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Abstract—Most Distributed Denial of Service (DDoS) detection
and mitigation strategies for Internet of Things (IoT) are based
on a remote cloud server or purpose-built middlebox executing
complex intrusion detection methods, that impose stringent
scalability and performance requirements on the IoT due to the
vast amounts of traffic and devices to be handled. In this paper,
we present an edge-based detection scheme using BPFabric, a
high-speed, programmable data-plane switch architecture, and
lightweight network functions to execute upstream anomaly
detection. The proposed detection scheme ensures fast detection
of DDoS attacks originated from IoT devices, while guaranteeing
minimum resource usage and processing overhead. Our solution
was compared against two widespread coarse-grained detection
techniques, showing detection delays under 5ms, an overall
accuracy of 93 − 95% and a bandwidth overhead of less than
1%.

Index Terms—Internet of Things, DDoS, Anomaly Detection,
Data-plane Programmability, BPFabric, Edge Computing

I. INTRODUCTION

Internet of Things (IoT) is a fundamental pillar of future
smart cities and next generation industries [1], and hence the
amount of IoT devices and their variety (e.g., from smart
TVs to virtual assistants and e-healthcare) [2] are increasing
at a significant pace. Given the nature of IoT deployments
where millions of end devices acquire networking capabilities,
IoT-Distributed Denial of Service (DDoS) attacks (i.e., IoT
devices forming botnets) have emerged as a challenge due to
the number of current and forecasted devices in the network
and their inability to be easily patched [3]. So far, solutions
against DDoS attacks in this context have been implemented
through complex, centralized software and hardware-based
mechanisms [4]. Distributed detection and mitigation tech-
niques have been studied, aiming at offering more efficient
ways of dealing with scenarios such as IoT-DDoS attacks [5]–
[7]. The vast majority of these approaches assume the use of
purpose-built middleboxes deployed in the network, close to
the victim, in order to be able to detect the attack through
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analyzing aggregated traffic features [3][6][8]–[10]. However,
in an IoT environment, the cost of a purpose-built ecosystem
to detect and mitigate DDoS poses complex deployment and
operational challenges, for instance, if early detection and
high-speed processing is to be achieved. Another key issue
in IoT-DDoS defense is the ability and frequency of spoofed
IP addresses being used by the attackers [7]. Any remote
detection mechanism lacks the ability to effectively detect if
a packet source IP has been spoofed, without detailed infor-
mation about the sender, receiver or typical communication
patterns. On the contrary, upstream detection executed as close
to the attacker as possible, could accurately determine spoofing
occurrences due to its fine-grained view of the underlying
devices, IP subnets and typical behavior.

What is more, most current DDoS detection schemes rely
on traffic redirection methods or aggregated flow statistics
collection. These mechanisms introduce additional costs and
performance issues into the network (e.g., longer flow comple-
tion times, bandwidth overhaul, etc.), degrading the system’s
effectiveness due to longer timeframes between detection and
mitigation phases [11]. To partially overcome such problems,
multi-stage distributed systems can be used to detect and
mitigate the attacks. In these approaches, coarse-grained de-
tection is to be executed upstream in the network, closer to
the attackers. However, this leads to the use of dedicated mid-
dleboxes scattered across the network for scrubbing purposes
[9][6]. For an IoT-DDoS detection solution (i.e., protecting
the network against DDoS originated on IoT devices) to solve
the above mentioned problem, it has to ensure: a) lightweight
processing, by relying on traffic features and analysis methods
targeting overhead minimization and coarse-grained anomaly
detection; b) platform-independence, to minimize the need
for purpose-built devices and the use of traffic redirection-
based approaches; and c) high-performance, in order to
achieve fast reaction through early detection while avoiding
performance degradation.

The advent of paradigms such as Edge Computing (EC)
and Software-Defined Networking (SDN) can help overcome
the aforementioned issues for DDoS detection and mitigation.
EC brings processing, networking and storage resources to
the users’ vicinity. As a result, through SDN data-plane pro-
grammability principles, lightweight functions can be placed at
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the edge, resulting in enhanced network capabilities. Namely,
a programmable data-plane improves the network’s agility
and flexibility by allowing dynamic high-speed edge function
allocation/deallocation. Thus, providing early detection capa-
bilities and more efficient resource usage at the edge nodes.
Additionally, edge network functions deliver the elasticity
and scalability required to efficiently handle vast amounts
of traffic in a distributed manner. IoT can directly benefit
from the joint work of data-plane programmability and edge
network functions. By placing the detection at the attackers’
vicinity (cf. Fig. 1), fast reactive procedures can effectively
isolate the IoT malicious devices while reducing bandwidth
consumption typically produced by DDoS attack traffic, and
avoiding the processing overhead of current remote centralized
detection approaches. In summary, our solution outperformed
two widespread coarse-grained detection techniques, showing
significantly lower detection delays and attack penetration
levels, while achieving an overall higher accuracy values.

In this paper, we present a lightweight, platform-
independent anomaly detection mechanism to be deployed
at the edge of the network (e.g., a home or IoT gateway).
To achieve true platform independence while ensuring high-
performance levels, our proposal is based on BPFabric, a data-
plane programmability architecture presented in [12]. In a
nutshell, the BPFabric platform allows to program the data-
plane of SDN network nodes and therefore, it can be partially
considered complementary to other solutions, e.g., P41. Unlike
the latter, however, BPFabric focuses on high-speed processing
and, for that reason, it is based on the Extended Berkeley
Packet Filtering (eBPF) [13] instruction set, rather than a
higher-level Domain Specific Language (DSL). Previous work
has successfully tested the line-rate capabilities of eBPF [12]–
[14]. Namely, it has been demonstrated that eBPF-based
packet processing, by acting at the socket level, significantly
improves both throughput and latency, while still offering
the advantages of kernel integration (i.e., full network stack
processing) when required. BPFabric provides true platform-
independent execution on account of eBPF, avoiding the
PISA2-based device restriction imposed by P4. Furthermore,
BPFabric goes beyond the data-plane programming capabili-
ties of P4 by defining a fully developed architecture specifying:

1https://p4.org/
2Protocol Independent Switch Architecture

the SDN controller and remote agent behaviors, the controller-
agent interactions, mandatory core packet processing func-
tionalities and message exchange procedures. The framework
hence allows to defined and deploy diverse network functions
as part of the forwarding behavior of each switching element,
from a remote centralized location.

Overall, our main contributions are: 1) the design and im-
plementation of a lightweight, platform-independent anomaly
detection mechanism based on edge functions defined as part
of the BPFabric architecture, exploiting SDN-based data-plane
programmability, 2) the implementation of an eBPF-based
detection method using Shannon’s Entropy and Exponentially
Weighted Moving Averages (EWMA) and, 3) the evaluation of
our edge-based anomaly detection scheme against a fully cen-
tralised cloud-based approach considering carefully selected
traffic features (cf. Section II) matching the particularities of
traffic anomalies in IoT ecosystems.

II. IOT-DDOS ANOMALY DETECTION

Typical DDoS attacks are said to be characterized by
high frequency of incoming packets, endpoint communications
asymmetry, and high number of source IP addresses [6][9].
However, such characteristics are directly linked to a close-to-
target detection approach and fail to describe IoT-DDoS if they
are to be detected at the attackers’ vicinity [15]. For instance,
by pushing the detection mechanism to the network edge, the
benefits from traffic aggregation are lost and hence, outliers
such as high packet rate/volume and source IP diversity cannot
be considered. For a joint scenario mixing IoT and upstream
attack identification, a tailored set of metrics is required.
The works in [9][10][15][16] provide a solid baseline for a
set of metrics in order to identify anomalous traffic in IoT
environments. Based on these findings, our set of IoT-DDoS
detection parameters is summarized below:

Destination/Source IP Address Distribution: given their
reduced functionality scope, IoT devices usually communicate
with a small set of endpoints. Therefore, anomalous traffic
can be identified by analyzing the destination IP address
distribution [9][10]. Furthermore, DDoS attacks usually em-
ploy forged source IPs to communicate with a victim host.
Therefore, to effectively identify abnormal traffic, the desti-
nation/source address space entropy can be used. According
to the findings from [10], IoT devices should mostly have
an overall low entropy. As a consequence, any change in the
entropy value over a given timeframe can be considered a sign
for an ongoing attack.

Flow Asymmetry: during a DDoS attack, the interaction
between the attacker and the target has been found to be
asymmetrical [9]. Under a DDoS attack from an IoT botnet,
the underlying IoT devices send a high number of requests
to the victim. Eventually, the target capacity is exceeded and
the symmetry of outgoing requests and incoming responses is
affected, a situation that can be identified by detection methods
placed at the attacker’s vicinity. To use traffic asymmetry as a
detection feature, the method presented in [9] is adapted and
used in this paper (cf. Section III).



Inter-packet Interval: within the time domain, the traffic
patterns of IoT devices are often quite stable with each device
sending information to, for example, remote control systems
at clearly pre-defined, arbitrary, and immutable time intervals.
In contrast to regular IoT traffic, DDoS attack incoming traffic
from an IoT device is often characterized by high burstiness
in short and periodic timeframes [8][10][15].

Packet Size: under a DDoS attack, the packet size distri-
bution for IoT devices varies greatly over time. Typically,
malicious traffic comprises bursts or steady flows of incoming
small packets around 100 bytes, while normal traffic packet
sizes are unevenly distributed from 100 to more than 1000
bytes [10]. This behavior allows us to detect anomalous
traffic by analyzing the packet size variation -i.e., number of
packets with length under 100 bytes- over arbitrary controlled
timeframes.

Packet Volume: the transferred data volume is a key param-
eter when detecting volumetric DDoS [10]. Given the reduced
and typically fixed amount of traffic periodically sent by IoT
devices, analyzing the packet volume a the network edge can
effectively lead to detect an ongoing attack.

A. Edge function-based detection

Leveraging SDN data-plane programmability and EC prin-
ciples, coarse-grained detection mechanisms can be deployed
at the network edge close to potential attackers (i.e., IoT
devices). This can be achieved through in-line edge functions
and technologies tailored to the edge node resources and
characteristics. BPFabric allows functions to be implemented
at the network edge, encoded as part of the data-plane behavior
of the device (e.g., a switch). Therefore, BPFabric provides the
added flexibility of being able to deploy the system on a wide
variety of devices already in use at the user’s vicinity (e.g.,
home gateways, access routers, etc.).

When selecting the anomaly detection mechanism, the in-
herent limitations of the edge nodes (e.g., limited resources,
rigid programmability, etc.), the goal of achieving line-rate
performance to avoid throughput or latency degradation, for
instance, and the need for fast detection, significantly reduce
the list of mechanisms that can be used. For instance, complex
detection techniques based on machine learning require high
processing capabilities unavailable on the data path of an edge
node. Moreover, the use of BPFabric, based on the eBPF
instruction set, introduces additional particularities (e.g., lim-
ited program size) that should be taken into account in order
to achieve high-speed and bound execution time. Taking the
above into consideration, the coarse-grained detection running
at the edge is forced to be fairly simple, while still ensuring an
adequate level of accuracy. In an IoT context, we believe such
tradeoff can be sorted out through adequate traffic statistics
collection combined with multi-feature analysis. Such an idea
is supported by the nature of the attack traffic characteristics
identified above (cf. Section II). For example, let us consider a
DDoS TCP SYN flood attack with variable packet burstiness
and overall low packet volume. Through a joint evaluation of
the volume, destination IP addresses and inter-packet intervals,

the attacker could be pinpointed. This is possible because the
anomaly detection system is able to conclude that, for instance,
for a certain target IP, the traffic burstiness and packet volume
(e.g., average packet size under 100 bytes) do not follow the
expected behavior.

Nevertheless, as the detection method is forced to be simple
and even following the above multi-feature analysis approach,
the detection accuracy will highly depend on the attack com-
plexity and the dynamic adjustment of the mechanisms (e.g.,
thresholds) used to detect a suspicious event. To overcome
these limitations and based on the promising results found
on previous work [5]–[7], we envision a multi-stage detection
architecture where the coarse-grained detection is carried out
close to the attackers, and the upper and more advance analysis
layers can be executed in more powerful edge nodes scattered
within the service provider network (either in a centralized
or distributed fashion). Overall, the idea behind such scheme
is to periodically collect traffic information through eBPF
filtering rules on the IoT network gateways (cf. Fig. 1). The
detection analysis is carried out through a pipeline of con-
dition evaluation steps injected into the IoT gateway running
BPFabric (the data collection is also part of the eBPF program
inserted). If any anomalous behavior is found, an alarm is
then sent to the upper detection layers on the architecture
via the controller (assuming an SDN implementation). In
case an anomaly is found, the upper layer executes further
processing (after requesting additional information if required)
and confirms if an attack has been made. In the event of a
false positive, the detection parameters on the coarse-grained
mechanism are to be adjusted to increase its accuracy.

In order to comply with the above mentioned system
limitations, we decided to use Exponential Weighted Moving
Average (EWMA) and Shannon’s Entropy for outlier detec-
tion. After the data collection interval finishes, the EWMA
(according to Eq. 1) is calculated for the following fea-
tures: packet count, rate, volume, and size distribution. Flow
completion (for the traffic asymmetry feature) is determined
through source/destination IP address pairs, keeping track of
the number of outgoing communications and the associated
responses. Finally, the endpoint/source variation over time is
checked based on the source/destination IP entropy (referred
to as H(X)) calculated using Eq. 2 [6].

EWMA = α · value+ (1− α) · last prediction (1)

H(X) = −
N∑
i=1

pi log2 (pi) (2)

III. PERFORMANCE EVALUATION

We conducted experiments to evaluate the suitability of
the proposed EWMA and Shannon’s Entropy-based detection
within BPFabric architecture (for convenience this method
is hereinafter referred to as “ESE-Detection”) to effectively
detect IoT-DDoS. The testbed used in our experiments is
shown in Fig. 2. A set of IoT networks is emulated, connected
through access routers (AR) to the Wide/Metropolitan Area
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Network (WAN/MAN), and finally to the remote cloud where
the attack targets are located. The metrics for the scenario
analysis are presented in Table I. They are selected in order to
thoroughly assess the behavior of our solution and its overall
performance. The detection pipeline collecting traffic data and
executing EWMA and Shannon’s Entropy-based detection is
run in node GW1 (i.e., the IoT gateway). The cloud-based de-
tection is executed within the emulated remote cloud collecting
traffic data from node R1. Two additional detection methods
were implemented for evaluation purposes: Cosine Similarity
[8] and Shannon’s Entropy [6][17]. Both detection strategies
were adapted to use the metrics presented in Section II, and
were selected considering their previous use in coarse-grained
DDoS detection [6][8]. Since a thresholding approach was
adopted for all detection strategies, the methodology presented
in [17] was used to optimize the threshold selection process
and enhance the overall accuracy. To emulate an attack, we
developed a Python script using the Scapy library3 to generate
spoofed source address and destination ports, targeting an
arbitrary server within the remote cloud in Fig. 2 simulating
a TCP SYN flood attack.

To generate the IoT traffic for the experiments, the tool
“Distributed Internet Traffic Generator” [18] was selected
due to its flexibility and granularity in controlling the traffic
characteristics. Furthermore, the findings presented in [19]
and [20] allowed us to model IoT traffic of a home net-
work, assuming each setup comprises the following elements:
3 smart appliances (e.g., refrigerators, washers), 4 climate
control sensors and 6 lighting control devices. The values in
Table II were assumed to generate the device data flows and
model the device normal behavior. Mininet4 was employed to
emulate the IoT network due to its simplicity and flexibility
(cf. Section IV). Overall, a round-trip delay of 100 ms
was assumed for the end-to-end communication from the
IoT networks to the servers in the remote cloud, accounting
for the processing, routing/switching, and propagation delays
involved.

Estimating the entropy of the IP distribution was quite chal-
lenging considering the limitations of the envisioned underly-
ing hardware (e.g., no support for float point operations) and
the eBPF instruction set characteristics. Consequently, Eq. 2
was adapted to overcome these restrictions. To efficiently find

3https://scapy.net/
4http://mininet.org/

the base 2 logarithm we adapted the Taylor Series expansion
method described in [21], hence approximating the base 2
logarithm through Eq. 3. The K constant value defined in
Eq. 4 was calculated beforehand and predefined in the eBPF
program.

log2(
x

y
) = K · (− log(

x

y
)) K ∈ R, x, y ∈ Z (3)

K =
−1.0

log(2.0)
(4)

Eq. 5 allowed us to effectively approximate the logarithm
of x/y (e.g., x: destination IP count, y: total destination IPs).

log(
x

y
) = a +

a2

2
+

a3

3
+ .. +

an

n
a ∈ R, n ∈ Z (5)

Where: a =
(y − x)

y
(6)

yN−1 · (2 · 3 · 4 · ... ·N) · (y − x)+
+ yN−2 · (1 · 3 · 4 · ... ·N) · (y − x)2 + ...

yN · (1 · 2 · 3 · .. ·N)
(7)

Unrolling and computing Eq. 5 as a running product allowed
us to handle all operations using integers and comply with the
unbounded loop restrictions in eBPF. As a result, - log(x/y)
was implemented as shown in Eq. 7. Where N is an arbitrarily
chosen integer (N = 2 was empirically selected, the estimation
error analysis is shown in Fig. 3) providing the desired
precision. Finally, to compute the entropy for the destination
IP variation, for instance, fast map iteration through eBPF
bpf_map_get_next_key5 was employed and eBPF maps
were used as immutable global counters when needed. To
enhance the accuracy while avoiding register overflow (i.e.,
likely to occur for large N values), we decided to multiply
the numerator by 1000. Consequently, the entropy estimation
resulted in an integer comprising up to three of the decimal
values of the real result (e.g., for an entropy equal to 1.123,
the estimated entropy found was 1120). The performance and
resource overhead is minimized by removing user-kernel space
interactions, as all computations on the detection pipeline are
executed within kernel space. The bandwidth analysis depicted
in Fig. 4 shows the minimum performance impact of ESE-
Detection processing, causing a bandwidth reduction of around
1%.

Although the estimation error is thoroughly described in
[21], we decided to conduct experiments to determine the
impact of the entropy estimation over the detection accuracy.
The findings can be observed in Fig. 3 where the cumulative
step histogram for the estimated entropy error is shown.
Overall, the estimation error fell most of the times within
1% to 3% for typical IoT traffic and within 6% to 11% in
the event of an attack. This precision level gave us sufficient
margin to effectively determine an anomaly was occurring.
The estimation error was significantly lower than the error

5http://man7.org/linux/man-pages/man2/bpf.2.html
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TABLE I
EVALUATION PARAMETERS

Parameter Description
Bandwidth Bandwidth overhaul caused by traffic redirection or data

collection in centralized cloud-based approaches.
Detection

time
Time elapsed between the anomaly occurrence until an
alarm is raised.

Attack
penetration

Amount of anomalous traffic (attack packets) inserted into
the network until an alarm is raised.

Accuracy The false positive and false negative ratio achieved.
Cost Overall expenses based on [22]: cost of information gath-

ering, data processing and detection implementation.

TABLE II
EVALUATION PARAMETERS

Feature Smart Appliance Climate &
Lighting Control

Dst. IPs 2 ∼ 10 2 ∼ 5

Num. Dst. Ports 2 ∼ 5 2 ∼ 5

Avg. Load (Kbps) 5 ∼ 25 5 ∼ 15

Packet Size (bytes) 100 ∼ 600 100 ∼ 200

Act./Idle intervals (s) 2 ∼ 10 / 80 ∼ 100 2 ∼ 5 / 10 ∼ 20

required to incur in a miss-detection, represented by the right-
most dashed lines in Fig. 3, for both regular and attack traffic.
In order to result in a false positive/negative, our estimation
error should have been at least 60% higher in any case.

Fig. 5a shows the cumulative step histogram for the detec-
tion delay for each of the implemented schemes. As expected,
the performance of the BPFabric approach is significantly bet-
ter due to the low processing delay introduced by the enhanced
data plane pipeline. The eBPF-based detection engine is able
to reduce over 80% of the anomaly identification time when
compared to both Entropy and Cosine Similarity. Such results
show the potential of BPFabric for early anomaly detection.
Powered by its high-speed and lightweight processing poten-
tial, BPFabric-based detection is capable of drastically reduce
the data processing overhead, thus resulting in significantly
lower detection timescales. Since the BPFabric detection is
running in kernel space, an inherent limitation is the lack of
access to a proper timer due to the absence of an eBPF in-
kernel function for this purpose (within the scope of the eBPF
program type we are running). As a solution, the timing is
followed using the incoming packet timestamps provided by
BPFabric.

The accuracy of the detection methods was measured using
the typical False Positive Ratio (FPR) and False Negative Ratio

(FNR) definitions, as shown in Equation 8 and Equation 9.
Maintaining per-flow data statistics using in-kernel processing
on an resource-constrained IoT gateway is unfeasible due to:
memory requirements to hold the generated data in the event
of an attack, eBPF map limitations and performance degra-
dation due to longer processing timeframes. Consequently,
the detection analysis was not performed considering the be-
nign/malicious flow count. Instead, we decided to run several
experiments executed at both fixed and random time intervals,
in order to emulate a more realistic botnet scenario, while
measuring the accuracy through the number of attacks detected
by the implemented methods. The results are presented in
Fig. 5b and Fig. 5c, where the number of executed attacks
is depicted, alongside the attacks detected by each algorithm.

FPR =
FP

(FP + TN)
(8) FNR =

FN

(FN + TP )
(9)

Where:
• FP : Number false alarms
• FN : Number of undetected attacks
• TN : True benign traffic
• TP : Number of detected attacks
Throughout our experiments, ESE-Detection had an average

accuracy of around 95%, superior to the entropy and cosine
similarity strategies (93% and 83%, respectively) for the
experiments where the attacks were executed at fixed intervals
(cf. Fig. 5b). For the randomly timed SYN flood attacks,
ESE-Detection outperformed again the remaining methods,
achieving an average of 93% versus 88% and 86% of entropy
and cosine similarity respectively (cf. Fig. 5c). Overall, ESE-
Detection superior accuracy can be expected for this ecosystem
given its segregated view of the traffic (i.e., detection executed
closer to the attackers). Conversely, the typical traffic pat-
terns of IoT devices cannot be effectively analyzed through
cloud-based scrubbing due to the traffic convergence. Some
interesting facts were found when estimating FNR/FPR. The
ESE-Detection engine was able to ensure less than 20%
FNR for both fixed and randomly timed attacks in the worst
case scenario, surpassing the maximum of 50% found for
cosine similarity and entropy. On the contrary, both these
methods performed slightly better, overall, than ESE-Detection
regarding the FPR. ESE-Detection reached a maximum of
33%, equaling the cosine similarity results and below the
25% reached by the entropy method. However, ESE-Detection
showed higher FPR values in more experiments when com-
pared to the tested strategies. This is actually expected, be-
cause of the EWMA limitations, i.e., the time it takes for the
moving average to adapt to significant changes in the input
data. A solution to this problem is to force the upper layers of
the detection architecture to continuously monitor and update
the analysis thresholds.

The attack penetration was tested to determine how much
malicious traffic could be injected into the network before an
alarm was raised by the detection engine. In Fig. 5d, the results
show that the BPFabric edge-based approach performed better
than both cloud-based methods. Less attack packets were
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Fig. 5. Evaluation results for the proposed methods: ESE-Detection, Entropy and Cosine Similarity.

inserted into the network, due to the lower detection delays of
BPFabric detection. Moreover, attack penetration values are
directly linked to the in-place mitigation strategies. Conse-
quently, BPFabric-based early detection provides the network
with enhanced flexibility and efficiency in reducing the amount
of attack traffic, by allowing upstream mitigation procedures
to be executed in a fast and reactive manner. Similar results
were obtained when evaluating the bandwidth consumption,
i.e., the network capacity required by the detection method
to collect and analyze the data. This metric was measured
checking the data message size sent to the detection algorithms
by the collecting device (R1 and GW1 in Fig. 2). For a
detection interval of 30s, the entropy mechanism employed
an average of 3.3 MB of data while the cosine similarity
was fed with around 1 MB. Conversely, BPFabric underlying
ESE-Detection collected all required traffic statistics at line-
rate on the IoT network gateway. Overall, BPFabric edge-
based detection avoids the need to continuously poll traffic
counters from the network nodes, thus preventing unnecessary
bandwidth usage and enhancing scalability.

From the aforementioned results, the BPFabric edge-based
detection approach stands out as the less costly solution to
implement and deploy, when compared to adding a dedicated
detection server/middlebox at the remote cloud or even paying
for anomaly detection as a service. In a nutshell, BPFabric
significantly decreases core operational/capital costs (e.g.,
power, cooling, processing/networking hardware), and allows
an administrator or orchestration entity to easily and remotely
control upstream packet processing and detection mechanisms
for a significantly large number of nodes with minimum effort
and low error rate. Regarding the monitoring and analysis
expenses, the edge-based detection through BPFabric clearly
outperforms the cloud-based scheme, as it introduces almost
null overhead into the network while ensuring line-rate per-
formance even for demanding scenarios and infrastructures.

IV. DISCUSSION

As mentioned above, the proposal of a BPFabric-based
detection scheme is assumed to be part of a multi-stage
distributed detection/mitigation architecture. In such scheme,
the fine-grained detection level would run at the existing edge
nodes and would engage after receiving an alarm notification
message from the coarse-grained detection phase. A platform
such as the one presented in [6] could be a solid foundation,

as it ensures a collaborative detection strategy assuming the
use of edge nodes located at different network levels. The
integration of our solution into this architecture would be
straightforward. BPFabric is to be placed at the core of
the architecture with a controlling role over the network
functions to be deployed. Such network function goals are
twofold: anomaly detection through the solution presented in
Section II, and flow data collection for fine-grained detection
when needed. To collect the required statistics, no additional
processing overhead is involved as it could be easily imple-
mented through an eBPF pipeline at each edge node. The com-
munication between the detection stages would be managed by
the controller, while the fine-grained detection stage could be
engaged using one of two methods: a) a message sent by the
controller (easier to implement but with certain performance
issues regarding delay); b) through a direct message sent by
the BPFabric agent (harder to implement as it would imply re-
coding the agent and implementing a low-level direct message
exchange mechanism).

In order to ensure the applicability of BPFabric for anomaly
(DDoS in this case) detection, another challenge to be over-
come is the need for a high-performance implementation of
the detection method developed (e.g., using the Intel DPDK
framework). This would help to thoroughly verify the packet
processing overheads introduced by the detection pipeline and
the real throughput supported by the solution. Additionally,
such implementation would allow a thorough performance
profiling of the entropy calculation, thus becoming a baseline
for further developments where the entropy method could
be used to analyze the behavior of other traffic features.
Furthermore, the integration of the solution into a multi-stage
detection/mitigation architecture remains an open question
(key guidelines are presented in the next section) and would
significantly improve the practicality of the present work.

V. RELATED WORK

The security issues of IoT networks, specially DDoS at-
tack detection and mitigation, have been thoroughly studied
[3][8][10][23]. Additionally, numerous papers have tackled
SDN-based attack detection/mitigation, leveraging the benefits
of data-plane programmability and control/data plane decou-
pling [4]. However, there is no research that does so, while
ensuring real platform-independence, upstream execution, and
line-rate performance.



Authors in [8] and [24] propose two frameworks to detect
and mitigate DDoS attacks in IoT environments. The article
in [10] presents a machine learning (ML)-based approach
to DDoS detection originating from IoT devices. A similar
solution is proposed in [23], where ML is used at the network
controller level. A remote cloud-based detection strategy is
followed in all of the above papers, which consequently lack
early detection capabilities, and result in additional network
performance degradation and longer timescales until an alarm
is raised. Moreover, it requires dedicated resources (e.g.,
servers) to carry out the detection analysis. On the contrary,
our aim is to distribute the early detection stage and place it at
the network edge (cf. Fig. 1), to be executed by virtually any
available edge device (e.g., IoT gateway), as a result of the
platform independence ensured by BPFabric. This approach
results in lower detection times and attack penetration levels,
therefore adding early detection capabilities to the network (cf.
Section III).

The authors in [3] move the traffic collection and detection
stages to the attackers’ vicinity. Overall, the authors claim
that 10 times faster detection can be achieved following
this approach, thus eliminating around 80% of the attack
traffic injected into the network. A critical limitation of this
work is that current cloud-based solution guidelines cannot be
followed at the edge due to the lack of traffic aggregation and
scalability issues. Namely, processing the IoT traffic requires
a significant number of middleboxes scattered within the
network in order to provide early detection capabilities, while
avoiding performance degradation. Additionally, another issue
in this study is the limited set of detection parameters, affecting
the results accuracy and the ability to detect complex attacks.
To overcome these limitations, we proposed an IoT-tailored
set of detection features (cf. Section II) and avoid the use of
dedicated resources to perform early and high-speed detection
through an enhanced data-plane defined in BPFabric.

VI. CONCLUSION

In this paper we have presented lightweight, platform-
independent and high-performance DDoS detection architec-
ture for IoT ecosystems, based on the BPFabric programmable
data plane. We have shown how DDoS detection in IoT can
benefit from upstream located mechanisms. The use of BPFa-
bric and eBPF-based detection minimizes the overall network
overhead and provides effective early detection capabilities.
Our results show that the proposed solution introduces a
bandwidth reduction of less than 1% and reduced several
times the detection delay when compared to other methods.
Moreover, the overall accuracy of our strategy was at least 5%
higher than the other evaluated mechanisms.
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