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ABSTRACT

In this paper, our goal is to analyze and compare cellular network us-
age data from pre-lockdown, during lockdown, and post-lockdown
phases surrounding the COVID-19 pandemic to understand and
model human mobility patterns during the pandemic, and evaluate
the effect of lockdowns on mobility. To this end, we collaborate with
one of the main cellular network providers in Brazil, and collect
and analyze cellular network connections from 1400 antennas for
all users in the city of Rio de Janeiro and its suburbs from March 1,
2020 to July 1, 2020. Our analysis reveals that the total number of
cellular connections decreases to 78% during the lockdown phase
and then increases to 85% of the pre-COVID era as the lockdown
eases. We observe that as more people work remotely, there is a
shift in the antennas incurring top 10% of the total traffic, with
the number of connections made to antennas in downtown Rio
reducing drastically and antennas at other locations taking their
place. We also observe that while nearly 40-45% users connected
to only 1 antenna each day during the lockdown phase indicating
no mobility, there are around 4% users (i.e., 80K users) who con-
nected to more than 10 antennas, indicating very high mobility.
We also observe that the amount of mobility increases towards the
end of the lockdown period even before the lockdown eases and
the upward trend continues in the post-lockdown period. Finally,
we design an interactive tool that showcases mobility patterns in
different granularities that can potentially help people and gov-
ernment officials understand the mobility of individuals and the
number of COVID cases in a particular neighborhood. Our analysis,
inferences, and interactive showcasing of mobility patterns based
on large-scale data can be extrapolated to other cities of the world
and has the potential to help in designing more effective pandemic
management measures in the future.
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1 INTRODUCTION

COVID-19 is a global pandemic that has infected human beings in all
countries of the world. Lack of physical distancing, isolation, mask-
wearing, and effective contact tracing are some of the key factors
that have contributed to the spread of COVID-19 and transformed it
into a global pandemic. To mitigate the spread of the disease, most
countries around the world have implemented varying levels of
lockdown. Though lockdowns have been effective in decreasing the
rate of spread [4], they have not been able to curb the disease and
infections continue to soar in countries around the world. Therefore,
there is an urgent need to understand the effects of lockdown
on mobility patterns, so they can be effectively integrated into
government policies to manage the COVID-19 pandemic.

In this paper, our goal is to analyze and compare cellular network
usage data (comprising of phone calls, 3G/4G data connections, and
text messages) from pre-lockdown, during lockdown, and post-
lockdown phases of the COVID-19 pandemic to understand and
model human mobility patterns, and evaluate the effect of lockdown
on mobility. To this end, we collaborate with one of the main cellular
network providers in Brazil, TIM Brazil, and conduct a large scale
study by collecting and analyzing anonymized cellular network
connections from all users in the city of Rio de Janeiro, the second
most populous city in Brazil, and its suburbs. The data consists
of individual connections made by users to approximately 1400
cellular antennas in and around the city of Rio de Janeiro and
its suburbs during each 5-minute interval from March 1, 2020 to
July 1, 2020. There are approximately 120 million connections for
each day made by approximately 2 million users per day during this
time period in our dataset, amounting to a total of approximately 10
billion connection logs. As Brazil enforced strict lockdown measures
between the third week of March and end of May, the data and the
ensuing analysis provides valuable insight into human behavior and
mobility in the pre-lockdown, during lockdown, and post-lockdown
time periods, making it a comprehensive study of mobility that can
offer valuable perspective for effective lockdown and pandemic
management. Our main contributions are summarized below.
Connectivity and User Mobility Analysis: Our data analysis
reveals some interesting trends. We observe that the total num-
ber of cellular connections decreases to 78% during lockdown and
then increases again to 85% of the pre-lockdown values during the
post-lockdown period. The number of distinct users using cellular
network connections also increases in the post-lockdown period
as more people venture outside and thus need to use the cellular
network. To investigate the impact of lockdown on mobility, we
investigate the top 10% of antennas (i.e., 140) that carry the highest
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amount of traffic. We observe that new antennas emerge in the top
10% both in the lockdown and post-lockdown phases that replace
some of the antennas in the top 10% in the pre-lockdown phase.
A closer look reveals that antennas that serve downtown Rio de
Janeiro as well as those that serve the commercial hubs of some
of the main districts of the city no longer feature in the top 10%
of antennas during lockdown. We also conduct user mobility anal-
ysis and observe that while approximately 35-40% users exhibit
no mobility (i.e., connect to a single antenna per day) during the
lockdown and post-lockdown periods, approximately 4% of users
(i.e., 80K users) exhibit high mobility (i.e., connect to more than 10
antenna per day). This high mobility is interesting as it is likely to
be demonstrated by essential workers and those flouting lockdown
measures.

Graph-based User Mobility Analysis: We next conduct a graph-
based analysis to better understand and model the mobility patterns
of people during COVID-19. To this end, for each day, we construct
a graph where the antennas correspond to the vertices and the
movement of users between antennas corresponds to the weight
of that particular edge. We determine the total in-degree of the
nodes of the graph to quantify the total number of mobility events
and observe that user mobility starts increasing around 3 weeks
before the end of lockdown, with the trend continuing into the
post-lockdown period. We also investigate the impact of the day
of the week on mobility. We observe that weekdays and Saturday
have similar levels of mobility during and after lockdown while
Sunday has the least mobility. This difference in mobility between
the other days of the week and Sunday is interesting because it
suggests that many people do not have the opportunity to work
from home even during the lockdown period.

We next construct heatmaps for mobility by grouping the an-
tennas into main municipal regions of the city to identify: i) the
geographical regions that have the highest mobility, and ii) to in-
vestigate the change in the mobility of particular antennas during
and post lockdown. Interestingly, we detect a connection between
mobility patterns observed at antennas and the social progress in-
dex (SPI) of the region in which they are located. We observe that
antennas in regions having a low SPI often exhibit higher mobility
when compared to the ones in regions having a higher SPI.
COVID-19 Borescope: Finally, we design a visual/interactive tool,
COVID-19 Borescope, which helps people and government admin-
istrators analyze the mobility of individuals as well as correlate
it with the number of COVID-19 cases in the city. To deal with
the massive amount of data, we use an optimized version of the
nanocubes data structure to make the tool scalable and highly
interactive. The interactive web interface provides multiple func-
tionalities including selecting specific regions of the city, specifying
date ranges, zoom in/out capabilities, and shows the total number
of active cases, recovered cases, and deaths.

Concluding Remarks and Ongoing Efforts: We conclude our
introduction with some final remarks and outline our current re-
search efforts.

(1) The large scale nature of our study where we discern and model
the mobility patterns of 2 million users each day in Rio de
Janeiro and its suburbs, the second most populous city in Brazil,
coupled with the fact that most countries around the world
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have failed to effectively contain the pandemic provides us the
footing to confidently hypothesize that the observations and
conclusions drawn here can be extrapolated to cities around
the world.

(2) Overall, our research reveals that while lockdowns reduced the
amount of human mobility, a high (approximately 15%) of the
population still ventured significantly out of their neighbor-
hood, which could have partially contributed to our failure in
containing the spread of COVID-19. With COVID-19 cases once
again on the rise and countries around the world bracing for a
second wave, our analysis shows that if governments resort to
lockdowns as a measure to contain the disease, stricter imple-
mentation of lockdown measures may be necessary to decrease
the mobility of people.

(3) Our analysis and the interactive website arms government au-
thorities with scientific analysis and tools to design and imple-
ment effective policies to contain the current pandemic. Impor-
tantly, the learnings from this work along with our ongoing re-
search on designing and integrating mobility prediction models
can enable authorities to take minimally invasive actions (e.g.,
traffic rerouting, city planning) to avert a surge in infections in
place of widely unpopular blanket lockdown interventions [1].
Additionally, as part of our ongoing efforts, we are investigating
the correlation between mobility and the number of reported
COVID-19 infections, which can further enable us to mitigate
the spread.

2 RELATED WORK

Our work on characterizing mobility during COVID-19 touches
upon different areas such as Internet and web measurement studies,
mobility analysis and modeling, and analysis of mobile use with ties
to geographic locations. In contrast to existing work, the primary
goal of this work is to understand and model human mobility by
leveraging cellular data connections during COVID-19, and lays
the foundation for designing analytics-based tools and models to
improve societal and governmental preparedness and response.

Due to the recent nature of the pandemic, there is limited work
on measurement studies examining the impact of pandemic on
different network parameters. Lutu et al. [20] characterize the im-
pact of COVID-19 on mobile network operator traffic and analyze
the changes brought upon by the pandemic. Feldman et al. [13]
analyze Internet traffic during COVID-19 and find that the overall
traffic volume increases by 15-20% within a week of the pandemic.
There is also work on measuring the reaction to the pandemic on
the Internet and social media [5, 8]. Zakaria et al. [31] analyze the
impact of COVID-19 control policies on campus occupancy and mo-
bility via passive WiFi sensing. Trivedi et al. [27] use passive WiFi
sensing for network-based contact tracing for infectious diseases,
particularly focused on the COVID-19 pandemic.

Modeling human mobility using cellular network and mobile
application data has been a problem that has garnered interest in the
last decade. Some notable ones here are predicting human mobility
using attentive recurrent neural networks [14] and spatio-temporal
modeling and prediction using deep neural networks [28], learning
to transfer mobility between cities [17], leveraging cellular network
data for understanding fine-grained mobility [12]. Zhang et al. [32]
develop a real-time model for human mobility using multi-view
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learning and Zhu et al. [34] develop spherical hidden Markov model
for understanding human mobility. There is also work on analyzing
data in relationship to the geographic locations [11, 25]. Cao et al.
[6] conduct measurement studies on the predictability of human
movement in a college campus using WLAN measurements. Pattern
mining approaches to detect underlying mobility patterns have also
been developed [10, 18].

Chaganti et al. [7] Sadri et al. [24] develop a continuous model
to predict user mobility in a day. Nikhat et al. [23] present an anal-
ysis of user mobility in cellular networks. There is also work on
early detection of gathering events by understanding the traffic
flow [33]. There is also work on measurement studies in networks
understanding how users transition across networks [30], mea-
suring city-wide signal strength [2], modeling mobility using a
mixed queueing network model [9], empirical characterization of
mobility of multi-device Internet users [26], and quantitatively eval-
uating different mobility approaches across different architectures
[7]. There is also extensive work indoor localization and location
prediction [3, 22, 29, 29], which are also related to human mobility
prediction and analysis.

3 DATA AND METHODS

In this section, we describe the cellular network traffic datasets that
we collect and use in our analysis. We collaborate with one of the
main cellular network providers in Brazil, TIM Brazil, and collect
and analyze cellular network connections from all users using this
cellular provider in the city of Rio de Janeiro and its suburbs.

Our goal is to analyze and compare cellular network usage data
(comprising of phone calls, 3G/4G data connections, and text mes-
sages) from pre-lockdown, during lockdown, and post-lockdown
phases to understand and model human mobility patterns during
the COVID-19 pandemic, and evaluate the impact of lockdowns on
mobility. We collect and log individual cellular connections made
by users to approximately 1400 cellular antennas in and around
the city of Rio de Janeiro and its suburbs during each 5-minute
interval from March 1, 2020 to July 2, 2020. The data consists of
approximately 120 million connections logs for each day during
this time period, which encompasses approximately 2 million users
per day. Overall, the entire dataset comprises of approximately 10
billion connection logs. As Brazil enforced strict lockdown mea-
sures from the third week of March to the end of May, the data
provides valuable information on human behavior and mobility in
the pre-lockdown, during lockdown, and post-lockdown time peri-
ods. We note that the cellular network provider has anonymized
the data to ensure user privacy.

Table 1: Example instances from the aggregate dataset

Timestamp Latitude |Longitude | Connections
26th April, 2020, 00:00:00 -20.837028 | -43.563111 262
timestamp-2 -22.269889 | -42.798028 5

We investigate mobile connection data at two different granulari-
ties in our analysis: i) aggregated data measured at the antenna level,
corresponding to the total number of connections made to each
antenna (aggregated), and ii) anonymized individual connections
made by each mobile device to the antennas (individual). While the
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Table 2: Example instances from the individual dataset

Timestamp | User ID | Latitude | Longitude
timestamp-1 | hash-1 | -23.003431 | -43.342206
timestamp-2 | hash-2 | -22.8415 | -43.278389

aggregated data is available for the entire duration of the study, the
individual data is only available from April 5/, 2020. We present
some details and statistics about the datasets to understand them
before proceeding to a more detailed analysis. In Table 1, we present
some example instances from the aggregated data. The data rep-
resents the number of connections made to a specific antenna at
a specific instance in time. For example, on the day 04-26-2020 at
the time 00.00.00, there are 262 connections to the antenna located
at the coordinates [-20.837028, -43.563111]. In Table 2, we present
some example instances from the individual data. Here, each data
instance corresponds to a single anonymized user connecting to an
antenna at a specific instance in time.
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Figure 1: Number of connections per day from March 1, 2020
to July 1, 2020
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Figure 2: Number of unique users per day between April 5,
2020 and July 2, 2020
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Figure 1 shows the total number of connections across the entire
duration of our study. Orange vertical lines in the figure separate
the different phases in the pandemic: i) the first period from March
1, 2020 to March 16, 2020 represents the period before lockdown, ii)
the second period from March 16, 2020 to June 1, 2020 represents
the period during lockdown, and iii) the third period from June 1,
2020 to July 1, 2020 represents the period after lockdown when the
lockdown measures were eased. The red line captures the average
number of connections per week. From the figure, we can see that
the total number of connections shows a steadily decreasing trend
when lockdown measures are imposed, followed by a period of
low connection activity, and then a gradual increase even before
lockdown measures are eased. The number of connections continue
to increase after the lockdown is lifted, but still the numbers are
lower than the pre-lockdown period.

Figure 2 represents the number of distinct users per day from
April 5, 2020 to July 2, 2020 in the individual dataset. We again
see a reduced number of user connections during the lockdown
period when compared to the period after lockdown. From our
initial analysis, we observe a discrepancy in the data collection
for three days (May 5, 2020, June 21, 2020, and June 22, 2020). We
exclude data from these days and then normalize the rest of the
week’s data for a seven-day period so that it does not interfere our
interpretations of change in mobility due to COVID-19.

4 SOCIO-ECONOMIC AND GEOGRAPHIC
BACKGROUND ON RIO DE JANEIRO

To facilitate a better understanding of our analysis and inferences
on human mobility patterns, in this section, we provide background
on the socio-economic and geographic distribution of people in the
different regions of Rio de Janeiro. To this end, we consider the map
in Figure 3, which depicts the municipality administration catego-
rization of the city and indicates the Social Progress Index (SPI) for
each administrative region of Rio de Janeiro. The SPI is a universal
performance metric that captures the socio-economic situation [21].
The map illustrates the administrative regions with low, fair, good,
and high SPIs that can be correlated to the average quality of life
of the population in these regions. This background fundamentally
drives our analysis, and provides us with the necessary context to
pose important research questions and draw insightful conclusions.

Rio de Janeiro, like most major cities in the world, has a sig-
nificant number of companies and business establishments in the
downtown area (indicated on the map as CE) or in the surrounding
neighborhoods (PO - Portuaria, RC - Rio Comprido, BO - Botafogo,
CO - Copacabana). Additionally, while some of the regions (e.g., BO
- Botafogo, CO - Copacabana, LA - Lagoa, TI - Tijuca, BT - Barra da
Tijuca) are relatively close to the downtown (i.e., a short driving
distance away or easy to access via public transportation), some
other regions (such as SC - Santa Cruz, CG - Campo Grande, BA -
Bangu, RE - Realengo, JA - Jacarepagua) are pretty far and/or very
time consuming to commute to/from downtown daily.

Another important detail to note is that people/families with
higher socio-economic status usually live near the coast. Admin-
istrative regions such as BO - Botafogo, CO - Copacabana, LA -
Lagoa, TI - Tijuca, BT - Barra da Tijuca are more expensive and,
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Social Progress Index (SPI): - Low I:I Fair D Good - High

PO Portuaria PE Penha AN Anchieta SR Sao Cristovao
CE Centro IN Inhauma RE Realengo VI Vila Isabel
RC Rio Comprido ME Meier ST Santa Teresa BA Bangu

BO Botafogo IR Iraja BT Barrada Tijuca CG Campo Grande

CO Copacabana MA Madureira ~ PA Pavuna
LA Lagoa JA Jacarepagua GU Guaratiba
RA Ramos VG Vigario geral TI  Tijuca

SC Santa Cruz
IG Ilha do Governador

Figure 3: The municipality administrative regions in Rio de
Janeiro and their respective Social Progress Index (SPI)

consequently, have a higher SPI. On the other hand, the lesser priv-
ileged population tends to live farther from the coast/downtown.
The administrative regions such as SC - Santa Cruz, CG - Campo
Grande, BA - Bangu, and RE - Realengo have a lower SPI. One
important thing to note is that although Jacarepagua (JA) has a
high SPI, there are some parts within this region with a lower SPL
One of the larger lower SPI regions within JA is highlighted on the
map (known as Cidade de Deus area).

5 CONNECTIVITY AND MOBILITY ANALYSIS

In this section, we present analysis on the aggregate and individual
data to answer the following questions on user connectivity and
mobility:

(1) Which antennas/locations correspond to the maximum user
connectivity and traffic and how do they vary during the differ-
ent phases of the pandemic?

(2) What percentage of users are mobile/stationary and how does
that vary during the different phases of the pandemic?

(3) How does user mobility change with the day of the week and
how does that vary during the different phases of the pandemic?

(4) What antennas in each region attract the maximum number
of users in a week and how do they vary during the different
phases of the pandemic?

5.1 Connectivity Analysis

We first conduct analysis on aggregate connectivity data and present
results on how the connectivity in the top antennas change across
pre-lockdown, during lockdown, and post-lockdown time periods.
Figure 4 shows the percentage of traffic supported by the top 10%
antennas. We first consider the top 10% antennas before lockdown
(solid red line) and the top 10% of antennas during lockdown (dashed
blue line), both ordered in decreasing order by the percentage of
traffic supported by them. We observe that the top 10% antennas
during lockdown overall incur a higher percentage of traffic when
compared to the top 10% of antennas before lockdown even though
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the absolute amount of traffic during lockdown is lower than pre-
lockdown (Figure 1). Now, to understand the difference between
the traffic in the antennas before and during lockdown, we consider
the same set of antennas that garner the top 10% traffic before lock-
down and plot the traffic supported by them during the lockdown
period (dotted magenta). We keep the order of antennas here same
as the solid red line (top 10% before lockdown in decreasing order
of traffic) to enable an easier visual comparison. We observe that
some antennas incur a significantly lesser percentage of traffic dur-
ing lockdown (the low points in the dotted magenta line). We also
observe that some of these antennas forfeit their position in the top
10% during lockdown (marked as red dots in dotted magenta) and
other antennas take their place in the top 10% during lockdown
(blue stars in the dashed blue line).
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Figure 4: Percentage of traffic in top 10% antennas before and
during lockdown
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Figure 5: Differences in the locations of top 10% antennas
before and during lockdown. Blue markers: antennas that
newly emerge in the top 10% during lockdown, Red markers:
antennas that were in top 10% before lockdown but not in
top 10% during lockdown.

Having examined the differences in connectivity in the top 10%
antennas, we proceed to analyze the locations of these displaced
antennas. In Figure 5, red markers represent the antennas that are
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Figure 6: Percentage of traffic in top 10% antennas before and
after lockdown
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Figure 7: Differences in the locations of top 10% antennas be-
fore and after lockdown. Blue markers: antennas that newly
emerge in the top 10% after lockdown, Red markers: anten-
nas that were in top 10% before lockdown but not in top 10%
after lockdown.

in the top 10% antennas before lockdown but not in the top 10% of
antennas during lockdown (corresponding to the red dots in Figure
4). And blue markers represent the antennas that emerge in the top
10% during lockdown but are not in the top 10% antennas before
lockdown) in Figure 4. We see that heavily trafficked antennas dur-
ing lockdown emerge in the suburbs, e.g., SC and GU regions (blue
markers in the left side of the map in Figure 4) due to restrictions
in mobility due to lockdown. The antennas that get displaced from
top 10% during lockdown are in the downtown regions, e.g., CE
and CO in Figure 3 (corresponding to red markers in the right side
of the map in Figure 4). This is expected because majority of people
are likely to be working from home during the lockdown period.
We perform a similar analysis comparing connectivity before
and after lockdown (Figure 6). We see a similar trend of the top
10% antennas after lockdown (dashed blue) incurring heavier traffic
than the top 10% antennas before lockdown (solid red), though
the distance between the red and blue lines in Figure 6 is smaller
than Figure 4. We note that similar to the during lockdown phase,
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the total traffic post-lockdown is still lower than the pre-lockdown
phase (Figure 1). This shows that even after the lockdown measures
are lifted, the traffic pattern still hasn’t returned to normalcy. Similar
to the comparison between pre-lockdown and during lockdown,
we see changes in the antennas that contribute to the top 10%
during the pre-lockdown and post-lockdown periods. Examining
the traffic of the antennas in the top 10% before lockdown in the post-
lockdown time period (dotted magenta), we observe that antennas
get displaced from top 10% from positions as high as the 20th
percentile (red dots in the dashed magenta) and other antennas take
their place (blue stars in the dashed blue line). These graphs serve
as motivation to perform a finer grained analysis of connectivity
and mobility, which we detail in the following sections.

Now, analyzing the locations of the displaced antennas in the
post-lockdown period, we find that there are a higher number of
newly added antennas (blue markers in the map in Figure 6) when
compared with the number of new additions to the top 10% during
lockdown (blue markers in the left side of the map in Figure 4).
When compared with the lockdown period (Figure 4), we observe
newly emerging antennas in the CG region, a densely populated
regions with fair SPL. Interestingly, we observe that four main
antennas close to the downtown in CE, CO, and BO regions still do
not feature in the top 10% antennas in the post-lockdown period
which suggests that even after the lockdown is lifted, majority of
people are working remotely and are also actively avoiding heavily
congested areas.

5.2 User Mobility Analysis

Here, we conduct a macroscopic analysis of the mobility of indi-
vidual users. If a user is only connected to a single antenna, we
conclude that the mobility of the user is limited (i.e., the user is
primarily indoors; their movement is primarily restricted to the
neighborhood where they live). In contrast, if a user is connected to
multiple antennas in a day, we conclude that the user is mobile as
they must have ventured significantly outside their neighborhood.
While it is possible that some users live in an area that is serviced by
two antennas, we believe such occurrences are usually rare and do
not significantly alter our findings. Thus, the number of antennas
a particular user connects to in a day provides a succinct picture of
the mobility of the user. We use the individual data for this analysis.
Since this data is only available from April 5/, our graphs start
from week 6 to synchronize the duration of our analysis with the
aggregated data.

After calculating the distinct number of antennas for each user
per day, we group users based on this number as exhibiting no
mobility (i.e., 1 antenna visited), low mobility (i.e., between 2 and
5 antennas visited), medium mobility (i.e., between 6 and 10 an-
tennas visited), and high mobility ((i.e., greater than 10 antennas
visited). Figure 8a shows the percentage of users who are exhibiting
no/low mobility during the lockdown period. We observe that the
number of users with no mobility follows a decreasing trend dur-
ing the lockdown period from ~40% to ~35%, which suggests that
more people are venturing out of their homes as the lockdown pro-
gresses. Correspondingly, we observe an increase in the percentage
of users with medium mobility as the lockdown progresses (Figure
8b). We observe that this trend continues after lockdown as well;
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Figure 8: Comparison of users in the four mobility groups:
no, low, medium, and high mobility during and after lock-
down

the percentage of users in the no mobility group decreases, while
the percentage of users in the higher (medium and high) mobility
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groups continues to increase (Figures 8c and 8d). Following the
medium mobility users during and after lockdown, we observe an
increase from < 10% at the start of lockdown in week 6 to approxi-
mately 13% in week 17. While the percentage of users in the high
mobility group almost remains constant overall during lockdown,
we can see a more pronounced increase after lockdown (Figures 8b
and 8d).

The number of users with low mobility remains approximately
the same throughout the lockdown period and after the lockdown
(Figures 8a and 8c). One possible reason could be that users from the
no mobility group may have transitioned to the low mobility group
(no mobility users decrease from 40% to 35%), while a similar per-
centage of users transition from the low mobility to medium/high
mobility groups. Some users in this group may have also “adjusted”
to the new normal and adapted their mobility patterns around the
pandemic for the duration of our study to keep the total percentage
approximately the same. In contrast, our analysis in Figures 8b and
8d reveals that approximately 4% of users (i.e.., 80K users) visited
10 or more antennas per day, which suggests high mobility for
certain individuals. This high mobility can be attributed to essen-
tial workers (e.g., sanitation workers, postal workers, taxi drivers)
as well as low-income workers who need to travel far for work
to sustain their livelihood and families during these trying times.
Additionally, the high mobility could also be attributed to individu-
als who demonstrate less adherence to lockdown rules. From our
analysis, we conclude that while the lockdown reduced the amount
of human mobility, a high (approximately 15%) of the population
still ventured significantly out of their neighborhood, which could
have partially contributed to our failure in containing the spread
of COVID-19.

5.3 Graph-based Mobility Analysis

Our analysis in the previous subsection demonstrates that a signif-
icant number of individuals move across antennas that indicates
high mobility in and around the city. Therefore, to better under-
stand the mobility, we perform a graph-based mobility analysis.
We construct a graph where the nodes/vertices correspond to the
antennas (i.e., the graph has approximately 1400 vertices). We parse
the individual user data and every time a user switches from one
antenna to another antenna (referred to as a mobility event), we
increase the weight of the edge between those two vertices by one.
The so constructed mobility graph thus transforms user connec-
tions to mobility events and presents the opportunity to investigate
the overall mobility in Rio and its suburbs at an aggregate level. As
we have data loss for May 5, June 21, and June 22, we perform the
following pre-processing to ensure fair comparison across weeks.
For week 10, we ignore May 5 and scale by a factor of 7/6. For week
17, we ignore June 21 and June 22 and then scale it by 7/5. For week
18, we only have 5 days of data, so we also scale week 18 by 7/5.
Figure 9 shows the distribution of the total number of mobility
events over weeks. The vertical orange line represents the day when
lockdown is eased. We observe from the figure that the overall
user mobility in the city starts increasing from about three weeks
before the lockdown measures are eased. The increase in mobility
continues into the post-lockdown period as well. This finding is
synchronous with Figures 8a, 8b, 8c, and 8d, which also indicate
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Figure 10: Average number of mobility events over weeks on
different days of the week

higher mobility of people with the passage of time. This further
establishes that there is a significant increase in mobility when
lockdown restrictions are eased.

We next investigate the impact of the day of the week on the
mobility of individuals (Figure 10). To perform this study, we first
observe from Figure 9 that the overall mobility pattern remains
similar for some weeks. Therefore, we group some weeks together
based on their mobility patterns (weeks 6-7, weeks 8-11, weeks 12~
13, and weeks 14-18). We then group Monday through Thursday
together because they are working days and keep Friday, Saturday,
and Sunday as separate days. We consider Friday separately because
it captures the mobility pattern of a work day during the earlier
part of the day and that of a weekend during the later part of the
day. For Mon-Thu, we plot the average of the four days. The error
bars capture the variation in the number of mobility events.

We observe from Figure 10 that the overall mobility is lesser on
weekends, particularly on Sundays. While one would expect this
behavior in a pre-COVID society, we observe that this behavior
persists even during lockdown. This additionally suggests that a



Under Review, ,

' =
Queimados
@ N

Seropédica

woaUETA
[a3) Nova Iguagu

=)

= METG
@ @ swmeamo SIS
® ?
B o

SANTACRUZ  PACIENCIA

SEPETIBA GUARATIBA o P
GRANDE
PEDRA DE

GUARATIBA
RECREIO DOS

,

®

SARACURUNA

Dug

e Caxia! BANCARIOS
{

| Governador

RAJA
, llha do
@ - Fundao

@)
W‘” Rio d§Janei
TANQUE

JACAREPAGUA COPACABANA
IPANEMA

BARRA DA
TIUCA

BANDEIRANTES

AUMAR

Figure 11: Differences in locations of top 10% antennas be-
tween weekdays and Saturdays in week 8-11 period. Red
markers: antennas in top 10% during Mon-Thu but not on
Saturday, Pink markers: antennas in top 10% on Saturday
that are not in top 10% Mon-Thu.

) ]

i SARACURUNA
3]
, s
Queimados ' o
\?\ CHIQUE
Sropdtca i J ‘
=) Nova Igubcu e
Mesquita, Rio
deJanero  Sa@I0E0 DUC\” o
it !eCaxm aanciRos:
RIOT1 liha do
o @ ' $ o ?
= IRAJA

)
= 3 santiss  BESRNERG
(@] = ’
cAMPO GRANDE

SANTAGRUZ ~ PACIENCIA

?

SEPETIBA o
GUARATIBA VARGEM
GRANDE

iiha do.
Funddo.
(@)
'ﬂ, Rio de Janeir

cionE Cristo Radenmr@
oedRs

JACAREPAGUA COPACABANA

IPANEMA

et BARRADA
GUARATIBA TIUCA
RECREIO DOS
BANDEIRANTES

GRUMAR
BARRA DE
GUARATIEA

Figure 12: Differences in locations of top 10% antennas be-
tween weekdays and Sunday in week 8-11 period. Red mark-
ers: antennas in top 10% during Mon-Thu but not on Sunday,
Green markers: antennas in top 10% on Sunday that are not
in top 10% Mon-Thu.

significant portion of the population still ventures outside for their
work during the week and does not have the opportunity to work
remotely. Interestingly, we observe that the mobility on Fridays is
lower than Mon-Thu during the initial part of the lockdown period
and then increases and surpasses Mon-Thu. One plausible expla-
nation is that despite the rising number of cases more individuals
are slowly socially self relaxing the lockdown measures and are
going to work during the day on Friday and then participating in
recreational and/or social activities in the evening, which results
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in a higher number of mobility events on Friday in comparison to
Mon-Thu.

We next investigate the top 10% antennas to identify the differ-
ences in the connectivity pattern depending on the day of the week.
As Friday is a work day, we observe that there is limited variation
in the top 10% antennas, with a difference of 5-8 antennas when
compared with the top 10% antennas in Mon-Thu. In comparison,
we observe a significantly higher variation in the top 10% antennas
over the weekend when compared to the weekdays with the differ-
ence being higher for Sunday in comparison to Saturday. Figures 11
and 12 show the variations in the top 10% antennas for Saturday and
Sunday for weeks 8-11, respectively. The red markers on the map
correspond to the ones that were in the top 10% during Mon-Thu
but were replaced with the new antennas shown in pink and green
for Saturday and Sunday, respectively. We see that the antennas
being replaced from the Mon-Thu group are located in downtown
Rio and Duque de Caxias. As expected the new antennas in the
top 10% lie in the more residential areas. There are also similarities
in the new locations that emerge in the top 10% on Saturday and
Sunday, suggesting that the locations that gather the top 10% traffic
tend to be similar over the weekend, though the amount of activity
is higher on Saturday.

To better understand the variation in mobility for the 1400 an-
tennas over the weeks, we first group the antennas according to the
municipality classification in Rio as shown in Figure 3. Figure 13
shows the heatmap outlining the variation in the mobility at each
antenna in the various regions for weeks 6 through 18. The vertical
ticks on the horizontal axis mark the boundary of each region and
coincide with the last antenna located in that particular region. The
region OUT signifies all the antennas located in the outskirts or
suburban areas of Rio in our dataset. Therefore, the antennas in
OUT may not be geographically proximal to one another.

We observe from Figure 13 that the amount of mobility varies
significantly across regions. While regions such as SC and CG show
high mobility throughout the lockdown and post-lockdown periods,
some regions such as BT and CE show low mobility. The low levels
of mobility in the CE region, which is in the downtown area, is
congruous to Figures 5 and 7, where we observe that the antennas
in the downtown region relinquish their position in the top 10%
of antennas in terms of the total traffic. This is primarily due to
commercial businesses and offices being closed due to lockdown and
their employees working remotely. For the other regions, revisiting
Figure 3 provides us possible context for explaining this difference
in mobility. We observe from Figure 3 that SC and CG are regions
with low SPI, while BT is a region with high SPI. We hypothesize
that due to this socio-economic disparity, people in SC and CG may
be compelled to venture out of their homes for work and personal
reasons during this challenging time, while people in BT may have
the opportunity to stay indoors. In comparison, some areas such
as JA contain a mix of low and high mobility antennas. Again, this
can be explained by the presence of sub-regions in JA that lie on
the extremes of the SPI spectrum (low and high in Figure 3).

We next investigate the antennas that show the highest variation
in mobility during the lockdown and post-lockdown periods. To
conduct this study, we split the antennas into two groups—antennas
whose average number of mobility events is less than 50,000 and
antennas whose average number of mobility events is greater than
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Figure 14: Heat map for 15 antennas with the highest varia-
tion in the high mobility group (average number of mobility
events > 50,000)

50,000. Such categorization helps us separately study antennas with
high variation in both the low and high mobility groups, respec-
tively. Figures 14 and 15 show the heat map for the top 15 antennas
with the highest variation in this low mobility and high mobility
groups, respectively. We observe that there are a number of anten-
nas that show significant variation. Such mobility variations could
plausibly be attributed to fluctuations in the number of COVID-19
positive cases, government policies as well as transitions to/from
remote/on-site work that cause higher number of individuals to
gather in a specific geographical region covered by an antenna.

0 100000 300000 600000
Figure 15: Heat map for 15 antennas with the highest varia-
tion in the low mobility group (average number of mobility

events < 50,000)

6 COVID-19 BORESCOPE

With many cities around the world going into lockdown again,
analyzing mobility and correlating it with the number of infections
is a key and promising factor for controlling the spread of the virus.
Thus, another significant contribution of this work is developing
a visual/interactive tool called COVID-19 Borescope that helps
government and municipality administrations better understand
the evolution of COVID-19 by analyzing the correlation between
people’s mobility and the infection data reports in different regions
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of Rio de Janeiro. This powerful tool is still under development, but
is already launched and available to the public!.

Developing a tool to provide insights from our analysis is chal-
lenging because it has to: i) be able to support a huge amount of
data, possibly from multiple data sources, ii) be scalable, iii) offer
the flexibility to integrate new algorithms and data sources, and
(iv) be user friendly and intuitive for end users. The details of our
tool are described in the following sections.

6.1 COVID-19 Borescope Architecture

To address the challenges involved in the development of a graphi-
cal and interactive system that performs intelligent data analysis
of visually selected geo-temporal subsets of collected information,
COVID-19 Borescope is supported by a robust underlying archi-
tecture. As shown in Figure 17, the architecture consists of three
servers, two in the back end and one in the front end.

At the front end, we have NginX? running as the application
server. At the back end, we have two data servers, one to store
the data received from the cellular network provider and another
one to store the data that is obtained from the Open Data reposi-
tory provided by the Brazilian ministry of health®. The application
server processes requests received from the Web User Interface, for-
wards the processed queries to the appropriate back-end server(s)
and waits for the response(s). Once the NginX application server
receives the response(s) from the data server, it may either still per-
form some post-processing or may directly forward the results to
the end user. In the former case, the post-processing scripts are trig-
gered. The tool is very flexible, which makes it possible to include
external calls to machine learning algorithms. In the current version,
as part of our ongoing research efforts, we are using this function
to analyze correlation between mobility and infection cases in dif-
ferent regions of the city. After finishing the post-processing, the
results are sent back to the end user and presented in a graphical
manner on the web interface.

6.2 Core Data Structure

For the data server, the tool uses a new data structure, which is
an optimized variation of Nanocubes [19]. A full description of
this data structure is beyond the scope of this paper and will be
the subject of a future publication. However, it is important to
mention that the data structure is an in-memory database and, as
is the case with any Datacube structure [16], it is specialized to
perform statistical geo-temporal queries in a efficient manner with
coordinates organized as QuadTrees [15], offering low response
time for queries and moderate memory usage.

The data structure uses a JSON-based language that emulates
a simplified SQL syntax to retrieve data. It offers the traditional
“select”, “where”, and “group by” statements to select, filter, and
group/fold data, respectively. The outcome of the data structure
is a time series that is forwarded to the end user by the NginX
framework, before and/or after being submitted to post-processing
functions.

! Accessible at: http://gwrec.cloudnext.rnp.br:57074/
2NginX: http://nginx.org/
3Brazilian COVID-19 OpenData: https://opendatasus.saude.gov.br/dataset
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6.3 Interactive Web Interface

Figure 16 provides an overview of the web user interface, which is
used for visualization and interactive analysis. We briefly describe
the interface. On the top left, the interface provides the option to
select the region(s) in the map the user wants to analyze. In the
bottom of the interface, the graphic shows the evolution of the
number of connections with time for the selected area of the map.
On the right hand side, the "Total" option shows the histogram of
COVID-19 reported cases, which includes the number of recovered,
active, and total cases, and deaths during the selected time period.
The "Correlation" option shows the result from the correlation
analysis. On the top right, the control panel allows users to zoom
in/out, navigate different time periods and filter city regions by
name. The pop-up button over the selected neighborhood provides
the summary of the COVID-19 numbers for that specific region of
the city.

7 DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a large scale analysis of human mobility
during a crucial stage in the COVID-19 pandemic in Rio de Janeiro
and its suburbs based on cellular network connection logs from
one of the main cellular network providers in Brazil, TIM Brazil.
Our analysis employs aggregate and individual data on cellular
connections from three phases in the first wave of the COVID-19
pandemic: pre-lockdown, during lockdown, and post lockdown, and
draws important conclusions on the impact of lockdown on mobil-
ity. Overall, our research revealed that while lockdowns reduced
the amount of human mobility, a high (approximately 15%) of the
population still ventured significantly out of their neighborhood,
which could have partially contributed to our failure in containing
the spread of COVID-19. Since our analysis is based on large scale
data from one of the most populous cities of the world, our analysis
and resulting conclusions can potentially have positive implications
on understanding mobility and designing lockdowns in other cities
in future waves of the COVID-19 pandemic or other future events
of a similar nature. With COVID-19 still surging in many countries
and cities of the world, we believe our analysis and conclusions can
potentially help in the effective management of the pandemic.
Our work opens up avenues for several important research di-
rections. One immediate next step of our study involves studying
the correlation between mobility of users and infection rates. A
fine-grained understanding of this correlation would be helpful in
designing region-specific lockdowns rather than a one-size-fits-all
solution, which is challenging to enforce for governments and also
hard to adhere for people. Another potential direction involves
applying and designing more sophisticated mobility models to un-
derstand the patterns more effectively [14, 32, 34]. Here, one idea is
to study traffic flow patterns to identify bottlenecks and suggest al-
ternate less congested routes and times that can spread the mobility
and reduce overcrowding in populous and heavily trafficked areas
that have a surge in infection rates. We also plan to develop and in-
tegrate mobility prediction models in this effort so that appropriate
actions can be taken before a surge in infections occurs. We will
continue to integrate our analysis and findings in the COVID-19
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Figure 16: COVID-19 Borescope Web Interface
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