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Abstract—Blockchain has received tremendous attention in
non-monetary applications including the Internet of Things (IoT)
due to its salient features including decentralization, security,
auditability, and anonymity. Most conventional blockchains rely
on computationally expensive consensus algorithms, have limited
throughput, and high transaction delays. In this paper, we
propose tree-chain a scalable fast blockchain instantiation that
introduces two levels of randomization among the validators:
i) transaction level where the validator of each transaction is
selected randomly based on the most significant characters of
the hash function output (known as consensus code), and ii)
blockchain level where validator is randomly allocated to a
particular consensus code based on the hash of their public
key. Tree-chain introduces parallel chain branches where each
validator commits the corresponding transactions in a unique
ledger. Implementation results show that tree-chain is runnable
on low resource devices and incurs low processing overhead,
achieving near real-time transaction settlement.

Index Terms—Blockchain, Internet of Things (IoT), Consensus
algorithm.

I. INTRODUCTION

Blockchain, the enabling technology of Bitcoin, has re-
ceived tremendous attention in recent years due to its salient
features including security, anonymity, auditability, trust, trans-
parency, and decentralization. Blockchain is part of a broader
technology, known as Distributed Ledger Technology (DLT)
where information is grouped in the form of blocks and the
participating nodes reach agreement over the state of the
database by following a consensus algorithm. The latter en-
sures that every block in the chain is valid, prevents any single
entity from controlling the entire blockchain, and introduces
randomness and unpredictability among the nodes that append
blocks in the blockchain, also known as validators.

The salient features of blockchain made it attractive for
large-scale distributed networks such as the Internet of Things
[1]–[3]. However, applying blockchain in IoT is not straight-
forward as most consensus protocols are computationally
demanding which are not necessarily suited for IoT with
millions of heterogenous resource-restricted devices [4]–[6].
With the widespread use of blockchain in a range of diverse
domains, multiple consensus algorithms have been proposed
to reduce the overheads and fit the specific needs of the
target application. However, the existing consensus algorithms
suffer from limited throughput, resource consumption, lack
of efficiency, delay in storing transactions, and overhead in

retrieving transactions. Additionally, the existing consensus
algorithms may lead to centralization as the node with the
highest mining power may be able to control the network, e.g.,
in Bitcoin mining pools may eventually collude to control the
ledger.

To address the aforementioned challenges, in this paper,
we propose Tree-chain that bases validator selection on an
existing random function in virtually all blockchains: the hash
function output. As shown in Figure 1.a, in conventional
blockchains, all validators chain their transactions to a single
valid ledger known as the longest ledger. However, this reduces
the blockchain efficiency as it wastes computational resources
of the validators whose block is not stored in the blockchain
(see Section II), limits blockchain throughput, and increases
delay in storing transactions in the blockchain. Tree-chain, as
shown in Figure 1.b, consists of multiple parallel chains where
in each chain a single validator commits transactions whose
content hash starts with particular characters, referred to as
consensus code, without the need to dedicate computational
resources for consensus. While all validators still store the
entire chain, tree-chain randomizes how validators commit
content at two levels: transaction and blockchain levels.

At the transaction level, the validator to store each trans-
action is identified arbitrarily based on the hash value of the
transaction content which is random. At the blockchain level,
each validator is allocated to a particular consensus code based
on the hash of the validator Public Key (PK). Each character
in the hash of a PK corresponds to a particular numeric weight
defined in a dictionary. For each PK, the validators calculate
a Key Weight Metric (KWM) by adding the weights of the
symbols in the hash of the PK. Each validator calculates KWM
for all PKs of potential validators as well as its own PK. The
results are then ordered in descending order. The consensus
codes are allocated to the validators in order starting from the
largest KWM.

Each validator continuously stores blocks in the blockchain
for a particular duration of time known as epoch time. At the
end of each epoch time, the validators choose a new PK and
repeat the outlined algorithm to ensure the consensus code
corresponding to each validator changes in each epoch time.
Tree-chain does not require the validators to solve any puzzle
before appending new blocks, thus the transactions can be
stored in the blockchain with negligible delay which makes
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Fig. 1. A highlevel view of a) conventional blockchains, b) tree-chain (blocks
with the same border share the same consensus code).

it appropriate for real-time applications of IoT. The upper
bound throughput is the speed at which the validator can verify
transactions, group them in blocks, and append the block to
the blockchain. Essentially the computational cost of tree-
chain is the KWM computation and ordering of all KWMs,
which is significantly lower than the computational cost of
the current consensus algorithms. As outlined earlier in this
section, throughput is one of the fundamental challenges in
applying blockchain for IoT. Tree-chain is self-scaling as it
can adjust blockchain throughput in response to an increase in
transaction load. Recall that each validator stores transactions
with a particular consensus code. If the number of transactions
with a particular code increases, the corresponding validator
randomly selects a new validator from an interested pool
of non-validator nodes. To ensure randomness among the
interested nodes, the node with the highest KWM is chosen as
the new validator. The original consensus code is then split into
two smaller range consensus codes, where one is assigned to
the original validator and the other to the new validator. Tree-
chain is lightweight from a computation perspective, while
achieving high security which makes it suitable for both public
and private blockchains in large scale networks such as IoT.

The rest of the paper is organized as follows. Section II
studies the existing solutions to reduce blockchain overheads.
Section III outlines the details of tree-chain. Section IV
provide an analysis of the security of tree-chain and Section
V studies the performance of tree-chain. Section VI discusses
the future research directions and finally Section VII concludes
the paper.

II. LITERATURE REVIEW

In this section, we review the existing works relevant to
Tree-chain. We first discuss the existing blockchain-based
solutions for IoT in Section II-A followed by a review on
the existing consensus algorithms in Section II-B.

A. Blockchain-based IoT

In recent years, blockchain applications in IoT has received
tremendous attention from academia and practitioners. The
authors in [7] proposed a hierarchical blockchain-based access
control in IoT that consists of three layers: i) device layer:
this layer comprises of IoT devices, ii) fog layer: this layer
comprises of higher resource available devices that connect

the IoT to the blockchain, and iii) cloud layer: this layer
comprises of cloud servers that manage the blockchain by
verifying and appending new blocks. In [8] the authors studied
the blockchain applications to secure communications among
the smart vehicles. The authors in [9] studied the blockchain
applications in managing smart grids. An energy marketplace
framework is proposed where the energy consumers and
producers can trade energy without relying on trusted third
parties. The authors in [10] proposed a blockchain-based
solution to remotely update the software of IoT devices.
The framework ensures security of communications and the
exchanged software update which in turn protects against
modified software updates. The authors in [11] proposed a
blockchain-based solution to share health data in a secure,
reliable and private manner. The proposed framework is a
hierarchical approach where only authorized nodes can access
data of the patients.

Due to the significant potential of blockchain, multiple
blockchain instantiations have been proposed by academia and
practitioners to adopt blockchain based on the requirements
of non-monetary applications. Ethereum [12] is a blockchain
framework introduced in 2014 that enables the blockchain
participants to run Distributed Applications (DApps) on top
of the blockchain. Based on the computational resources
demanded by each DApp, the user must pay a fee to the
blockchain participants who run the code. Hyperledger [13] is
a project run by Linux foundation that comprises of a number
of blockchains each optimized for particular applications.
Hyperledger Fabric [14] is run by IBM and aims to provide
blockchain solutions for industry applications. The consensus
algorithm (see Section II-B) can be plugged in based on
application requirements which provides high flexibility.

The authors in [15] proposed a framework where a summary
of a group of transactions is stored in the blockchain to reduce
the blockchain memory footprint and increase throughput. A
logging server collects transactions and forms them into a
single log transaction that essentially contains the hash of each
transaction. The latter is then stored in the blockchain. In [16]
the authors proposed a lightweight blockchain instantiation
known as LightChain. LightChain encourages the IoT nodes
to collaborate by defining a collaboration index that impacts
the mining power of a node. To reduce the size of the
blockchain an unrelated block offloading filter is introduced
that offloads the old blocks and thus not all nodes require
to store those. In our previous work [4] we proposed a
lightweight scalable blockchain (LSB) for IoT ecosystem. LSB
introduces a time-based consensus algorithm that allows the
validators to generate one block per pre-defined time intervals.
LSB introduces a throughput management algorithm to ensure
self-scaling feature of blockchain.

In conventional blockchains all transactions are boradcast
and verified by all the participating nodes which in turn
increases the packet and computational overheads. To enhance
the blockchain scalability, the concept of sharding is proposed
in the literature [17] that refers to partitioning the network
into different groups, i.e., shards, where the nodes in each



shard are only responsible to manage transactions in their
own shard. The information of each shard is shared with
all other shards enabling decentralized management of the
blockchain, however, only the nodes in each shard verify and
store transactions in the corresponding shard.

In this section, we studied the blockchain applications in
IoT. Consensus is the key to the blockchain that impacts
the computational overhead, delay and throughput. The main
contribtuon of tree-chain is to introduce a fast and lightweight
consensus algorithm, thus in the next section, we review the
existing consensus algorithms.

B. Consensus Algorithms

In this section, we discuss some of the well-known consen-
sus algorithms in the literature and analyze their limitations in
IoT.

Bitcoin is the first distributed cryptocurrency introduced in
2008 which employs Proof Of Work (POW) as the underlying
consensus algorithm [18]. POW involves a computationally
demanding, hard-to-solve, and easy-to-verify cryptographic
puzzle which requires the miners, i.e., the vlaidators, to find
a nonce value in a way that the hash of the block content
along with nonce starts with a particular number of zeros.
This, however, demands significant computational resources
from the participating nodes. In recent years, particular mining
devices known as ASIC miners are manufactured which offer
high hash rate. The difficulty, i.e., the number of leading zeros,
of POW is dynamically adjusted to ensure that only one block
an be mined during each 10 minutes. As POW difficulty
increases, mining pools emerged where a group of miners
work on a single block and share the revenue to enhance
their chance of mining a block. Mining pools may lead
to centralization as pools with large number of participants
potentially may have large portion of mining power.

In POW only the miner that solves the puzzle and thus
stores the next block is rewarded. This potentially wastes the
resources of other miners that simultaneously worked on the
same block. The authors in [19] proposed a modified version of
the POW that rewards the miners that partially solved the POW
puzzle to provide further incentive for the nodes to participant
in mining process.

Ethereum [12] proposes Proof of Stake (POS) consensus
algorithm where the mining power of the validators is identi-
fied based on the amount of assets the validator locked in the
blockchain. The validators with more locked assets have more
mining power which potentially increases the chance of such
node to store the next blocks. POS significantly reduces the
computational resource consumption of blockchain compared
to POW, however, in IoT with large dominant companies, e.g.,
Google, POS might potentially lead to centralization.

Proof Of Authority (POA) [20] is a consensus algorithm
which conceptually shares similarities with POS. In POA,
the mining power of each validator comes from their identity
rather than the amount of locked assets in POS. The validators
are limited to a selected pre-defined nodes that are known
to all participating nodes in the blockchain. This potentially

raises privacy concern as the participants can track the revenue
gained by each validator.

Intel proposed a time-based consensus algorithm known as
Proof of Elapsed Time (POET) [21]. POET is a leader-based
consensus algorithm where the participants choose a leader
to store the next block. The candidate validators generate
a random waiting time and the validator with the shortest
time is selected as the leader. The random waiting time is
generated in Trusted Execution Environment (TEE) in Intel
CPUs which prevents against malicious validators that may
claim to always have a short waiting time. Thus, POET
requires all the participants to be equipped with Intel CPU
which is challenging in IoT with millions of heterogenous
devices.

In Federated Byzantine Algorithm (FBA) [22] each potential
validator randomly selects a group of other validators and
forms a quorum. The validators then share their quorums. If
there exist intersections between quorums, the validator that is
chosen by more validators is selected as the leader. In case no
intersection can be found the network may take apart, forking
occurs in the blockchain. FBA incurs high packet overhead and
processing delay as the validators has to broadcast the quorum
information and analyze the quorum of other validators for
each new block stored in the blockchain.

The existing blockchain consensus algorithms (some of
which discussed above) suffer from a number of challenges
for IoT ecosystem which are discussed below:

• Throughput management: In a blockchain context,
throughput is defined as the total number of transactions
that can be stored in the blockchain per second. The
Bitcoin throughput, for instance, is seven transactions per
second. IoT consists of millions of devices, SPs, and users
that communicate through transactions which potentially
leads to millions of transactions which is far beyond the
current throughput of the blockchains. Although new con-
sensus algorithms improved the blockchain throughput,
the ever increasing number of devices and services in IoT
demands a self-scaling blockchain. Thus, an IoT-friendly
consensus algorithm is required to adjust the network
throughput as the number of transactions increases.

• Computational efficiency: In most of the existing
blockchain instantiations, the validators attempt to append
pending transactions in the blockchain simultaneously.
The validtor that first follows the consensus algorithm
rules wins the competition and thus can store block in the
blockchain, while the resources spent by other validators
is wasted as they shall start mining the next block.

• Delay: In most of the existing consensus algorithms,
mining transactions in the blockchain involves delay that
is for the validators to run the consensus algorithm and
reach agreement over the state of the blockchain. This
delay increases as each node has to wait for a particular
number of blocks to be chained in the current block
before accepting a transaction. In IoT ecosystem, the
transactions are employed to offer personalized services
to the end-users, which demands near real-time transac-



TABLE I
DEFINITION OF THE ABBREVIATIONS AND INDEXES USED IN THIS PAPER.

Notion Meaning
PNi Participating nodes in the blockchain
valj Blockchain validators
ti Transaction generated by PNi

pkval
+ public key of node ”validator”

`j A blockchain ledger generated by valj
∆ Epoch time to store blocks
ð pre-setup time for consensus code formation
δ time interval for which a transaction is valid
J set of validators

tion processing time. As an example, a smart home user
cannot wait 30 seconds for the smart lock to open the
door of the home.

• Transaction retrieval: The participating nodes in the
blockchain, in particular the validators, may need to
retrieve a previously stored transaction, e.g., a validator
may need to retrieve the previous transaction of the newly
received transaction for verification. For this the validator
has to search the blockchain database which in turn
incurs delay and processing overhead. IoT users demand
frequent access to their previously stored transactions
which in turn amplifies the corresponding delay.

• Resource consumption: The existing consensus algo-
rithms consume significant computational, bandwidth, or
storage resources of the validators. The resource consum-
ing consensus algorithms aim to protect against double
spending attack, where a malicious node spends the same
coin twice. However, IoT applications may not involve
asset transmission and thus double spending may not be
as relevant as it is for cryptocurrencies.

In this paper, we propose tree-chain that provides a com-
prehensive solution to the aforementioned challenges and is
discussed in details in Section III.

III. TREE-CHAIN

This section outlines the details of Tree-Chain that addresses
the limitations of the existing frameworks as outlined in
Section II. Table I represents the list of abbreviations and
indexes used in this paper. Each index, say index i, refers
to the varying index, if refers to the last character in the
set, and I refers to the set of indexes. Tree-chain introduces
a load balancing algorithm (as discussed in Section III-D)
that ensures self-scaling feature of the blockchain and thus
addresses the throughput challenge. While all validators store
the entire chain, the intuition of tree-chain is that the selection
of validators for committing transactions and blocks to the
ledger can be randomized at minimal computational cost, using
the hash function outputs. The validators commit transactions
based on the most significant bits of the hash of the transaction
which is referred to as consensus code. Each validator is
randomly allocated to a particular consensus code for an
epoch period. Thus, each transaction is committed to the
ledger only by one randomly selected validator which in
turn increases efficiency. The consensus algorithm demands

Fig. 2. An overview of Tree-chain.

no extra computational or processing which in turn reduces
the delay in storing new blocks to near real-time. Tree-chain
is a non-linear blockchain structure (see Figure 1.b) where
the transactions in each ledger share the same consensus
code which in turn speeds up the transaction retrial process.
As shown in Figure 2, each validator only commits blocks
in a particular ledger for a particular time-frame known as
consensus period, represented as ∆. The setup process for
each ∆ takes an extra ð that is the time taken to setup the
consensus code and is discussed later in this section.

At the beginning of ∆ the validators are allocated to a par-
ticular ledger based on their pk+. The allocation information
is stored in a block known as the genesis block as shown with
gray boxes in Figure 2. The validators chain their ledgers to
the genesis block. Tree-chain can be considered as a leader
selection algorithm where a leader is selected for a period of
time to append transactions for a given consensus code. The
usage of leadership algorithms in blockchain is not new. POET
[21] , POA [20], and FBA [22] employ leadership algorithms
where the leader eventually appends one single block in the
blockchain. Tree-chain significantly reduces the packet and
processing overhead for selecting a leader by extending the
duration that a leader is valid, while ensuring the randomness
of the transactions that the leader can store. At the end of each
∆ the validators are changed (see Section III-C) that enhances
the randomization level and thus protects against malicious
validators that may attempt to store fake transactions in the
blockchain. The number of ledgers in the blockchain equals
with the number of validators. To achieve randomness among
the potential validators and to protect the security of the ledger



Algorithm 1 Tree-chain
1: Send tvi . Validator Selection
2: Calculate KWM
3: Form consensus code
4: Inform validators of selected consensus code
5: if KWM of j is Max among validators then
6: j to generate genesis block
7: Collect trans within consensus code . Block generation
8: if pending-pool.size > block.size or time > block.time

then
9: Create the hash of trans in block

10: Append new block to the ledger
11: Broadcast block in the network
12: if time.now()=∆n − ð then . Validator Reformation
13: Follow steps 1-4
14: if validator is overloaded then . Load Balancing
15: Broadcast new validator request to network
16: Receive tvi

17: Calculate KWM
18: Select node with highest KWM as validator
19: Divide consensus code

tree-chain introduces two randomization levels which are:
i) Transaction level: The main aim of this level is to identify

the validator in charge of storing transactions with a given
consensus code value. Assume ti represents a transaction gen-
erated by node i. h(ti) = {β1β2β3...βkfαkf+1...αnf} where h(ti)
represents the hash of ti and n is the size of the hash function
output, k is the size of the consensus code, and αn & βk ∈ H
where H = {0, 1, 2, 3, ..., 9, a, b, c, ..., z, A,B,C, ..., Z}.

ii) Blockchain level: The main aim of this level is to identify
the validator corresponding to a ledger based on pkval

+. The
validator of each ledger collects transactions that start with a
consensus code, thus each ledger corresponds to a particular
consensus code. Let’s assume ∀j, h(pkj

+) represents the
hash of the pkval

+ of valj. h(pkj
+) = {α1α2α3...αnf}. The

validators run a randomization algorithm (see Section III-A)
that allocates a particular consensus code to each valj. Each
validator is responsible for transaction hashes whose most
significant characters matches its consensus code. In other
words, a validator with consensus code β1β2β3...βk is then
only responsible for collecting transactions (represented by t)
where h(t)= β1β2β3...βkfαnf-kf ...αnf .

Tree-chain consists of four main phases which are:
1) Validator selection
2) Block generation
3) Validator reformation
3) Load balancing
A high-level overview of the steps involved in tree-chain is

outlined in Algorithm 1 and details are discussed in the rest
of this section:

A. Validator Selection

Tree-chain is a non-linear blockchain where a particular
validator appends blocks in its corresponding ledger for each

Fig. 3. The process of selecting validators

∆. Each validator is allocated to a consensus code based on
their pkval

+. Recall that the setup of the consensus code take ð
which is an additional time to ∆. Thus, ∆m = ∆m−ð, where
∆m is round m of epoch time. Consensus code setup involves
four main tasks, which are discussed in the next paragraph,
each taking ð/4 that is referred to as ðm where m=1,2,3,4. It is
assumed that PNi are time synchronized [23], [24]. The value
of ∆ should be chosen by considering the end-to-end delay
in the network to ensure that transactions can be distributed
during each δ. Figure 3 depicts a high level view of the process
involved in selecting validators that is outlined in details in the
rest of this section.

During ð1 PNis that are interested to function as validator,
express their interest by generating a validator interest transac-
tion (represented as tvi) that is structured as < t id, pk, sign >
where t id is the transaction identifier that is the hash of the
transaction content. pk corresponds to the pki

+ of the node that
must be verifiable through a Certificate Authority (CA). This
protects against sybil attack where a single node pretends to
be multiple nodes by generating multiple tvis (see Section IV).
sign is the signature corresponding to pki

+. tvi is broadcast to
the network. Any tvi that is generated after ð1 is discarded by
the network.

During ð2 PNi receive tvi and verify it by verifying the pk
using CA and matching the sign with pk. For each received
tvi, PNi calculates a KWM as KWM =

∑n
r=1 ω(αr) where

ω(αr) is a numerical weight corresponding to each possible
value of αn. Recall that αn ∈ H. The weight corresponding
to each αn is extracted from a Key Weight Metric (KWM)
dictionary, an example of which is shown in Table II. All PNi

apply the same KWM dictionary to ensure they all have the
same view of KWM. The blockchain designers populate the
KWM dictionary. As an illustrative example, Table III presents
h(pkj

+), the corresponding KWM, and the allocated consensus
code (discussed later in this section) for nodes shown in Figure
4. To calculate the KWM, we employ Table II as KWM
dictionary.

Recall that the consensus code is β1β2β3...βkf where βk ∈
H and k is the size of the consensus code. k depends on the
total number of received and verified tvi during ð1. The value
of k should be chosen in a way that each PNj is allocated a
unique consensus code. As βk ∈ H, each βk can accommodate
maximum of 62 validators. In case of 62 validators, each



Fig. 4. Tree-chain network.

validator is allocated to one particular value in H. If the
number of validators exceeds 62, then k > 1. Note that we
use this rule for explanation purposes, however, the allocation
of the consensus code is a design choice.

PNi create a descending ordered list of the received tvi

based on KWM value, represented as KWM1, KWM2, ... ,
KWMjf where KWM1 is the first in the list. PNj corresponding
to KWM1 is selected as the validator of the first range of
the consensus code, represented by code1. As an example,
consider the network shown in Figure 4. The network consists
of 5 validators thus k=1. Table III outlines the ID, PK, the
KWM, and the consensus code range for each validator. KWM
is measured based on the dictionary represented in Table II.
As KWM12 is the highest value, 12 is allocated to the first
consensus range (assuming that the consensus code range
priority is numbers, uppercase letters and lowercase letters).
KWM2 is selected as the backup validator for code1 that i)
monitors the behavior of the main validator to detect any
malicious activity, and ii) functions as backup in case the main
validator is disconnected or leaves the network. The consensus
range is then allocated to the other validators based on KWM
in a descending order.

TABLE II
EXAMPLE OF KWM DICTIONARY.

α ω(α)
0-9 0-9
A-Z 11-36
a-z 37-62

During ð3 valj sends its own consensus code range along
with the total number of validators, i.e., jf, from its perspec-
tive to all validators. Each validator decides on the split in
consensus code range by dividing the consensus code range
by the total number of validators. This ensures that valjs
are consistent about the total number of validators and their
corresponding consensus code range. valjs that receive this
packet reply with confirmation after checking the values. Any
inconsistency is resolved by considering the 66% majority of
valj. This number is inspired from the Byzantine algorithm
[22] and may vary depending on the application.

During ð4 valj with the highest KWM generates a block,
also known as genesis block (bgen). Tree-chain differentiates
between the first genesis block and the subsequent genesis
blocks. The subsequent genesis blocks, e.g., g1 in Figure 2,

are the last blocks in the previous ∆ that store the hash of
the ledgers generated during ∆. Thus once the process of
generating subsequent genesis blocks is started, the validators
shall no longer generate a block. The genesis blocks are
structured as follows:
< Totalval, < pk+

valiw , consensus codevaliw , signvaliw ,
hashlw >>

where w = J∆∪J∆-1 and J∆ represents the set of validators
in round ∆. Totalval is the total set of validators for the next
∆. The next field is a tuple that includes pk+, consensus code
range, signature and hash of the ledger for each valw. hashlw is
the hash of the ledger of blocks generated by valw during the
last ∆, i.e., ∆−1. For new validators, hashlw is set to null, i.e.,
if valw ∈ J∆ & /∈ J∆-1 then hashlw = null. If a validator in
the previous round no longer wishes to function as validator,
then its corresponding consensus code is set as null, i.e., if
valw /∈ J∆ & ∈ J∆-1 then consensus codevaliw = null.
Once valw populates the genesis block with hashlw , it should
no longer generate new blocks. bgen must be signed by more
than 66% of the participants to be considered as a valid genesis
block.

Following the outlined steps, PNi agree on the validators of
the next blocks. valj starts storing new blocks once the new
epoch, i.e., ∆, starts.

B. Block generation

Each valj collects and verifies transactions in its consensus
range, as an example, val3 in Table III stores all transactions
where t.hash = β, α1, ..., αkf-1, where β ∈ A,B,C, ...,M .
Tree-chain enables two modes for generating new blocks: i)
block size: where valj generate a new block when size of
the pending transactions, i.e., the transactions that are not yet
stored in the blockchain, reaches a pre-defined value known
as block.size, and ii) block time: where valj generate a new
block at the end of particular time intervals, e.g., 10 seconds,
known as block.interval. In networks with low transaction
load, one may consider generating blocks based on block time
that will set an upper bound for the delay experienced by the
users to store their transactions in the blockchain, while in
networks with significant number of transactions block size
can be considered that standardizes the size of blocks in the
ledger. Note that the same method applies to all validators.

In tree-chain appending a new block to the ledger does not
require valj to solve any puzzle or provide proof of X. Recall
that tree-chain achieves randomization in two layers, which
are blockchain and transaction layers, and thus eliminates the
need for solving a puzzle before storing new blocks. Thus,
the upper-bound throughput for valj is the speed at which valj
can collect transactions, verify them, and form new blocks
which is relatively fast. Recall that tree-chain has a non-linear
structure where each valj chain blocks to its own ledger.

To ensure that all valj have the same
view of the overall state of the blockchain,
< hash.ledger1, hash.ledger2, .., hash.ledgerjf ,merkle −
tree > is appended to the block headers. Due to high speed
in block generation, it is possible that valA do not receive a



TABLE III
AN EXAMPLE OF CONSENSUS TABLE BASED ON FIGURE 1.

ID PK KWM Consensus code range
12 axqPe96aiwZjQ 482 1-9
3 aQfx12ijAtcTM 419 A-M
4 J94Vswa72liac 356 N-Z
13 Mq83V2mq62kEl 341 a-m
9 Rnah72Mec123a 314 n-z

new block from other valj between two blocks generated by
valA. In this case, valA sets the corresponding hash.ledgerj
as null to reduce the associated overheads. Storing the hash
of all the ledgers in the blockchain increases the blockchain
database size over time. Each valj generates a merkle tree
using < hash.ledger1, hash.ledger2, .., hash.ledgerjf >
and stores the root of the merkle tree in merkle-
tree field. At the end of ∆, valj removes
< hash.ledger1, hash.ledger2, .., hash.ledgerjf > from
the block headers while maintaining merkle − tree. Tree-
chain employs the method as proposed in [25] that enables
validators to remove the outlined fields while protecting the
consistency of the chain. Note that the hash of each ledger is
stored in bgen that can later be used to validate transactions
in a ledger.

valj populates pkvalj
+ and the corresponding signature on

the block. pkvalj
+ must be the same pk used during consensus

code formation that ensures only the nodes that have been
selected during consensus code formation generate blocks. The
validator then broadcasts the block to the network.

Upon receipt of the new block, barv, valj verifies the block
by following the below steps:

1) Verify if the consensus code of the transactions in barv

matches with the consensus code corresponding to the
barv.generator using the pkvalj

+ field in the block header.
2) Verify the signature of barv using the corresponding

pkvalj
+.

3) Verify the merkle tree of the ledger hashes in barv header.
4) Verify if the transaction timestamp is within a particular

time interval of the current time represented by δ that
is defined by the blockchain designer. This is similar to
expiry time in conventional blockchains. This protects
against malicious nodes that may attempt to double
spend a transaction as discussed in Section IV.

5) If a transaction, say tin, in barv is spending the output
of a previous transaction, say tout, then valj requests
the previous transaction’s validator valout to sign the
transaction. Recall that in tree-chain valj store blocks
simultaneously, thus a malicious node may attempt to
conduct double spending attack, i.e., spend the same
coin twice. Malicious node may generate two transac-
tions spending the same coin to two users. The hash
of the transactions and thus the validators are different
which may lead to both transactions to be stored in
the blockchain. Tree-chain protects against this attack
where valj request the validator of tout to sign the same.
Upon receipt of the request, the validator of tout verifies

the transaction, signs the request, and return it back
to valj. To ensure that the transaction is not double
spent, the validator of tout sets a spent flag for the
transaction and add its signature. These fields are not
included in the calculation of the block hash and thus
do not affect the blockchain consistency. Similar to
conventional blockchains, valj maintains a list of unspent
transactions to speed up the verification of transactions
that spend unspent output. We will further study the
double spending attack in Section IV.

The verification of the transaction may involve more pro-
cesses depending on the blockchain application. valj generate
blocks as outlined above during ∆. At the end of ∆ the
validators are reformed as outlined in the next section.

C. Validator reformation

In each ∆ time, all validators reform the validators list
which: i) enables new validators to join the validators’ list, and
ii) introduces a further layer of randomization as the consensus
code corresponding to a validator changes in each ∆.

The reformation process starts at time.∆n − ð where
time.∆n is the scheduled start time of the next epoch. Recall
that ð allows valj to choose new validators in the background
before ∆n-1 is finished. This ensures that the end users do
not experience delay for their transactions to be stored in the
blockchain due to consensus code formation.

The process of consensus code reformation is the same as
outlined in Section III-A. In case valj decides to continue its
role for the next ∆ round, it must use a new pkj

+. Using the
same pkj

+ in ∆n and ∆n-1 may lead to the same consensus code
allocation, which in turn impacts the validator randomization.
To address this challenge, ∀j; pk+

j ∈ ∆n 6= pk+
j ∈ ∆n-1.

All tvi inconsistent with the outlined rule, are discarded. The
dynamic validator selection also provides a load balancing
benefit for large-scale IoT networks, by incorporating addi-
tional validators when the load increases, as discussed below.

D. Load Balancing

As the number of transactions generated by PNi increases,
the number of transactions in each consensus code range also
increases. Recall that the hash function output is random, thus
there is no guarantee that the load is equally divided between
validators. valj, referred to as overloaded validator, valover, in
the rest of this section, may be overwhelmed with a large
number of transactions in its corresponding consensus code. In
such case, valover can request new validator to join by sending a
validator request to PNi. The interested PNi reply by sending



a tvi(see Section III-A). valover follows the same steps as in
Section III-A and selects the node with the highest KWM
as new validator. valover divides the corresponding consensus
code range in two and allocates each range to one validator.
As the consensus code range is divided, the ledger is also is
divided by creating a new fork that is used by the new validator
to store blocks. As an example, in Figure 2 ”A-M” range is
divided into two leading to two new ledgers ”A-G” and ”H-
M”. The first range is allocated to the overloaded validator,
and the second is allocated to the new validator. The load
balancing algorithm assists valover to reduce the processing
overhead till the next ∆. Thus, there is a tradeoff for valover

to consider the delay in adding a new validator and the time
till the end of the current ∆. We leave the detailed discussion
for our future work.

As the output of the hash function is random, it cannot
be guaranteed that the load is divided equally between the
validators. In case after load balancing a validator is still
overloaded, the process is repeated for that particular validator.
Utilizing the outlined process, tree-chain achieves self-scaling
feature.

IV. SECURITY ANALYSIS

In this section, we analyze the security of tree-chain against
various attacks. We assume that adversary, represented as
advk where k ⊂ I & k >= 1, can sniff communications,
discard transactions (ti) and blocks (bj), and create false
transactions (tfa) and blocks (bfa). We assume that standard
encryption methods are in use and cannot be compromised by
the adversary. We study four different attacks below:

Double Spending Attack: Assume advk owns a digital asset
κk according to a transaction tin. The transfer of κk from advk

to a PNi is represented as κk ⇒ κi. In this attack, that is
known as double spending attack, κk ⇒ κx & κk ⇒ κy where
x, y ∈ I .

Defense: Tree-chain introduces a layered defense that makes
it impossible to conduct double spending. Recall that tree-
chain is designed for IoT applications where the asset trans-
mission is not as common as cryptocurrencies thus double
spending may not apply for all transactions. However, we
study this attack to provide a comprehensive study on tree-
chain security. advk may conduct this attack using one of the
following methods:

i) advk generates and broadcasts transactions corresponding
to κk ⇒ κx and κk ⇒ κy simultaneously. Given that the
content of these transactions, and thus the corresponding
hash, varies, different valj may attempt to store transactions
simultaneously which potentially leads to a successful double
spending. Similar to the conventional blockchains, when valj
receives a transaction that transfers an asset, say tin, it checks
the blockchain to verify if the output of tin has been spent.
As advk generate the transactions simultaneously, the above
verification will pass and both valj store transactions.

Tree-chain protects against this in two layers. As outlined
in Section III-B, before verifying tin, valj requests valm to sign
the transaction where m ∈ J and the hash of the transaction

TABLE IV
PROCESSING TIME TO CONDUCT DOUBLE SPENDING ATTACK.

j Time(s)
10 19
20 52.9
50 265.1
100 1714.6

to be spent, represented as tout, falls in the consensus code
range of m. Upon receipt of the request valm marks tout as
spent by setting a flag. Later if tout is used as input in another
transaction, valm will receive another request from valj. Given
the flag is set as spent, valm informs valj that tout has already
been spent.

Recall that tree-chain achieves two levels of randomization
in blockchain and transaction levels. However, it still might
be possible for advk to control valm. If so, advk confirms
both transactions. The second protection layer relies on the
distributed nature of the blockchain. As all transactions are
broadcast, valj will eventually receive the blocks containing
the double spent transactions and thus can detect the double
spending during block verification. In such case, the malicious
behavior of advk, i.e., valm, is reported to the network. The
network utilizes the double spent transactions as evidence and
agree on the malicious behavior of advk. Thus, advk is removed
from the validators list. To prevent advk to re-join the network,
the CA prevents issuing new pk+ to the advk.

ii) advk attempts to generate two transactions corresponding
to κk ⇒ κx & κk ⇒ κy where x, y ∈ PN in a way that
hash of the transactions falls within the consensus code range
of advk. Hash function output is completely random and thus
advk cannot manipulate it. advk can only conduct brute forcing
by changing the transaction values in a way that the final
hash falls in a particular range. A transaction is structured
as < T ID, timestamp, input, output, pk, sign >. advk

may only change timestamp and pk to conduct brute force.
Recall from Section III that the transactions in a block must
be generated within a particular time range of the block
generation time which limits the possible range of values
for timestamp. Creating new pk and thus a new sign incurs
significant computational overhead on advk.

Depending on the number of valj, there is always a chance
for a successful double spending as discussed above in method
(ii). We studied the time taken to conduct the attack (details of
the implementation are outlined in Section V). advk continues
changing the timestamp of the transaction until the hash of
the transaction falls within the consensus code associated with
advk. Table IV represents the implementation results which are
the average of 10 runs of the algorithm. We assumed there is
one adversary in the network.

It is expected that a large number of validators will par-
ticipate in Tree-chain as storing new blocks does not involve
solving any puzzle or spending resources. With the large num-
ber of validators, the consensus code range increases which
reduces the probability of a successful double spending attack
as proven by the results discussed above. As outlined earlier



in this section, tree-chain provides two protection layers, and
thus the double spending attack will eventually be detected by
the participating nodes in the network.

Denial of Service Attack: advk selectively store transactions
in its corresponding consensus code range which potentially
impacts the services received by PNi whose transactions fall
in the consensus code corresponding to advk.

Defense: The impact of this attack depends on the size
of J, as with more validators the impact of this attack is
limited as fewer transactions will fall in a particular consensus
code range. Tree-chain protects against this attack benefiting
from the distributed nature of the blockchain. valj monitor
the cumulative number of transactions generated within a
particular consensus code range and the number of such
transactions actually stored by the the corresponding validator.
In case that the difference between two values reaches a
particular threshold, defined by the blockchain designer, valj
choose a new validator for the corresponding consensus code
by following the same process as outlined in Section III-A.

Sybil Attack: advk attempts to control a broader consensus
code range by pretending to be multiple PNi by advertising
multiple pk+s. By increasing the controlled consensus code
range, advk aims to increase the probability of a successful
double spending attack.

Defense: Tree-chain requires a pk+ used during consensus
code formation step to be certified by a CA. The latter may
require the requesters to either provide documents to identify
them-selves, or pay a specific amount. Thus, employing multi-
ple pk+ potentially increases advk cost. Recall from Section III
that tree-chain introduces two levels of randomization which
are in blockchain and transaction level. Even if advk succeeds
in controlling a larger percentage of valj, the transaction level
randomization cannot be controlled.

Node Isolation Attack: advk attempts to isolate a group of
valj by dropping packets to or from them. This may decrease
the number of valj and thus lead to a larger consensus code
range for advk that enables them to conduct double spending
attack.

Defense: Similar to other existing blockchains, tree-chain
provides a number of entry points which are the nodes whose
address is publicly announced so the new nodes can join the
network. A malicious entry point may connect new nodes to
a set of malicious nodes that isolate new nodes from tree-
chain. New PNi may use multiple entry points which in turn
connects them to a broader range of nodes in tree-chain and
thus mitigates the impact of this attack. As studied earlier in
this section, tree-chain provides multiple layers of security and
thus increasing the consensus code range will not guarantee a
successful attack.

Summary of security analyses: In this section, we analyzed
the security of tree-chain against a range of malicious behav-
iors. It is proven that the security of tree-chain largely relies
on two levels of randomization in blockchain and transaction
level which make it complicated and resource consuming
for an attacker to conduct attack. Tree-chain is designed for
large scale networks such as IoT and thus the number of val

is expected to be large which in turn limits the impact of
malicious behaviors.

Having discussed the security, we next discuss the fault
tolerance of tree-chain.

Fault tolerance: Fault tolerance reflects the resilience of an
architecture against failure of PNi. As valj store new blocks,
their failure may impact the fault tolerance of tree-chain.
Recall from Section III-B that there exists a backup validator
for each consensus code that covers the failed validator for
the consensus code. If both valj and the backup validator fail,
the transactions in the corresponding consensus range will
no longer be stored in the blockchain which is detected by
other valj as outlined earlier in this section. The validator that
stored the genesis block in this ∆ will initiate the process
to select a new validator as outlined in Section III-A. Thus,
failure of a valj has limited impact on the transactions that fall
within that particular consensus code range. To improve the
fault tolerance of tree-chain multiple valj may collaboratively
generate transactions with a particular consensus code range
which we leave for future work.

V. PERFORMANCE EVALUATION

In this section we study the performance of tree-chain. As
discussed in Section III, tree-chain incorporates fundamental
changes to conventional blockchains and thus we were unable
to use the existing simulation environments, such as Hyper-
ledger Fabric [14], to study the performance of tree-chain. We
implemented full functions of tree-chain using Java program-
ming language. To prove that tree-chain is runnable by low
resource available IoT devices, we studied the performance of
tree-chain on Raspberry Pi 2. The presented results are the
average of 10 runs of the algorithm. We studied the following
metrics:

• Consensus code formation processing time: This is the
time taken for each valj to follow ð1 − ð4 as outlined in
Section III-A. We disregarded the communication delay
as it depends on the network setting and is not impacted
by tree-chain design.

• New block generation processing time: This is the time
taken for each valj to follow steps in III-B to generate a
block and append it to the blockchain.

• Load balancing: This metric evaluates the impact of the
load balancing algorithm by studying the processing over-
head on valj before and after running the load balancing
algorithm.

• Double spending: This metric evaluates the processing
time incurred to protect against double spending attack.
Recall that in tree-chain valj must connect to the validator
of the transaction used as the input of the current transac-
tion which increases the delay in verifying transactions.

• Transaction retrieval: This metric evaluates the process-
ing time incurred to retrieve a transaction from the
blockchain. In conventional blockchains all blocks are
chained in a single ledger, while in tree-chain transactions
are chained in different ledgers based on the consensus



Fig. 5. Evaluation of the processing overhead during consensus code
formation.

code. Thus, to retrieve a particular transaction, the nodes
shall just search the relevant ledger.

Consensus code formation processing time: To evaluate this
metric, we increase the number of potential validators, i.e., the
nodes that generate tvi, from 10 to 500. Evident from the results
shown in Figure 5 the processing time increases from around
153 ms to 190 ms which is negligible delay. Tree-chain only
demands the valj to calculate a value using the hash output,
which is already in the received tvi and thus does not incur
significant processing overhead.

The formation of the consensus code also incurs packet
overhead on the validators. As outlined in Figure 3, each
validator broadcasts two packets during the consensus code
formation. Assume that the size of a packet is ψ and each val
receives a packet only once. The cumulative packet overhead
for these packets will be (2ψj). The validator with the highest
KWM broadcasts the genesis block at the end of consensus
formation. Assume the size of the genesis block is Ψ, thus the
total packet overhead in consensus formation in each round
is: Packet overhead = (2ψj)+Ψ.

As outlined earlier in Section III, the value of ∆ is defined
by the blockchain designers. The latter shall consider the trade-
off between the overheads associated with small ∆ and the
security risks with large ∆. Smaller ∆ requires the validators
to run validator reconfiguration algorithm more frequently (see
Section III-C) which incurs packet and processing overhead as
studied above, while longer ∆ increases the chance of a double
spending attack as studied in Section IV. Recall that tree-chain
ensures that double spending can eventually be detected.

New block generation processing time: Recall that tree-
chain does not demand valj to solve any puzzle before storing a
new block, thus storing a new block simply involves collecting
transactions in the consensus code range associated with the
validator, forming a new block once the size or time reached,
and appending it to the blockchain (see Section III-B). Figure
6 outlines the implementation results on the processing time to
store new blocks. The horizontal axis refers to the transaction
rate in which the PNi generate transactions. The left axis refers
to the cumulative processing time for generating new blocks
while the right axis refers to the average processing overhead
to store a single transaction. In our implementation setting
i=100. We assume there are 10 validators in the network.

Fig. 6. Evaluation of the processing overhead for forming new blocks.

Block size is 10 transactions per block.
As evident from the results, the processing time required to

append a new block is around 370 ms when PNi generate 10
transactions per second which is close to real-time. Note that
this processing time is the cumulative processing time on a sin-
gle validator to store all blocks to accommodate transactions
which in case of 10 transactions/second is 1000 transactions.
Note that each validator commits only transactions with spe-
cific consensus code. As the transaction rate increases from
10 to 250, the processing time increases from around 370 ms
to 8400 ms. This shows that tree-chain can store transactions
in near real-time. As evident from the results, by increasing
the transaction rate, the processing time for each transaction
reduces in tree-chain. This is because the higher transaction
rate allows transaction pools to reach the block size more
quickly, which further highlights the scalability of tree-chain.

As evident from the results shown in Figure 6, tree-chain
achieves a fast block generation time. IoT nodes generate
millions of transactions and blocks. This potentially increases
the bandwidth consumption of the blockchain. As tree-chain
block generation is fast, the number of blocks broadcast in
the network increases that is inherent from the IoT. Thus, valj
may experience bandwidth limitations that potentially limits
the number of transactions that can reach to valj and may
impact the delay in storing transactions and thus the upper
bound throughput of tree-chain. The bandwidth limitation is
beyond the scope of this paper, however, technologies such as
5G or 6G can be used to increase the bandwidth of valj.

Load balancing: Recall from Section III-D that tree-chain
enables overloaded valj to add new validators and thus reduce
the processing overhead. Figure 7 shows the implementation
results for evaluation of the processing overhead on valj before
and after applying load balancing algorithm. Based on the
results shown in Figure 7, by adding a new validator, the
processing overhead almost halves. Recall that after load-
balancing each validator is allocated to a new consensus
code range. Due to the randomness of the hash function, the
processing overhead is similar but not equal between the two
validators.

Double spending: Recall from Section III that to protect
against double spending, when valj receives a transaction
that spends the output of a previous transaction, it has to



Fig. 7. Evaluating the impact of load balancing on the processing overhead
on valj.

Fig. 8. Evaluation of the incurred processing overhead for double spending
verification.

request val corresponding to the consensus code range of
the previous transaction to sign the transaction and verify
that the transaction is not double spent. In this part of
evaluation, we study the processing time incurred to verify
the transactions.There are two factors that impact the delay
involved in verifying a transaction which are processing delay
incurred on the verifier, i.e., val of the previous transaction,
and the communication delay. To measure the processing delay
incurred on the verifier, we studied the delay when both
vals are in the same machine, i.e., a Raspberry Pi, which
eliminates the communication delay. To show the impact of
the communication delay, we measured the delay when each
val runs on a separate Raspberry Pi. The Pi devices are
in the same network and connected through a router. The
implementation results are shown in Figure 8. The delay in
verifying a transaction is increased by about 50 ms which is
the communication delay. However, the processing overhead
incurred on the verifier is not changing. The verification of the
transaction involves verifying the signature which is a resource
consuming task on Pi devices, thus this delay reduces in higher
resource available devices.

Transaction retrieval: In an IoT blockchain, it is highly
common for PNi to retrieve a previously stored transaction,
e.g., in a supply chain scenario the participants need to
audit different steps of the product by retrieving transactions
in the blockchain. In tree-chain transactions with particular
consensus code are chained in a separate ledger which in turn
speeds up the transaction retrieval as the query can run over
the shorter ledger branch in tree-chain. Figure 9 outlines the
processing overhead incurred on a node to retrieve a trans-

Fig. 9. Evaluation of the processing time to retrieve a transaction.

action. 100 million transactions are stored in the blockchain
and the blockchain database size is 110 GB. As Raspberry Pis
have limited storage space, we employed a Macbook Pro 15
to study the performance. The processing overhead is around
587000 ms in conventional blockchains which is not impacted
by the number of validators in the network, i.e., j, as all valj
use a single chain to store transactions. In tree-chain, the
processing overhead starts from 34500 ms when j=10. This
value decreases as new validators join the network and reaches
2000 ms when j=250. This is the result of fewer transactions
being stored in a single ledger which in turn reduces the
number of transactions to be searched.

Based on the implementation results outlined in this section,
tree-chain reduces the processing overhead on the validators
to store new blocks and manage the blockchain.

VI. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

A. Permissioned vs Permissionless

Depending on the permissions and level of trust among PNi,
blockchains are categorized as permissioned and permission-
less. In the former category, a trusted node authorizes PNi

to access the blockchain and PNi have different read/write
permissions, e.g., only selected nodes can funciton as valj.
A permissionless blockchain, however, does not rely on any
trusted node and PNi have equal control on the blockchain. In
this paper we studied tree-chain in a permissionless setting as
the absence of the trusted party leads to higher complexity and
resource consumption in reaching consensus. However, tree-
chain can be applied in permissioned blockchain with minor
changes.

B. Double Spending

Tree-chain is designed for IoT ecosystems where trans-
actions reflect communications between devices and some
transactions may involve transferring an asset. As discussed
in Section IV to protect double spending, tree-chain requires
the validators of transaction tin that spends the output of
transaction tout to ask the validator corresponding to tout to
sign tin. This provides an extra layer of security, however, adds
overhead and increases the delay. Another interesting future
research direction is to optimize tree-chain for cryptocurrency.
This requires valj to maintain a single ledger, i.e., a linear



ledger, to protect against double spending. Recall that tree-
chain does not require valj to solve any puzzle before storing
a new block which speeds up the block generation rate, which
in turn makes reaching agreement over the chain of ledgers in
the blockchain challenging as the number of forks increases
(see Section III).

C. Replication
In tree-chain, each valj is dedicated to a consensus code.

Failure of valj may lead to service disruption for transactions
that fall within the consensus code range of the failed valj. As
discussed in Section IV each valj monitors val responsible
for the next consensus code. To further improve the fault
tolerance, multiple valj can work on the same consensus code
which conceptually is similar to having multiple replications.
Distributing transactions and synchronization among the repli-
cas remain major challenges.

D. State Pinning
Tree-chain defines genesis blocks which are stored at the

end of each ∆. The genesis block can be employed to pin
the state of the blockchain. In [26] the authors discussed state
pinning in Ethereum. Pinning the state of the blockchain can
be employed to reduce the blockchain storage overhead, e.g.,
some valj may decide not to maintain the full history of the
blockchain and thus can only store blocks after the pinned
state.

VII. CONCLUSION

This paper proposed tree-chain, a scalable fast blockchain
optimized for IoT applications. Tree-chain incorporates a
consensus algorithm that does not demand the validators to
solve any puzzle or provide proof of x before storing a new
block. The randomization among the validators is achieved
by relying on the hash function outputs. Two randomization
levels are introduced which are i) transaction level where the
validator of each transaction is defined randomly based on the
most significant bits of the hash of the transaction (known as
consensus code), and ii) blockchain level where each validator
is dedicated to store transactions with particular consensus
code. Tree-chain introduces a load-balancing algorithm that
enables the overloaded validators to involve new validators
and thus ensures self-scaling feature of the blockchain. The
implementation results prove tree-chain incurs low processing
overhead and is runnable by low resource IoT devices. Tree-
chain will enable new fast blockchain applications in more
resource-constrained scenarios such as IoT.
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