(a) and 2(b) respectively.
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Chunk Level Binding (CLB): For archival applications that

runs in the background and demands storage efficiency, the

binding process must offer system wide data deduplication. The

Chunk Level Binding (CLB) scheme selects the best cluster

to store each chunk. CLB is ideal for large media content

repository like YouTube and NetFlix where users share the

same or similar content. Each unique chunk entering SEARS

is assigned to a cluster such that storage space of all clusters

are evenly consumed as time passes. Note that all storage and

retrieval requests must pass through the user’s switching node.

To distribute load evenly to clusters, we use a greedy algorithm

to assign a chunk to the cluster with the largest amount of free

storage space.

User Level Binding (ULB): For interactive applications

with emphasis on promptness of file retrieval, the binding

scheme must offer simplicity in chunk retrieval. The User
Level Binding (ULB) scheme binds each user with a fixed

cluster and simplifies file retrieval process as all chunks of

this user are stored in the same cluster. Initially each user is

assigned a fixed cluster. When storage capacity is exhausted

at the cluster assigned for the user, a new cluster is assigned

to future files from the user. This is equivalent to assigning

a subset of user files to a separate user and only intra-set

redundancy within the subset of files can be captured. ULB

incurs at most one extra cluster id for a subset of user files,

offers simple retrieval process but sacrifices space efficiency,

as the chunks stored in different clusters belonging to different

users (or even the same user) can not be exploited globally

during the deduplication process.

The two binding schemes described so far offer different

tradeoffs in space saving and file retrieval response time.

However, they are just examples to showcase the flexibility

in the design of SEARS . We design SEARS to be a powerful

platform that use both deduplication and erasure coding in the

best combination to fit various application needs.

IV. PERFORMANCE EVALUATION

We evaluate the performance of our prototype implementa-

tion of SEARS over Amazon EC2 [1]. We generate a data set

reflecting real-time data access of 10 users during a span of 3

weeks in 2014 containing three parts. (1) User Personal Data

of 1.6 TB consisting of various common types of files from 10

users; (2) System Log of 132 GB consisting of major system

log files (e.g. files under /var/log directory) of Amazon EC2

Ubuntu server machines recorded every hour; and (3) System

Backup Image of 3.5 TB consisting of the complete backup

image files for Linux systems created once a day.

We evaluate SEARS in terms of storage usage with dedu-

plication ratio and time performance with the average file

retrieval time. Deduplication Ratio is defined as the ratio of

the total size of original files over the total space consumption

for SEARS including the indexing overhead for storing them.

This metric captures the combined effect of deduplication

(reduce space usage) and erasure coding (increase space usage).

Average File Retrieval Time is defined as the average time

duration from the moment the user issues a request for a

file to the moment the file is ready at end device. This

involves downloading and decoding of all necessary chunks

and reconstruction of the file from all chunks.

We employ 10 Amazon EC2 instances as driver machines

to generate the log files, system backup images in addition to

making users upload their own personal data. We fix cluster

size at n = 10 thus use 10 EC2 instances for each cluster. We

use E = 20 clusters.

We compare SEARS with the existing storage system R-

ADMAD [12] which packs variable-length data chunks into

fixed size objects of 8 MB which are encoded with erasure code

and distributed among storage nodes called redundancy groups.

To fairly evaluate R-ADMAD with SEARS, we implement

it on EC2 cloud, and follow the same chunking process as

SEARSas specified in Section II for all files in our data set

to generate chunks of 4 KB average size. Furthermore, the

same set of nodes are used for the SEARS cluster and the

R-ADMAD redundancy group.

Effect of k/n Ratio: The ratio k/n has profound perfor-

mance impact on any scheme using erasure coding. To illustrate

this, we fix n at 10 and vary k for the data set. As each chunk

requires n/k times as much space as before the coding process,

deduplication ratio increases with k as shown in Figure 3(a).

Increases of k also lead to larger numbers of code pieces

with smaller sizes for each chunk. This implies more parallel

retrieval processes, each with smaller bandwidth requirement.

With smaller k (k < 5), both factors contribute to reduced

chunk and file retrieval time. However, after k increase beyond

a threshold, k = 5 for the data sets, the larger number of

concurrent retrieval processes and the decoding process with

more code pieces become the bottleneck and increase retrieval

time as shown in Figure 3(b). CLB exploits redundancy across

all chunks in all files and achieves a higher deduplication

ratio. However, the process of searching for chunks across all

clusters leads to the higher file retrieval time. On the other

hand, ULB can only exploit intra-user redundancy which leads

to a lower redundancy ratio. However all chunks in a file are

easily retrieved from one cluster, which leads to the faster file

retrieval time. We use k = 5 and n = 10 from now on.

Deduplication Ratio: To see how the ratio changes as data

volume evolves over time, we plot the cumulative deduplication

ratio on the 5th, 10th, 15th, and 21st day in Figure 3(c).

The ratio improves for all schemes over time as data volume

increases, for more redundancy can be exploited. It also shows

deduplication ratio decreases in the order of CLB, R-ADMAD,

and ULB. R-ADMAD is essentially same as CLB in data

deduplication as it can exploit system wide redundancy just

as CLB. But R-ADMAD uses slightly more space than CLB

because of its indexing structure is more complex than CLB.

Time Performance: To examine interactive user experience,

we replay the request pattern captured in the user personal data

trace of our data set. We use 10 desktop machines residing

in the eastern region of the US. Each desktop replays the file

access trace for each of the 10 users. We report the file retrieval

time for files accessed during each hour of the day averaged

over 21 days over 10 users. To retrieve a file, the user’s end
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Fig. 3. (a) k/n effect on Dedup ratio; (b) k/n effect on retrieval time; (c) Dedup ratio; (d) file retrieval time

device directly requests data chunks from 10 nodes storing the

code pieces of each chunk in the three schemes. Figure 3(d)

presents file retrieval time in relation to user request load

averaged over each hour of the day over 21 days. Users’ data

request volume per hour in these figures reflect work activity

during a day, that is, light activity at night (0:00 midnight

to 8:00 am) and heavy and fluctuating activity for the rest

of the day. ULB offers the fastest and relatively flat retrieval

time because requests from the same user are handled by one

cluster and there are no multiple requests for the same data

chunk at the same time. CLB offers slower file retrieval than

ULB, and large fluctuation during the working hours closely

matching data request volume. This is because a unique chunk

is stored only once in the entire system, and multiple users

can request the same unique chunk at the same time, which

leads to congestion at the cluster hosting the chunk in demand.

R-ADMAD follows the data volume fluctuation during the day

but with larger retrieval time than SEARS.

To compare with a commercial system, we note that down-

loading 3 MB files from the same set of 10 desktops residing in

the eastern part of the US takes an average of 7 s from Amazon

EC2 service in us-east-1 region [2]. With ULB in SEARS, the

download time is 2.5 s throughout the day.

V. CONCLUSION AND FUTURE WORK

We describe the design and implementation of a space

efficient, data reliable and fast retrieving cloud-based storage

system SEARS which integrates data deduplication and erasure

coding. SEARS provides a flexible combination of various

binding schemes to associate server nodes with data to be

stored at different level based on application needs. Evaluation

over Amazon EC2 shows that SEARS outperforms related

systems with lower storage usage while ensuring fast and

reliable data access.

As future work, we plan on examining the location of cluster

nodes inside data centers to future improve data reliability

and reduce retrieval time. We are evaluating the system with

more data sets with additional metrics such as storage balance,

file upload time and file retrieval success rate. Various system

design parameters in SEARS and performance under flexible

configuration of SEARS with multiple binding schemes, chunk

size and erasure codes also need further investigation.
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