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Abstract—Internet-of-Things has entered all the fields where
data are produced and processed, resulting in a plethora of IoT
platforms, typically cloud-based, centralizing data and services
management. This has brought to many disjoint IoT silos. Sig-
nificant efforts have been devoted to integration, recurrently re-
sulting into bigger centralized infrastructures. Such an approach
often stumbles upon the reluctance of IoT system owners to loose
the dominion over data. We introduce a secured and privacy-safe
infrastructure where a federation overlay is distributed among
parties and the data control is kept locally. This establishes a
league of peers each sovereign of their IoT system and data:
League of IoT Sovereignties (LIoTS). LIoTS is scalable by
design, allowing iterative formation of domains levels due to the
transparency of its federation. Tests show that the overhead is
minimal when exchanged data is hefty, and that LIoTS performs
better in large IoT deployments than centralized approaches.

Index Terms—IoT platforms, federation, privacy and security.

I. INTRODUCTION

The Internet-of-Things (IoT) paradigm has lately gained
more and more momentum in all the fields where data are
produced and processed (e.g., health care, smart cities, indus-
try) justifying the emergence of a plethora of IoT platforms. A
common approach for IoT systems deployment is to leverage
the scalability and performance of a cloud-based infrastructure
for storing and analyzing data [1]. However, this brought
to an abundance of single-scoped, disjoint systems generally
defined as “vertical IoT silos”. A lot of efforts have been
devoted to define standards and ontologies to enable, on
the one hand, interoperability among platforms [2], [3] and,
on the other hand, inter-domain interaction [4]. However,
the harmonization of IoT systems often results in a further
centralization towards another cloud instantiation [5], which
leads to architecture scalability issues when handling billions
of devices. In addition, IoT systems owners are reluctant to
loose control over the generated data [6].

This paper presents the League of IoT Sovereignties
(LIoTS), a distributed infrastructure that federates IoT systems
while leaving the data dominion in the hands of data owners by
offering means for security and privacy control. LIoTS enables
data and services brokerage of both data queries and streams
among peers of IoT platforms, overcoming the fragmentation
of IoT silos. The main contribution of LIoTS is:

• Sovereignty of data providers: IoT providers keep data
locally, thus maintaining their power over the owned data.

• Privacy preserved: The privacy of intra-domain users
(e.g., applications, providers, persons) is prevented to
be leaked externally in the federation. This is achieved
via multiple levels of security systems (intra-domain
identities and policies are kept only within the domain),
as well as through the IoT Registrar that automatically
makes data available based on privacy directives given
by the IoT providers.

• Scalable federation by design: LIoTS enables the trans-
parent existence of multiple levels of federations. This
is achieved through the usage of a brokering layer for
each of the federation levels, and with multiple levels of
security systems.

• Plug-and-Play approach: IoT providers and legacy sys-
tems are relieved from the burden of maintaining the
federation, such as declaring or updating data availability.

Experimentation demonstrates a slight loss in terms of latency
for traversing the federated and secured layer, but shows even
better performance compared to a centralized approach in large
scale scenarios with thousands of things, that is comparable
to real IoT deployments such as SmartSantander [7].

II. BACKGROUND

LIoTS is centered around the concept of IoT context, that
is the representation of real world ‘status’. A context refers to
an entity representing a thing (e.g., a car, a building) together
with its status. The context can be physically measured by a
sensor, or derived by analytics functions.

Federation. Enabling the flow of IoT contexts among
platforms and IoT services in a way that is transparent to
IoT actors is the key to a global Internet-of-Things overlay. A
centralized approach where everything (viz. data and services)
is handled by a remote authority is often not a solution for
multiple reasons, such as real-time constraints, and waste of
bandwidth for transmitting not requested data. A first approach
is to have methods for the discovery of services that provide
IoT context [8], [3]. Discovery is a pivotal element for seam-
less interoperability among systems, since not only datasets
but also generic IoT services are exposed. This also enables
an IoT marketplace, which is a gap identified in [9]. Though,
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Fig. 1: Privacy-preserving IoT Registrar: a) based on context, b) based on
registrations.

discovery alone is not enough to automatize communications
dispatching to the right actors. This last feature is the trait
of a broker component that hides the discovery process and
intermediates data flows [10]. This empowers a transparent
federation progressing towards the intent-based programming
in the IoT [11] field. Nevertheless, the simplicity of cloud-
based IoT system is not neglected in this work, hence a hybrid
approach is blended for a fully-fledged IoT infrastructure.

Privacy and Security. One of the main disincentives to
sharing data is the fear of loosing control over the owned infor-
mation [6]. Thus, there is a clear need to include efficient and
reliable privacy and security mechanisms. The study conducted
in [12] assesses that most of the cloud-based IoT platforms
often address typical web and network security attacks (such
as DoS, eavesdropping), whereas [9] depicts privacy and data
access control as open challenges. In this paper we address
those points by offering means for IoT owners to smooth the
federation of their systems while preserving privacy.

III. SYSTEM DESIGN

LIoTS uses disparate components playing different roles and
divided in: context layer, brokering layer and security layer.

In the context layer the IoT Producer produces data either
periodically or event-based (e.g., an environment change).
Typical examples of IoT producers are sensors. A Context
Manager (CM) is capable of storing and indexing data and of-
fers an interface for queries and subscriptions. An IoT Provider
is a system composed of one or more IoT producers and a
CM exposing the collected data (Fig. 1). Within the brokering
layer, a Broker is a mediator that, given a context request,
dispatches it, transparently, to one or more IoT providers,
depending on the requested context. The broker exposes
methods for executing brokered queries and subscriptions. A
broker needs to be assisted by a Discovery service acting as a
registry of available IoT providers together with their data. The
discovery supports subscriptions and queries for IoT providers
offering the requested IoT contexts. In the security layer, the
Identity Manager (IdM) handles identities within the system.
Each component in the system has an identity within the IdM,
and the latter is offering a token-based protocol which allows
components to identify each other. A Policy Decision Point
(PDP) responds to requests with a decision based on policies.
A Policy Enforcement Point (PEP) secures a component by
intercepting communications and imposing access policies.
PEP is assisted by the IdM for authenticating requestors and

The IoT Registrar acts as a sort of glue between the
described layer and components. It issues availability reg-
istrations to the discovery component on behalf of human
administrators (see Fig. 1). A registration can be generic
(raising unnecessary traffic to providers) or very detailed
(yet disclosing sensitive information). If such registrations are
made by humans, performing detailed yet privacy-preserving
registrations might require a lot of expertise for each deploy-
ment, while also inducing latency on an effective usage of the
sources. Here is why a plug-and-play approach would be much
more advisable. IoTR solves these problems by subscribing
for information and automatically synthesizing registrations
(or updating stale ones) when necessary. The IoTR bases
the correct privacy preserving aggregation of information on
given directives. For example it could be instructed to register
sensors only by their type (hence if a second sensor of the same
type gets deployed, no changes are made to the registrations
set) and by loose geographical area (for example, the location
of a registration refers to the nearest municipality name rather
than to the exact coordinates). The registrar addresses also the
challenge of creating access policies that is necessary for a
correct behaviour of a secured IoT ecosystem [13].

A. Message Flows

The IoT data traffic typically follows 4 paradigms: Publish-
Query, Publish-Subscribe, Distributed Query, Publish-Notify.
In the first paradigm an IoT producer publishes context updates
to a CM which stores them. When the latter is queried it
responds with the requested contexts. In the publish-subscribe,
an application first declares its interest in context data to
the CM. Then context producers publish context updates
and, when matching with the subscription, the CM notifies
the subscriber. In the distributed query paradigm data is not
residing in a single place but needs to be procured on the
fly. When the broker receives a request, it discovers providers
through the discovery, and contacts them. Then, the broker
aggregates responses from providers (either into a set or by
applying a function, such as averaging homologous contexts),
and forwards the result to the requestor. In different scenarios,
context might be generated by a service, be measured by a
sensor triggered by the request, or come from storage. The
subscribe-notify paradigm starts with a context subscription
to the broker, which subscribes to the discovery for context
availability. The broker is notified about IoT providers, either
in case of stored matching registrations, or as soon as a
new matching one is completed. Consequently, the broker
subscribes to the IoT provider(s), and collects notifications
that are eventually forwarded to the context requestor.

Typically, centralized IoT platforms implement one or both
the first two paradigms, implying that data is continuously
flowing to the cloud regardless of the actual interest of users
and/or applications. The distributed query and subscribe-notify
paradigms, instead, foresee “lazy” data flows as the data is
pulled from remote providers on demand. In order to keep the
simplicity of the centralized paradigm also for the distributed
paradigms, we make usage of the IoT Registrar (Fig. 1).
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Fig. 2: General architecture of a multi-party secured exchange platform with subscribe. Messages with no data are omitted

B. Multi-party exchange platform: system architecture

The system architecture of a secured multi-party IoT data
exchange platform is shown in Fig. 2 with an illustrative
federated publish-notify data exchange. Each provider silo
manages its own IoT deployment and handles data within
its premises or its cloud of choice, exposing them through a
CM (see Fig. 1a). One or more IoT providers are clustered in
domains. Every domain has two independent security systems
for two scopes of action: intra-domain and federation. The
intra-domain security system, coloured in red in Fig. 2, is
formed by an IdM (idIdM), a PDP (idPDP), and a PEP for
each component to be secured against intra-domain access.
When a message arrives at a secured component carrying
an access token, the PEP first checks the authenticity of the
sender through the idIdM and then their access rights with the
idPDP. If any of the checks fails, access is denied; otherwise,
the message is forwarded to the secured component. The
federation security system is formed by a federation IdM
(fedIdM) and PDP (fedPDP) for each domain, as well as a
PEP for every component exposed externally. The fedIdMs
(as fedPDPs) have synchronized databases such that the same
request to any of them results in the same response. How
the synchronization is achieved (e.g., off-the-shelf distributed
databases such as Cassandra, blockchain-based technologies)
is out of the scope of this paper. Every domain possesses
an identity for the authentication and authorization between
domains. The federation access policies are visible to all par-
ties. At setup time, components need to make configurations
(Tab. I) for enabling the federated communication.

For intra-domain data exchange the behaviours and message
flows are similar to the one presented in §III-A, with the
brokerage of an intra-domain Broker (idB) assisted by an intra-
domain Discovery (idD) service. When the data requested is
available in a different domain, other components enter the
game. Every domain has a federation Discovery (fedD) with
the database synchronized. Thus, registrations stored in a fedD
are visible to anybody in the federation, and, therefore, it is
of utmost importance to control the content of registrations.
Each domain has an IoT Registrar (IoTR) that accepts reg-
istrations from providers and synthesizes new ones for the
fedD (Fig. 1b). For brokering messages between domains each
domain deploys two broker instances: the incoming federation

Broker (inFedB) handles requests coming from outside the
domain, while the outgoing federation Broker (outFedB) looks
after requests going in the outward direction. The two feder-
ation brokers are associated with two different discoveries.
When a request comes from outside the domain the inFedB
discovers data providers within the domain against the idD
(see Tab.I). When a request comes from inside the domain,
instead, the outFedB needs to contact the fedD for discovering
other domains providing the data of interest. Therefore all the
registrations done by the IoTR to the fedD must carry the
exposed address of the inFedB (or its PEP). Each of these
boundary brokers are protected by two different PEPs, one
assisted by the intra-domain security system with the aim of
regulating who in the domain may do federated requests, the
other assisted by the federation security system for moderating
requests from external parties. Having two disjoint security
layers allows domain administrators to decide which section of
data can be exposed. In other words, a PEP of an IoT provider
might treat a request coming from the inFedB differently than
a request from within the domain. In addition, if domainB
has different federation access policies among domainB users,
the outFedBB receives unfiltered data, but the PEPidBB refines
data as prescribed in idPDPB. This approach permits to hide a
userB existence and associated policies outside of the domain.
Thus, separating the security systems has the benefit to protect
sensitive information contained inside policies, as well as
identities pertaining only to the domain.

TABLE I: LIoTS infrastructure settings: d for domain, fed for federation.
idB idD IoTR outFedB inFedB fedD

Security
System d d d

d for query
and subscribe;
fed for notify

d for notify;
fed for query
and subscribe

d

Registra-
tion none none none

as provider
for everything

to idD

as provider for
all registrations

in fedD
none

Subscrip-
tion none none provider

avail. to idD none none none

Discovery idD n/a n/a fedD idD n/a

The proposed architecture can be scaled for achieving super-
domains of domains iteratively. For this purpose, each domain
of Fig. 2 is seen as a domain IoT provider by the super-domain
infrastructure (see Fig. 3). In this case there are three separated
security layers: the intra-domain, super-domain, and super-
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Fig. 3: Scaling the proposed architecture iteratively.

domains federation. LIoTS is easily adaptable to different
scenarios and configurations. It is possible to have hybrid
solutions where IoT providers are directly managed by the
super-domain. In Fig. 3 there are 3 levels of federation but,
theoretically, the number of levels is unbounded.

IV. EVALUATION

We tested the distributed query paradigm on both secured
and unsecured (i.e., lacking the security layer) federated ar-
chitectures, in all cases against the unsecured publish-query
paradigm representing a centralized architecture. The envi-
sioned scenario is that applications within domainB request
data residing in domainA. As testing components we have
used, from the FIWARE framework, Orion as CM, IoT Broker
as Broker, NEConfMan as Discovery, AuthZForce as PDP,
KeyRock as IdM, and Wilma as PEP. In addition, we imple-
mented a prototype of IoT Registrar. Apache JMeter is used
to perform query requests for a random number of randomly
chosen entities. The test is carried out varying the number
of total entities handled by the CM (100, 1000 and 10000),
representing the size of the IoT deployment if we consider
each entity as a ‘thing’. The number of attributes per stored
entity and the number of attributes queried per entity are fixed
to 100 and 20, respectively. We have taken 10000 as the IoT
deployment top size taking into consideration that SmartSan-
tander [7] handles 20000 entities. The throughput is normal-
ized by considering the amount of information represented
by entity contexts returned in each query response, e.g., if in
a scenario with 100 queried entities per request we achieve
20 requests/sec, normalization brings to a throughput of 2000
entities/sec. For fair comparison, test points with a non-zero
error rate are omitted from the graphs. In Fig. 4 the different
colour lines for both latency and throughput are getting closer
as the number of queried entities increases, meaning that the
overhead becomes more and more negligible. This is even
more noticeable as the dimension of the deployment increases,
hence indicating the CM as the system’s bottleneck.

We performed one more test to investigate the benefit
of load balancing implicit in a distributed architecture. We
compared the federated architectures (unsecured and secured)
comprising 10 CMs, each handling 1000 entities, with a single
unsecured centralized CM with 10000 entities. We vary also
the number of concurrent requesting clients (threads) between
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20 and 100. Each of the small CM handles disjoint sets of
entities whilst the big CM handles them all. We have then
performed randomized queries and therefore for each query 1
or more CM need to be contacted by the Broker. Fig.5 shows
that a federated architecture performs much better than a
centralized approach, in terms of both throughput and latency.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a distributed federation
architecture that is scalable by design. Privacy and security
play a big role in the overall system. The evaluation shows
that overhead introduced in big scale deployments is negligible
and the federation approach is even better performing in multi-
provider scenarios. Each of the providers is considered as a
different organization holding data locally and protecting their
sovereignty over owned information.

Enforcing obligations on the data usage is the next step for
a secured IoT data exchange and we plan to start from LIoTS
to design a distributed data usage control system.
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