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Abstract—Software Defined Networking (SDN) offers flexibility
to program a network based on a set of network requirements.
Programming the networks using SDN is not completely straight-
forward because a programmer must deal with low level details.
To solve the problem, researchers proposed a set of network
programming languages that provide a set of high level abstrac-
tions to hide low level hardware details. Most of the proposed
languages provide abstractions related to packet processing and
flows, and still require a programmer to specify low-level match-
action fields to configure and monitor a network. Recently, in
an attempt to raise the level at which programmers work,
researchers have begun to investigate Intent-based, descriptive
northbound interfaces. The work is still in early stages, and
further investigation is required before intent-based systems will
be adopted by enterprise networks.

To help achieve the goal of moving to an intent-based design,
we propose an SDN-based network programming framework, the
Open Software Defined Framework (OSDF). OSDF provides a high
level Application Programming Interface (API) that can be used
by managers and network administrators to express network
requirements for applications and policies for multiple domains.
OSDF also provides a set of high level network operation
services that handle common network configuration, monitoring,
and Quality of Service (QoS) provisioning. OSDF is equipped
with a policy conflict management module to help a network
administrator detect and resolve policy conflicts. The paper
shows how OSDF can be used and explains application-based
policies. Finally, the paper reports the results of both testbed
measurements and simulations that are used to evaluate the
framework from multiple perspectives, including functionality
and performance.

I. INTRODUCTION

In recent years, Software Defined Networking (SDN) has
received attention from both academia and industry for the
design of network management systems. SDN provides the
ability to program networks directly by breaking the vertical
integration of control and data planes [1]. The separation of
control and data planes allows network switches to become
simple forwarding devices and gives us flexibility to control
and program them by implementing the control logic in a
centralized SDN controller using software called a Network
Operating System (NOS) [2]. In the current SDN paradigm,
SDN controllers compromises three key layers including data
plane, control plane, and application layers. Most of the SDN
controllers employ two Application Programming Interfaces
(APIs) called the Northbound and Southbound APIs. Network
applications use northbound APIs to communicate with the
controller, express network behaviors, define configuration
requirements, and program forwarding devices. Southbound

APIs define the communication protocols between the con-
troller and network devices. The OpenFlow protocol [3] de-
fines a well-known and especially prominent southbound API,
used by a SDN controller to update and insert flow rules that
specify associated actions to be performed for each of the
flows that pass through a given network device. Most of the
SDN controllers provide a simplified northbound API, such as
a RESTful API, that can be used to program network devices
by specifying the details of flow rules using JSON or XML
formats. With such an interface, a programmer must parse
JSON or XML formats to retrieve required information (e.g.,
network topology, statistics, and parameters) which can then
be used to program network devices. Although some SDN
controllers provide high level services to make the network
programming easier, a programmer still needs to deal with
low level flow rule details.

Although, there is no standard Northbound Interface (NBI)
for SDN controllers [4], [5], adopting an intent-based inter-
faces for SDN seems promising. An Intent NBI is independent
of a specific network technology, and uses application related
vocabulary and information. An Intent NBI provides abstrac-
tions that hide low level details of the network objects and
services, and can be used by users to express their intents
in a descriptive manner instead of a prescriptive manner. In
addition, an Intent NBI can be used to express expectations
regarding the service controller will deliver. Work has begun
on intent based NBIs, including the ONOS intent framework
[6] and NEMO [7]. However, further investigation of intent-
based NBIs is warranted. In this paper, we attempt to answer
some of the questions surrounding the intent-based approach,
including:

• How a policy conflict management module be integrated
with an intent based SDN programming framework to
resolve network configuration conflicts at the intent level?

• How can the flexibility of a reactive approach be incorpo-
rated into an intent based SDN programming framework?

• How can an intent-based language be designed and im-
plemented that allows managers to to express network
requirements for application and policies for multiple
domains?

This paper is an extension an earlier work-in-progress paper
[8]. The previous paper introduced the main modules of the
framework and reported preliminary simulation results. Our
main contributions in this paper are:
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• Adds new network operations to the framework to support
new services such as QoS provisioning and and an
alerting mechanism to log user unauthorized attempts.

• Adds policy conflict management module to detect policy
conflicts.

• Describes an implementation of typical SDN applications
that demonstrate our high-level policy language.

• Adds experimental testbed measurements as well as
additional simulations to assess the functionality and
performance of the framework.

The essence of the work consists of a policy-based net-
work programming framework called Open Software Defined
Framework (OSDF) that started with the following design
goals:

• Provide a high level API that allows managers to ex-
press network configuration requirements using applica-
tion based and domain specific network policies, and
allows them to write management applications without
worrying about low level details such as flow rule details,
network topology related information (e.g end to end
paths), etc.

• Define a set of high level network services that can
be invoked by management applications to configure
network switches and provide Quality of Service (QoS)
without knowing the details of the southbound API (e.g.,
OpenFlow or an alternative).

• Design and develop a framework that can run manage-
ment applications similar to the conventional operating
systems which run processes. A network management ap-
plication uses services provided by our framework similar
to a conventional process that uses services provided by
its operating system.

• Devise a hybrid approach which allows programmers to
specify network configuration requirements both proac-
tively by deriving configuration flow rules from high level
network policies and, reactively, by modifying flow rules
as flows and conditions change.

• Design and develop a policy conflict management sys-
tem to detect well known types of policy conflicts and
recommend potential conflict resolution solutions to the
managers.

The rest of the paper is organized as follows. Section II
presents an overview of OSDF architecture and explains its
key components in details. Section III explains application
based network policies that we use in our framework. Section
IV presents high level network operation services that our
framework supports. Section V introduces the Policy Conflict
Management module and its key services. Section VI explains
the experimental and simulation environments used in the
paper. Section VII presents our experimental and simulation
scenarios and measurements. We present the future work in
Section VIII. Section IX concludes the paper.

II. AN OVERVIEW OF OSDF ARCHITECTURE

Fig.1 illustrates the architecture of OSDF and explains its
key components.

Fig. 1. OSDF architecture

• High level network operation services: To configure and
monitor a network based on high level network policies
that a network administrator provides, we provide a set of
high level network operation services. Each service takes
the following steps to configure network switches based
on current active policies in the system:

1) First, each service reads the high level network
policies from a database of currently active policies
and filters them based on the type of service.

2) Second, each service uses the Policy Parser module
to parse filtered policies and generate network-wide
forwarding rules for incoming flows.

3) Finally, each service uses Flow Rule, Topology, Re-
gion and Configuration services to install generated
rules in appropriate network switches.

Each service uses a hybrid approach to create basic rules
proactively from the high level requirements that are
specified in the network policies and to extract low level
information reactively from incoming packets and use
the results to generate, install, and update flow rules.
Each network operation service includes the following
subcomponents:

– Packet Processor: This component is responsible for
parsing incoming packets reactively. That is, it reacts
to packets that reach the controller by extracting
low level match fields (e.g., IP addresses, MAC
addresses, ports, and protocol number). Reactively
processing packets allows a network administrator
to defer configuration and hide low level details



that are needed to configure and monitor a network.
Packet processors parse the current active policies,
which are stored in the policy database, and use
Traffic Selector Builder Service to generate a subset
of match fields for a flow based on the application
type and high level requirements for the type that
an administrator specifies in the network policies.
A Packet Processor service chooses an appropriate
action for each flow rule, based on the high level
operation. For example, in intra-site routing, the flow
rules associated with a given flow specify forwarding
packets to appropriate outgoing port in each switch.
For inter-site routing, rules may specify rewriting
the MAC address, VLAN tagging, encapsulation, or
other actions. As Fig.1 illustrates, we use two packet
processors to provide intra-domain and inter-domain
network operations, keeping the two logically sepa-
rate them which simplifies the code.

– Flow Rule Service: The Flow Rule Service is respon-
sible for generating and installing OpenFlow rules
in appropriate network switches. It uses the set of
match-action fields generated by the Traffic Selector
Builder Service.

– Topology Service: OSDF uses a Topology Service to
find and determine an appropriate path for incoming
flows based on high level network policies and the
interconnections among network switches. The Path
Selection Service uses the topology information that
Topology Service provides to determine an end to
end path according to requirements that an adminis-
trator provides in a network policy.

– Region Service: A region refers to a group of devices
located in a common physical (i.e., geographical) or
logical region. The Region Service provides infor-
mation about devices inside a region. The network
regions description parser uses the information that
regions service provide to distinguish intra and inter
domain traffic flows.

– Configuration Service: The Configuration Service
provides an interface which can be used to access
the items which are defined in a configuration file,
including both details of individual devices, their IDs
and locations, the IP prefixes used, the mapping of
IP prefixes to regions, and predefined items, such as
default gateways.

• Policy Store Module: The Policy Store module stores
and retrieves application-based network policies that an
administrator enters to the system. The module provides
a policy store management service which is used by high
level network operation services to read current active
policies in the system. In addition, an administrator can
list, update, and delete current network policies dynami-
cally at runtime.

• Policy Parser Module: The Policy Parser module is
responsible to analyze application-based policies and

incoming flows and derive a set of match fields that are
then used to generate a set of flow table rules. The module
includes of the following three subcomponents, which are
invoked by abstract operation services:

– Path Selection Service: This service is responsible to
provide a set of pre-defined algorithms for choosing
among a set of existing paths between two end
points (e.g., shortest path). A network programmer
can extend this module by specifying additional path
finding algorithms.

– Traffic Selector Builder: This service generates a set
of match fields based on application based policies
and incoming packets. A programmer can extend this
module by defining new types of applications and
specifying combinations of packet match fields for
each application.

– Network Regions Parser: The Network Region Parser
module uses information that the Region Service
provides, and parses incoming flows and categorizes
them based on the regions they span.

• Policy Conflicts Management Module: This module is
responsible for detecting well known conflicts between
the current active policies and providing potential high-
level solutions to the network administrator. The module
includes the following subcomponents:

– Policy Conflicts Detection Service: This service im-
plements a conflict detection algorithm, as explained
in subsection V-A.

– Policy Conflicts Recommender Service: This service
implements a policy conflict resolution algorithm
that suggests potential ways to resolve conflicts
among existing policies. Subsection V-B explains the
operation in detail.

We illustrate the packet processing and flow rule installation
steps in Fig.2.
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Fig. 2. OSDF packet processing and flow rule installation procedure

III. APPLICATION-BASED NETWORK POLICIES

An application-based network policy specifies high level
network requirements for a given application (type of packet).
The policies are used to configure and monitor network
devices. We divide all policies into two major categories: intra-
domain policies (inside a region or a site) and inter-domain
policies (among multiple regions or sites). An application
policy includes the following key items:



• Traffic Profile: A traffic profile that specifies high level
characteristics and requirements for an application, such
as an application name (e.g. WEB), the transport protocol
used (e.g TCP or UDP), and a traffic type (e.g. real
time vs best effort). The system provides a set of pre-
defined traffic profiles that support typical uses, such as
web, video, and voice traffic. A network administrator can
extend traffic profiles by introducing new traffic types and
applications.

• High Level Network Function: Each policy is associated
with a high level network function that defines con-
figuration and monitoring of network devices, such as
intra-site-routing and inter-site-routing. Associating each
policy with a network operation allows a Packet Processor
to accommodate policies that are related to a specific
function and ignore non-relevant functions.

• Partial Hosts And Devices Information (address space
conditions): An administrator has the flexibility to pro-
vide high-level information about devices and hosts (e.g
specify a name for a host or a network device). Path
Selection Service uses these high level information to
determine an end-to-end path between the source and
destination for a specific traffic. For example, an ad-
ministrator can use device names when specifying that a
given type of traffic should pass through a specific set of
network devices; the Path Selection Service will choose
the best possible path that meets the given requirements.
The system uses partial host information when reporting
network policy conflicts.

• Traffic Conditions: Traffic conditions specify high level
QoS requirements such as the traffic rate limit for a traffic
which specified in the policy.

• Priority: An administrator can assign a priority to a policy
or use a default. Priorities become important when the
systems tries to resolve conflicts among policies.

• Source And Destination Regions: A policy can be defined
for the interior of a region or can specify traffic routing
among multiple regions. To achieve the goal, the system
allows a manager to specify both source and destination
regions for each policy.

The syntax of OSDF policy language is defined in Fig.3.

Policy ::= OP, APP, P|φ, SR, DR, ASC|φ, TC|φ
Operation (OP) ∈ High level network operation services
Application (APP) ∈ List of Applications
Priority (P) ∈ N
Source Region (SR) ∈ List of Regions
Destination Region (DR) ∈ List of Regions
Address Space Condition (ASC) ∈ List of hosts and network devices
Traffic Conditions (TC) ∈ List of traffic conditions

Fig. 3. The syntax of OSDF policy language

IV. HIGH LEVEL NETWORK OPERATIONS

In the initial prototype version of the framework we define
a minimum set of high level network operations to support

typical network configurations:
• Intra-Site-Route: This abstract operation can be used to

specify traffic routing within a specific region according
to a network policy for the region.

• Inter-Site-Route: This abstract operation can be used to
specify traffic routing among multiple regions according
to the global policies.

• Intra-Site-Alert: This abstract operation can be used to
set an alert on specific data traffic and users. If a user
attempts to send the traffic inside a region, the system logs
user unauthorized attempts and avoid a specific traffic to
be routed inside a region.

• Inter-Site-Alert: This abstract operation is the same as
Intra-Site-Alert except it applies the same operation be-
tween multiple regions.

• Intra-Site-Route-QoS-Provisioning: This abstract opera-
tion can be used for simultaneous traffic routing and rate
limiting within a specific region according to a network
policy for the region.

• Inter-Site-Route-QoS-Provisioning: This abstract opera-
tion can be used for simultaneous traffic routing and rate
limiting among multiple regions according to the global
policies.

V. POLICY CONFLICT MANAGEMENT MODULE

A. Policy Conflict Detection Service

In [9], the authors classify flow rule conflicts based on flow
rule details such as layer 2-4 addresses, action, and priority.
We use their work as a reference to define types of network
policy conflicts based on high level application based network
policies instead of low level flow rule details. As we illustrate
in Table I , we categorize some of well known network policy
conflicts based on application based network policies and
explain them as follows:

Suppose two policies, Pi and Pj , specify the same traffic
profile, source and destination regions:

• Redundancy: Pi is redundant to Pj if both specify the
same network operation (Pi,OP = Pj,OP ), address space
condition of Pi is a subset of address space condition
of Pj (Pi,SC ⊆ Pj,SC), and priority of Pi is less than
or equal to priority of Pj (Pi,p ≤ Pj,p). For example,
suppose the following two policies:

1) Route web traffic inside region A using priority 100
between hosts H1 and H2.

2) Route web traffic inside region A using priority 100
between all hosts.

In the example, the first policy is redundant because
second policy is broader (assuming that H1 and H2 are
in region A).

• Shadowing: Pi is shadowed Pj if each policy specifies a
different network operation (Pi,OP 6= Pj,OP ), the address
space condition of Pi is a subset of the address space
condition of Pj (Pi,SC ⊆ Pj,SC), and the priority of Pi

is less than to priority of Pj (Pi,p < Pj,p). Shadowing is
a critical error because it shows a conflict in a security



policy implementation [10]. For example, suppose the
following two policies:

1) Route VIDEO traffic between all hosts in region A
and all hosts in region B using priority 100.

2) Set alert on VIDEO traffic between any hosts in
region A and region B using priority 200.

The first policy is shadowed by the second policy and
will never be invoked because its priority is less than the
priority of second policy.

• Generalization: Pi is a generalization of Pj if each policy
specifies a different network operation (Pi,OP 6= Pj,OP ),
address space condition of Pi is a superset of address
space condition of Pj (Pi,SC ⊇ Pj,SC), and priority of Pi

is less than to priority of Pj (Pi,p < Pj,p). For example,
suppose the following two policies:

1) Route VOICE traffic inside region A using priority
200 and all host pairs.

2) Set alert on VOICE traffic inside region A using
priority 300 and host pair (H3,H4).

The first policy is a generalization of the second policy
because its address space is a superset of address space
of the second policy (assuming that H3 and H4 are in
region A).

• Correlation: Pi is a correlation of Pj if each policy
specifies a different network operation (Pi,OP 6= Pj,OP ),
address space condition of Pi is not a subset or superset
of address space condition of Pj but they have some
common items (Pi,SC ∩ Pj,SC 6= φ), and priority of Pi

is less than to priority of Pj (Pi,p < Pj,p). For example,
suppose the following two policies:

1) Route WEB traffic inside region A using priority
100 and host pairs (H1,H2), (H1,H3).

2) Set alert on WEB traffic inside region A using
priority of 200 and host pairs (H1,H2), (H2,H4).

The address space of first policy is not a subset or
superset of address space of the second policy but their
intersection is not empty. Consequently, there is a cor-
relation conflict between above policies (assuming that
H1,H2,H3, and H4 are in region A).

• Overlap: Pi is an overlap of Pj if each policy specifies the
same network operation (Pi,OP = Pj,OP ), address space
condition of Pi is not a subset or superset of address
space condition of Pj but they have some common items
(Pi,SC ∩ Pj,SC 6= φ). Note that priority is not important
in this case. For example, suppose the following two
policies:

1) Route WEB traffic between regions A and region B
using priority 100 and host pairs (H1,H4), (H2,H3).

2) Route WEB traffic between region A and region B
using priority 200 and host pairs (H1,H4), (H2,H5).

Both of the policies specify the same network operation
and the intersection of the first policy address space and
second policy address space is not empty. Consequently,
there is an overlap conflict between above policies (as-
suming that H1,H2 are in region A and H3,H4, and H5

are in region B).

B. Policy Conflict Recommendation Service

This service implements a policy conflict recommendation
algorithm to provide high level advice about how an adminis-
trator can resolve the conflicts between current policies in the
system. Each type of conflict is resolved as follows:

• Redundancy: To resolve this type of conflict, we can
remove a policy that has a lower or equal priority and
its address space that is a subset of another policy.

• Shadowing: To resolve this type of conflict between two
policies, we can remove the policy that is shadowed (i.e.
the policy which has lower priority and its address space
is a subset of another policy).

• Generalization: To resolve this type of conflict between
two policies, we can remove the policy that has a more
generalized address space, and then update its address
space conditions by removing those conditions that are
specified in another policy address space. Finally, we
insert the updated policy into the system.

• Correlation: To resolve this type of conflict between two
policies, we can update the address space of one of the
policies (e.g the policy by lower priority) by removing
the common items and then inserting the updated policy
into the system.

• Overlap: To resolve this type of conflict between two
policies, we first remove both of the policies from the
system and then insert a new policy with an address space
equal to the union of both of address spaces.

The asymptotic time complexity of the policy conflict rec-
ommendation algorithm is O(n2) where n is the number of
polices being considered. Most practice, n is small because a
single policy covers a broad range of network configurations.

VI. PROTOTYPE AND EXPERIMENTAL SETUP

An early version of OSDF is implemented in Open Network
Operating System (ONOS) [11], an open source SDN con-
troller which like other SDN controllers, provides services and
APIs that programmers use to write applications and modules
inside ONOS. We use ONOS APIs, such as the topology
and flow rule APIs, to implement each network operation.
Other modules, such as the policy parser, policy store, and
policy conflict detection modules, have been implemented
from scratch. To evaluate OSDF from multiple perspectives
such as functionality and performance, we use both experi-
mental measurement and simulation. For experimental results,
we deployed an SDN testbed which we explain its details as
follows:

A. SDN Experimental Testbed

Our SDN testbed consists of 10 Ethernet switches that
logically define 5 sites (departments of an organization) that
are connected together as Fig.4 illustrates. To make our
testbed emulate an enterprise network, each physical switch is
logically divided into 10 independent smaller switches using
virtualized mode. Each site is a Fat-tree network topology.



Traffic Profile (TP) Src Region (SR) Dst Region (DR) Operation (OP) Address Space Conditions (SC) Priority (P)
Redundancy Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP = Pj,OP Pi,SC ⊆ Pj,SC Pi,p ≤ Pj,p

Shadowing Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ⊆ Pj,SC Pi,p < Pj,p

Generalization Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ⊇ Pj,SC Pi,p < Pj,p

Correlation Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ∩ Pj,SC 6= φ Pi,p ≤ Pj,p

Overlap Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP = Pj,OP Pi,SC ∩ Pj,SC 6= φ Not Necessary

TABLE I
DIFFERENT TYPES OF POLICY CONFLICTS

The connections between virtual switches are 1GB links and
we aggregate 1GB links to connect sites, thereby emulating
high capacity links. Overall, our network consists of 50 virtual
switches and more than 130 links.

Fig. 4. Inter-sites network topology

B. Simulation Setup

In addition to an SDN testbed, we used the Mininet [12]
network emulator to evaluate our framework at a larger scale.
We ran Mininet on a Linux host with a Intel Core i7 processor
and 8GB RAM.

C. Traffic Generator

To generate various traffic patterns, we used iperf [13], a
tool for measuring throughput on IP networks.

VII. SIMULATION AND EXPERIMENTAL RESULTS

This section presents typical applications such as Net-
work Traffic Isolation, Inter Domain Rate Limiter to provide
QoS, Inbound Traffic Engineering, and Forwarding Resiliency;
OSDF allows each to be implemented easily.

1) Traffic Isolation: Consider the topology a leaf spine
network topology (we call it site A in this example)
that Fig.5 illustrates.
Suppose H1, H3, and H5 belong to tenant 1, and
H2,H4, and H6 belong to tenant 2. We configure the
network using OSDF such that hosts owned by a given
tenant are able to communicate with each other but
are blocked from communicating with hosts owned by
other tenants. Suppose we want to route web traffic for
tenant 1, and route video streaming traffic for tenant 2.
In addition, suppose all of the network switches in the
given topology belong to the same region, which we
will label site A. To achieve the goal, we define OSDF
network policies as follows:

Fig. 5. Leaf and Spine network topology for traffic isolation scenario

• Route web traffic in site A between (H1, H3), (H1,
H5), and (H3,H5) using the default priority.

• Route video traffic in site A between (H2, H4), (H2,
H6), and (H4,H6) using the default priority.

The network administrator enters above policies into the
system using a command line interface or a script, and
OSDF installs OpenFlow rules in appropriate network
switches to meet the requirements. As the example
shows, instead of requiring managers to install flow
rules, OSDF provides traffic isolation at the policy level.

2) Inter Site QoS Provisioning: The main goal of this
scenario is to experiment with using the abstractions
defined above to provision QoS for inter site routing.
OpenFlow 1.3 introduces meters which can be used to
measure and control the ingress rate of traffic. If the
packet rate or byte rate passing through the meter exceed
a predefined threshold, a meter band will be triggered.
A Rate Limiter is a meter which its meter band drops
the packet. To achieve the goal, the underlying hardware
must support metering. Because Open vSwitch [14] does
not support metering completely, we decided to test our
QoS provisioning abstractions using our SDN testbed.
Suppose we want to configure the network illustrated in
Fig.4 to support the following QoS requirements:

• Route web traffic between IT and the sales depart-
ment using the default priority, and limit each flow
to 200 Mbps.

• Route video traffic between IT and the sales depart-
ment using the default priority, and limit each flow
to 500 Mbps.

We ran an experiment between IT and sales department
to test inter-site routing with rate limiting. In this sce-
nario, we initiated four TCP connections (an aggregate
of 800 Mbps) to generate web traffic and two TCP
connections (an aggregate of 1000 Mbps) to generate



video traffic. Fig.6 summarizes the results, and shows
that the throughput for each of the web traffic and video
traffic flows is guaranteed to 200 Mbps and 500 Mbps,
respectively.
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To examine how well QoS provisioning works, we
measured inter-site routing without QoS. To do so, we
entered the same basic network policies for web and
video traffic, omitting the rate limiting policies:

• Route web traffic between IT and sales departments
using the default priority.

• Route video traffic between IT and sales depart-
ments using the default priority.

As the results in Fig.7 show, without rate limiting, video
and web traffic are not guaranteed specific limits, and
the throughput fluctuates more than when QoS is applied
(i.e., more than in Fig.6).
Another proposed programming language, Merlin [15],
addresses QoS provisioning by providing high level
abstractions that can be used to express bandwidth
constraints such as minimum and maximum bandwidth
limits. Compared to our approach, Merlin shares the
same weakness as other network programming lan-
guages (e.g., NetKAT) because a programmer must
specify low-level packet match fields to define a policy.

3) Inbound Traffic Engineering: This service refers to
splitting incoming traffic over multiple peering links.
Consider, for example, the internal representation of
the IT and Sales departments in our SDN testbed, as
illustrated in Fig.8. Suppose we want to configure the
two sites such that the incoming traffic to switch Sales-
S1 should be split among the outgoing links. That is,
web traffic from the IT department should be forwarded
to port 2 of switch Sales-S1, and video streaming traffic
should be forwarded to port 3 of the same switch.
To achieve the goal, we can define high level policies
as follows:

• Route web traffic between IT and Sales departments
via Sales-S1:2 using the default priority.
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Fig. 8. Inbound traffic engineering scenario

• Route video traffic between IT and Sales depart-
ments via Sales-S1:3 using the default priority.

4) Forwarding Resiliency: Consider the network topology
that Fig.9 illustrates; call it site C. We report an experi-
ment that shows how OSDF can use redundant policies
with differing priorities to handle the case of reroute
traffic (web traffic in the example) from a primary path
to a backup path during failures or for maintenance
purposes. In the first step, we define high level policies
for both a primary path and a backup path between two
points:

• Route web traffic in site C using priority 100 via
S3:2.

• Route web traffic in site C using priority 50 via
S6:4.

Based on the above policies, if host H1 initiates web
traffic to host H2, the policy with higher priority will be
triggered, and OpenFlow rules with priority 100 will be
added to network switches along the primary path (i.e.
H1, S1, S2, S3, S7, S10, H2).
To show how OSDF reacts to adding and removing
policies, we wrote a script that forces a change from
the primary to a backup path by removing and adding



Fig. 9. A multipath network topology (site C)

the policies every N (Interval) seconds in a 150 seconds
simulation. One aspect of any networking system arises
from the need to re-establish valid routes after a fail-
ure with minimal interference. To demonstrate that our
framework supports rerouting without negative impact
on traffic, we conducted an experiment to compare the
throughput of a flow in the presence of rerouting to
the throughput of the same flow with no rerouting. To
conduct the experiment, we ran iperf as a server using
port 80 on H2, and ran iperf as a client on H1 with
default Linux configuration. We repeated the experiment
for various numbers of parallel connections. As the
results in Fig.10 show, when switching between primary
path and backup path is not frequent (e.g Interval=40)
the throughput remains close to the maximum possible
throughput, which is around 940 Mbps (achieved when
just the primary path is used). When we change be-
tween the primary and backup paths frequently (e.g.,
every 2 seconds) the the throughput drops significantly,
specially when multiple, parallel TCP connections (e.g.,
50). Multiple factors explain the decrease. First, as the
number of connections increases from 1 to 50, the setup
time (i.e., time required to install OpenFlow rules) will
increase because the the time is linearly proportional
to number of rules. Second, switching paths introduces
delay, which drives TCP into congestion avoidance.
Frequent changes means lower throughput because TCP
will spend more time recovering, and less time in a
stable state.

A. Simulation Scenarios

To test our framework from functional and performance
points of view, and to examine the effects of scale, we ran
simulation scenarios.

• Response time: The simulation uses a worst-case linear
network topology with 40 switches that we call site D.
Fig.11 illustrates the topology. To configure the network
to route web traffic between H1 and H40, we use a high-
level policy:

– Route web traffic in site D using the default priority.
To evaluate setup time, we initiate various numbers of
TCP connections on port 80 between H1 and H40,
and measure the response time for each. We define the
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Fig. 10. Experimental results for forwarding resiliency scenarios

Fig. 11. Linear network topology

response time as the amount of time which is needed
to establish all of the connections between the two end-
points. This is the amount of time which is needed to read
and parse a network policy, generate flow rules , and in-
stall generated rules on the network devices for all of the
connections between the two end-points. By increasing
the number of TCP connections established between two
end-points, we increase the number of OpenFlow rules
that must be installed in network switches along the path.
Consequently, we measure the response time as a function
of number of flows and compared the response time of
OSDF with reactive forwarding approach implemented
by ONOS, and compare the two in Fig.12. As the results
show, the response time increases linearly as number of
connections increase between two end-points. The reason
that our system outperforms the ONOS reactive approach
arises from an optimization in which our system pre-
installs OpenFlow rules in all switches across the entire
end-to-end path when the first PACKET IN message
arrives at a controller. The ONOS reactive forwarding
approach waits until a PACKET IN message arrives from
a switch before installing a forwarding rule in the switch.
To validate the simulation results, we ran the same
experiment on our testbed; Fig.13 shows the results. The
experimental measurement confirms that the simulation
results are valid. Note that the TCAM table on network
switches in our testbed can hold up to 2K entries when
more than 2 match fields are used by flow rules, so the
number of connections is limited.

VIII. DISCUSSION AND FUTURE WORK

Our project is in the first phases of the development and
we plan to complete it by introducing new high level network
operation services and new features. Some of our main goals
are:
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Fig. 13. Response time, ONOS reactive forwarding vs OSDF for the testbed

• Implement the same architecture in other SDN controllers
such as Ryu [16] and OpenDayLight [17].

• Devise a new set of abstract operation services to support
network service chaining and provide network function
units such as Network Address Translators (NATs), load
balancers, Intrusion Detection Systems (IDSes).

• Design and implement a more scalable solution of the
proposed architecture by distributing the policy storage
among multiple instances of a SDN controller.

IX. CONCLUSION

This paper presents an SDN-based network programming
framework which is called OSDF. OSDF provides a set of
high level network service operations that can be invoked
by management applications for network configuration and
monitoring. OSDF uses a high-level approach that allows a
network administrator to enter high level network policies
into the system without specifying any details about low level
match-action fields. When a packet arrives, OSDF reactively
examines policies, derives the required low-level flow rules,
and installs flow entries in network switches along the path
the packet will take. One of our key contributions is that we
provide a higher level of abstractions than previous network
programming languages. Our system allows a manager to

specify application requirements without giving layer 2 and 3
packet header fields. OSDF is equipped with a policy conflict
management module that examines a set of policies, detects
conflicts, and uses a conflict resolution algorithm to provide
high level suggestions to the network administrator about ways
to resolve the conflicts. We used OSDF to implement typical
SDN applications such as an Inbound Traffic Engineering
system, Inter-domain rate limiting, and Traffic Isolation. OSDF
also can be used to implement other SDN applications such
as firewall, application specific peering, intra-domain rate
limiting. In addition, we optimized flow rule installation by
installing all of the required flow rules for a path when the
first packet for the path arrives at a controller. Our simulation
results show that the optimization reduces the negative impact
of reactive part on the response time.
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