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Department of Computer Science, University of Hamburg, Germany

Email:{sertbas, ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—The convergence of IT and OT technologies results
in the need for efficient network management solutions for
automotive and industrial automation environments. However,
configuring real-time Ethernet networks while maintaining the
desired QoS is challenging due to the dynamic nature of OT
networks and the high configuration parameters. This paper
introduces an SDN-based self-configuration framework for the
fully automated configuration of TSN networks. Unlike standard
TSN configuration, we remove end-host-related dependencies
and put flows initially on default paths to extract traffic
characteristics by monitoring network traffic at edge switches.
Communicated to a central SDN controller, these characteristics
allow to move the flows to optimal paths while maintaining hard
real-time guarantees, for which we also formulate an optimization
problem. Our simulation results indicate that the proposed self-
configuration approach works properly for different network
sizes and numbers of end-hosts. Even though it slightly increases
the average latency of critical frames, it still provides a certain
level of real-time guarantee without any prior knowledge of flows.

Index Terms—self-configuration, time-sensitive networks, soft-
ware defined networking, network management

I. INTRODUCTION

The advent of Industry 4.0 and the Industrial Internet

of Things (IIoT) enables new manufacturing scenarios that

include technologies such as advanced robotics, artificial in-

telligence, advanced sensors, and cloud computing. In such

scenarios, time- and safety-critical messages control physical

processes, which means that timely and guaranteed delivery

becomes highly significant.

The IEEE 802.1 Working Group proposed Time Sensitive

Networking (TSN) standards to empower regular switched

Ethernet with real-time (RT) capabilities. As a result, TSN

enables the coexistence of critical time-sensitive traffic and

traditional Ethernet traffic with various quality of service

(QoS) classes such as low-priority and best-effort. Moreover,

it offers a wide range of functionalities, such as time synchro-

nization, reliability, scheduling, and network management for

RT systems.

In TSN, the management and configuration of a network

is described in IEEE 802.1Qcc Stream Reservation Protocol

(SRP) Enhancements and Performance Improvements [1]. SRP

specifies how to schedule a time-sensitive stream allocating

required network resources. Moreover, the enhancements in

the 802.1Qcc standard defines alternative network configura-

tion and management schemes leveraging SRP. However, all

proposed configuration schemes rely on the active involvement

of the end-hosts to declare their service characteristics and

communication requirements to a centralized or decentralized

management component. This approach requires the manual

configuration of end-hosts, which can be low-power sensors,

cyber-physical systems, or robotics that may not support

registration protocols, to request the necessary resources. Be-

sides, for large-scale systems, such a configuration could be

burdensome and requires continuous maintenance. However,

self-configuration capability of TSN networks is not part of

the current standards as it is just assumed that there is some

centralized or decentralized network controller. Nevertheless,

such a controller is required in large and dynamic TSN

scenarios like smart factories and smart cities.

For this reason, supporting TSN by other networking con-

cepts like SDN seems beneficial [2]–[4]. Unlike traditional

networking, SDN allows to configure communication patterns,

and device settings on the fly [5] based on a centralized control

plane. It allows to split up flows for a transmission on multiple

paths for load-balancing, to use the available bandwidth more

efficiently, and to make network-wide configurations such as

time-synchronization.

In this study, we introduce an SDN-based self-configuration

approach for time-sensitive IoT networks. In our approach,

end-hosts do not need to be TSN-aware and they obtain

required network resources transparently. We assign edge

switches the task to trigger the resource allocation mechanism

with automatically-detected traffic patterns. For that, these

edge switches learn flow characteristics by monitoring and

share them with the controller, which computes the optimal

routing and enforces the related flow rules on the fly. Eventu-

ally, our contributions are

• We introduce a self-configuration approach for the au-

tomated SDN configuration of TSN networks without

introducing a significant delay to the system where only

less than 1% of time triggered (TT) packets experience

further configuration delay.

• We propose a learning component that detect traffic

characteristics and classifies streams as TT and best effort

(BE) automatically with 99.52% and 94.84% accuracy,

respectively. This component eliminates the need for SRP

for various scenarios and enables a seamless configura-

tion scheme for the end-hosts.

• We formulate the time-sensitive optimal routing (TSOR)

model as a mixed integer linear problem (MILP) to find

the optimal routes including TSN gate configurations for
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the streams with detected characteristics.

The remainder of this paper is structured as follows: Section

II summarizes the related work on current TSN flow reg-

istration approaches. Section III describes the current TSN

configuration approaches. In Section IV, we introduce our

overall architecture. Then, we evaluate our approach and

describe our simulation results in Section V. Finally, Section

VI concludes the paper and summarizes future work.

II. RELATED WORK

In this section, we present the literature survey on the

configuration of time-sensitive networks. Offline scheduling

approaches as in [6] statically allocate network resources

for the given communication patterns, e.g., such as time-

triggered traffic. That approach works in certain scenarios,

e.g., automotive systems, where the communication flows are

already known at design time. However, to meet the high

priority QoS requirements of future industrial networks, dy-

namically routing packets depending on the current state, e.g.,

switch workloads, requires a dynamic configuration including

a dynamic resource allocation.

For TSN, configuration of the network resources to transfer

TT traffic is described in IEEE 802.1Qcc [1] on the architec-

tural level. Since it does not provide a concrete specification,

the authors of [5] propose a configuration architecture named

Software-Defined Flow Reservation (SDFR) that is based on

OpenFlow (OF) , which is a protocol to configure forwarding

plane in SDN. However, they only describe the essential com-

ponents as a proof of concept to manage network resources

in RT and to register time-sensitive flows while routing and

scheduling mechanisms are left as out of scope. In [7], a

generic concept for secure and time-sensitive communication

in industrial networks is described. Similar to [5], there is

not any further evaluation or the details of an implementation.

Besides, the configuration of the RT traffic is left as an open

issue.

In [8], the authors propose an SDN-based resource alloca-

tion mechanism for accommodating new flows at runtime. In

some cases accommodating new flow requires the migration

of existing flows. For that, they propose two algorithms as

direct and indirect flow migration. Even though updating one

switch’s forwarding table at a time is pointed as a solution

for unpredictable network behaviour due to the imperfect

synchronization between the switches, the performance is not

evaluated. In another study, a flow-specific bandwidth and

buffer capacity reservation mechanism is proposed [9]. Global

knowledge of the controller is used in routing algorithm

to compute an appropriate network configuration. They also

simplify the end-hosts by removing synchronization features

and employ time-division multiple access (TDMA) mecha-

nism. However, their MILP-based path-finding approach is too

complex to deliver results in RT. In [10], the authors utilize

SDN for configuring time-sensitive flows. They propose a

combined routing and scheduling algorithm for incrementally

adding or removing time-sensitive flows at runtime. The

approach schedules transmission at the edges, which requires

only limited schedule updates. While it does not require any

configuration on switches, it assumes that hosts have a proper

clock synchronization and are involved in the scheduling

process.

These studies mostly focus on TT traffic under significant

assumptions such as having a-priori information about the

traffic and TSN-aware clock synchronized hosts. The authors

in [11], [12] propose a concept of a configuration agent

including a monitor, an extractor, and a scheduler component

to make RT switches self-configurable. However, they consider

only TT traffic and left sporadic traffic as future work. Also,

they propose an abstract end-to-end architecture and do not

evaluate the overall system.

III. BACKGROUND ON IEEE 802.1QCC

In TSN, the configuration starts at end-hosts named talkers

and listeners, which are the source and destination nodes in the

TSN context. A talker sends its specific traffic requirements to

the edge-switch to request network resources and scheduling.

Then, this switch either (i) computes the required resources

and scheduling for the related traffic and forwards the request

to other switches or (ii) directly forwards the request to a

central controller that can configure all the switches on the

path towards the listener accordingly. Afterwards, the talker

starts sending frames to the network.

In the rest of this section, the background information on the

TSN configuration models is given including the description

of the models, user configuration parameters, and the stream

reservation protocol.

A. TSN Configuration Models

There are three models for the configuration of the end-

hosts and the network in the current standard. These models

describe the logical flow of the configuration information at

the architectural level.

In the fully distributed model, an end-host communicate

with the edge switch to declare its traffic requirements and the

switch forwards the requirements to the other core switches

in the network (See Fig. 1-a). Here, switches are not con-

figured by a central entity but in distributed manner with

their local knowledge. Such a configuration is not suitable for

mechanisms that require collaboration between bridges, e.g.,

scheduling via time-aware shapers [13].

In the centralized network/distributed user model, user

configuration is still distributed and edge switches share the

traffic requirements of the end-hosts with a central entity

named central network configuration (CNC) instead of propa-

gating them through other bridges (see Fig. 1-b). Since some

scenarios, such as gate configuration at the switches, require

network-wide knowledge and high computational power, CNC

offers the better configuration with its global knowledge and

possibly higher computational capabilities than forwarding

plane elements.

In the fully centralized model, both user and network

configurations are centralized by centralized user configuration

(CUC) and CNC (see Fig. 1-c). End-hosts communicate with
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Fig. 1: TSN configuration models.

the CUC entity to declare their traffic requirements and capa-

bilities. The CUC configures the end-hosts, which is different

from previous models involving further interaction with the

end-hosts. This might be required for satisfying strict timing

requirements by configuring the packet transmission schedules

of the end-hosts.

B. User/Network Configuration Information

The TSN user/network configuration information consists

of three high-level entities: talker, listener, and status. End-

host or the CUC sends a request message that contains the

respective talker or listener group. Then, the bridge or CNC

sends a reply message that contains the status entity.

The talker entity describes transmission parameters with the

following fields:

• StreamID: It is the unique identifier for the Stream and

has two elements: The destination MAC address and

unique identifier to distinguish between multiple streams

originated from the same source MAC address.

• StreamRank: It is used for deciding which streams can be

dropped when the network resources reach their limits.

• EndStationInterfaces: It is a list of physical interfaces that

behave as talker/listener.

• DataFrameSpecification: It is used for identifying the

frames of a stream based on features like VLAN tag,

source, and destination MAC address.

• TrafficSpecification: It specifies how the talker transmits

frames for the stream to be used by the controller (or

switches) to allocate related resources. It contains fields

such as frame size and interarrival time of the frames.

• UserToNetworkRequirements: It specifies stream require-

ments that need to be satisfied, such as latency and

redundancy.

• InterfaceCapabilities: It specifies the network capabilities

of all interfaces in the EndStationInterfaces group.

Similar to the talker entity, the listener entity also contains

StreamID, EndStationInterfaces, UserToNetworkRequirements

and InterfaceCapabilities features. As a reply to a request from

a talker/listener, the following information is provided:

• StreamID: It identifies the stream for whose status info

was provided.

• StatusInfo: It provides the status of the stream configura-

tion.

• AccumulatedLatency: It specifies the worst-case latency

for a single frame.

• InterfaceConfiguration: It provides the configuration of

interfaces at the talker/listener.

• FailedInterfaces: In case of a failure, it provides a list of

interfaces in the failed end-host or switch.

C. Stream Reservation Protocol

SRP is an extension of the IEEE 802.1Q standard that

describes how to manage resource reservations in LANs [1].

It defines how to specify and propagate talker registrations

through the network with guaranteed QoS. SRP runs at bridges

by recording relevant information about the connected end-

hosts such as communication latency between a talker and a

listener, current stream registrations, etc. The bridges use such

information to provide guaranteed QoS for the TSN streams.

SRP can be used in a centralized and a distributed manner as

defined in [1]. In a distributed model, it only helps to configure

a limited number of parameters with the local information

in a switch. In the centralized model, SRP can be used to

communicate between the talker/listener and CNC. Initially,

the talker requests the required bandwidth resources for a

stream. As long as there is sufficient bandwidth resources on

a selected path from the talker to the listener, that capacity is

allocated for the related stream and the switches are configured

accordingly. SRP also enables talkers/listeners to later join or

leave. However, it requires direct messaging between the end-

hosts and the switches.

As mentioned, SRP requires the active involvement of the

end-hosts through that resource reservation process. Here,

our goal is to remove such end-host related dependencies.
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Fig. 2: Overall system architecture.

Accordingly, in the next section, we present our TSN self-

configuration approach in detail.

IV. TSN SELF-CONFIGURATION APPROACH

In this section, we introduce our SDN-based dynamic self-

configuration approach for TSN that we call SC-TSN. Unlike

the standard TSN configuration, we remove end host-related

dependencies and extract the traffic characteristics in the edge

switches. We first describe the overall framework. Then, we

explain how we extract traffic characteristics by observation

and compute the paths for the TSN flows in detail.

A. SC-TSN Overall System

For our system design, we follow the distributed user and

centralized network configuration model presented in Section

III-A, as shown in Fig. 2. In contrast to standard TSN, the

end-hosts do not need to communicate to a central entity

to announce their traffic requirements. The talker/listeners

communicate directly with their edge-switch. The switch ex-

tracts traffic requirements and forwards them to the SDN-

supported CNC, which is SDN-CNC. The global network view

of the SDN-CNC enables highly optimized networks and fast

responses to varying demands.

When a new flow arrives at an edge switch, we consider

it a low priority BE flow and forward it via the default

paths. These paths are computed in the background by the

Default Path Computation Element (DPCE). There is also the

Monitoring module obtains the network topology as well as

its resource information, e.g., link utilization, and stores them

in the Traffic Engineering Database (TED). We use OF based

statistic collection mechanism to keep TED updated.

In the meantime, we analyze the received streams at the

edge of the network to learn their traffic characteristics to

derive their resource and scheduling requirements. For that, we

empower edge switches with learning capabilities to extract the

traffic patterns such as the frame period p and the maximum

interarrival time of the frames pmax . Those phases are shown

in Fig. 3. All streams are initially tagged as low priority

traffic and forwarded via the default paths without resource

reservation until we learn their characteristics. If the flow is

determined as a TT after a certain time, we tag them as high

priority traffic. Then, the optimal path computation element

(OPCE) computes an optimal path for that flow on the fly,

and the flow is migrated to the new path. We also monitor

flows to ensure that they have a steady transmission period.

In case of that, we calculate deviation from the previously

extracted period, restart the learning procedure, and update

the configuration.

The SC-TSN aims to eliminate SRP’s need as it does not

require information about flow priorities beforehand. In other

words, we tag flows at the ingress of the network based on

the learning module’s decision. Besides, SC-TSN also enables

SRP-like flow registration procedure via the SDN Northbound

API. It could be configured to assign a certain priority level

to the particular talker-listener pair. It is possible to configure

the network so that either we learn traffic characteristics at

the edge or get them via Northbound API. Thus, SC-TSN

is useful for configuration of small to large scale systems

where different traffic types such as cyclic/periodic (e.g.,

signal transmission) or acyclic/sporadic (e.g., event-driven) can

coexist.

B. Learning Traffic Parameters

As explained in Section III-A, in the TSN standard, the

talker informs the network controller about its traffic require-
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Fig. 3: Steps for the flow handling.

ments before the actual communication starts. That require-

ment specification includes frame size and interarrival time

of the frames, which will be used for the allocation of the

required resources. Instead, we learn traffic parameters by

observing the traffic at the edge switches, enhanced by learning

capabilities to analyze incoming frames to extract related

parameters. Since we try to learn traffic at the edge, we do not

need to consider interference derived from other traffic as in

switch to switch links. However, we still need a smart solution

here instead of getting average inter-arrival time as a period.

In the signal processing literature [14], [15] analyzing se-

quences in the frequency domain with Fourier transformation

and autocorrelation for periodicity detection is widely used.

The Fourier transformation works well for short periods, but

may generate many false positives. Thus, the authors of [16]

propose to combine Fourier transformation and autocorrelation

to detect both short and long periods. In this paper, we use this

approach for learning the necessary TSN flow characteristics.

We record the arrival time of the frames for each stream

and then try to find the period in the frequency domain.

For that, we first transform observations to a time sequence

xt = xt1 , xt2 , ...xtn where xtk = 1 means that a frame

arrived at tk. Then, we look at the signal’s power spectral

density by computing the discrete Fourier transform to iden-

tify the frequencies that carry most of the energy. In other

words, power spectral density analysis can discover the most

dominant periods. Then, these periods are validated with the

autocorrelation. In that phase, if the candidate period stays at

the valley of autocorrelation function, it is interpreted as a false

alarm and is discarded. In case that a period stays at the hill

of the autocorrelation function, it is considered a reasonable

Fig. 4: Period extraction steps for example time sequence with

period 50.

period. Fig. 4 shows a working example for a simple time

series with period 50. As can be seen from the figure, looking

only at the periodogram could be misleading, and validation

by autocorrelation helps to get the exact period. In case that the

Learning module detects periodic behaviour of a time sensitive

traffic, it will trigger the OPCE for computation by transferring

the learned parameters.

In order to show different scenarios for frequency based

estimator, we generate three different sample data sequences

as shown in Fig. 5. In Fig. 5a, we simulate an end-host

that initially sends a packet with 50µs. Then, traffic behavior

changes, and it started to send packets with a 25µs period.

There is no packet between t=222µs and t=400µs. This could

be an example of data for the event-triggered traffic that

sends data at different periods depending on events. Here, a

frequency-based period estimator could track the exact period

while looking only to the mean of the interarrival times gives
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Fig. 5: Use case for frequency based period estimator.
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the period as 62us. Then in Fig. 5b, we simulate a scenario that

the packet does not arrive on its period, which should normally

be observed at t=610µs. Another scenario could be a delayed

packet as shown in Fig. 5c. The delayed packet was observed

at t=365µs instead of t=351µs. In both cases the frequency-

based estimator found the exact period (200µs in (b), 50µs in

(c)), while the mean of the interarrival times method results

in the wrong period. From there, we could clearly say that

the frequency-based estimator works well for small and large

periods, even for changing traffic behaviors.

C. Computing Default and Optimal Paths

This section explains how we use extracted traffic parame-

ters to send packets to the respective paths, either the default

path or the optimal path.

1) Computation of default paths: To compute default paths

for low priority flows, we use a link-utilization based shortest

path algorithm. Even tough shortest-path based path compu-

tation is widely used, it is not adaptive to the changing traffic

since static link weights. Therefore, we changed link weights

adaptively based on the current link utilization.

The SDN controller observes the traffic load at the data

plane and adjusts the link weights based on the current link

utilization. To increase the stability of the forwarding tables

and limit the frequent path changes, we follow the same

methodology as proposed by [17]. As shown in Figure 6, we

map current link utilization to the link weights via a linear

weight mapping function. Here link weights remain fixed

for low utilization values, which keeps the routing overhead

low. We compute the weighted average of the last three-link

weights, and then we only update the link weights if the

change is larger than a threshold, e.g., 20% of its previous

value.

With that, DPCE can dynamically update link weights and

computes new paths with the shortest path algorithm. In case

that path changes, it will send OF messages to update the flow

tables of the switches. Then, these paths are stored at switches

to be used for the flows that are tagged as a low priority by

the learning module.

Weight mapping
function

Updated 
link weight

Thresholding

Weighted average
of last n values

Current
link utilization

network

routing algorithm

Fig. 6: Procedure for updating link weights.

2) Computation of optimal paths: The path control and

reservation process for TSN is defined in the IEEE 802.1Qca

standard. However, it only describes abstract architecture and

does not mention any solutions to create such paths.

Accordingly, in this section, we formulate the time-sensitive

optimal routing (TSOR) problem as a mixed integer linear

problem (MILP) to migrate high-priority flows to suitable

paths. Using the model, we find (i) end-to-end paths for given

demands under different quality of service (QoS) requirements

within limited network resources and (ii) a simple gate config-

uration per port (iii) minimizing the overall end-to-end com-

munication latency. Note that the gate configuration scheme

is not fully considered because the complete scheduling is

another complex problem and not in our scope. Here, we

calculate how often a particular gate of the respective port

of a TSN switch is open instead of the exact configuration of

the gate control list (GCL) in the context of time-aware shaper

(TAS) [13] to satisfy given QoS requirements.

Accordingly, we utilize two optimization variables. xdp is

a binary variable to decide if demand d is assigned to path

p. ges, is a continuous variable representing the frequency of

an open gate on the egress port of link e for the service class

s among eight possible classes, including best-effort. That is,

ges specifies the priority given to service class s on directed

link e. While ges = 1 infers that the gate for s should be

open all the time and the entire resource of link e is assigned

for that type of demands, ges ≈ 0 means that any demand of

service type s is not active at all on the respective port and

thus, the gate is closed. From this perspective, ges is affected

by the total bandwidth required for the demands of service

type s as the available resource in e is distributed among those

demands according to their service type. It also affects QoS

by limiting the forwarding frequency of the packets of such

demands. For further information on TAS, service classes and

respective gates, and gate control lists, the readers can follow

the standard [13] and the reference study [18].

The constraints and the objective function of TSOR are

described below.

∑

p∈P

xdp = 1 ∀d ∈ D (1)

Constraint (1) is defined to ensure that each demand d ∈ D
is assigned to exactly one path p ∈ P . Note that we assume

here that all flows are non-bifurcated, e.g., not divided into

multiple paths.

∑

d∈D

∑

p∈P

xdpαephd ≤ ce ∀e ∈ E (2)

Constraint (2) is the link capacity constraint and guarantees

that each link e has sufficient capacity ce to handle the total

load hd of all demands d ∈ D assigned to any path p including

e, s.t. αep = 1.

∑

s∈S

ges = 1 ∀e ∈ E (3)
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Constraint (3) represents the configuration of the gate control

list of e for each class of service s. Here, a gate for class s
is decided to be open on link e proportional to value of ges.

As the gates share limited link resources through a network

interface (or port), when a set of them are open, others should

be closed or open less often.

∑

p∈P

∑

e∈E

xdpαep

[

loe + lqe(1− ges)
]

≤ ld ∀d ∈ D (4)

Constraint (4) is the latency constraint to ensure that the

end-to-end latency on path p is always below the latency

requirement of demand d, which is ld. Besides, s is the service

class of d and the gate configurations ges for that service

class through the all link e belongs to path p, s.t. αep = 1,

impacts the end-to-end latency. Note that while higher values

of ges positively impact the latency on link e as it enables the

traffic of service type s more often, smaller values of it cause

an increased latency due to queueing delay in the respective

gate. Thus, a queueing delay factor lqe is added proportional

to the 1 − ges, when the gate is closed. Apart from that, a

base delay loe representing the port and link characteristics,

e.g., packet processing and propagation delay, is considered

for each link. While those design parameters, lqe and loe , can

be set according the system and network properties, we use

lqe = 0.5 and loe = 1.0 in our simulations.

ges −
∑

d∈D

∑

p∈P

xdpαep

hd

ce
≥ 0 ∀e ∈ E, ∀s ∈ S (5)

Constraint (5) forces ges to be proportional to the total traffic

load of service type s forwarded through the link e. Otherwise,

it would lead to congestion and unexpected packet drops.

xdp ≥ adp ∀d ∈ D, ∀p ∈ P (6)

Lastly, constraint (6) fixes the demands that are already

assigned to a certain path p, i.e., adp = 1 from an existing

configuration. adp is given as input to the problem. Note that

although keeping the previous demands fixed before allocating

a new demand reduces the flexibility of routing, it is important

to have a stable configuration scheme especially for the critical

and high-priority demands. That is, reconfiguring the network

has also a certain cost, e.g., delay for migrating demands,

sending control packets to the switches, and can hinder the

deterministic communication requirements. The evaluation of

that cost might be critical for real deployments but it is out of

the scope of this paper.

min
∑

d∈D

∑

p∈P

∑

e∈E

xdpαep

[

loe + lqe(1− ges)
]

(7)

Our objective function (7) minimizes the overall latency of

the selected paths which is calculated similar to the latency

constraint (4).

Considering the complexity, TSOR has O(|D||P | + |E|)
optimization variables where the number of paths are directly

related to the number of links. Note that even though ges
depends on the number of service classes, it is, at least in

TSN context, defined as eight (including best-effort) and thus

we assume that as a constant. In terms of the number of

constraints, TSOR is bounded by O(|D||P |+ |E|) constraints

with the same assumption on the number of services. Another

important complexity issue is the non-linear constraints and

the objective function. It is easily possible to linearize the

multiplication of a binary variable xdp and non-binary variable

ges using, for instance, McCormick envelopes [19] introducing

some additional complexity. Therefore, we take TSOR as a

linear problem that makes it more convenient to be solved by

the state-of-the-art linear optimization tools.

V. EVALUATION

In this section, we evaluate SC-TSN and compare it to the

SRP-based configuration approach. First, we briefly explain

the evaluation setup and evaluation metrics. Then, we evaluate

the classification performance of the learning module of our

approach at varying traffic load and topology sizes. Finally,

we summarize our evaluation results.

A. Experimental Setup

We implemented SC-TSN in the network simulator OM-

NeT++ v5.5.1 using its INET framework and extending the

existing SDN4CoRE framework [20]. SDN4CoRE enables to

configure both SDN and TSN capable switches via NETCONF

and the OpenFlow protocol. We developed four applications:

OPCE, DPCE, Monitoring, and the switch learning module.

To find the optimal assignment of flows to the paths, we

implemented the optimization problem presented int Section

IV-C2 in CPLEX 12.7.0. We conducted all experiments in a

server with 56-core Intel Xeon 2Ghz CPU and 126GB RAM.

In our experiments, we used three different real-world

network topologies of different sizes from the Topology Zoo

dataset: Getnet, Integra, and Garr201001. The characteristics

of these topologies are summarized in Table I [21]. We

mapped a given topology node to an edge switch with learning

capabilities if its node degree is smaller than the average node

degree and as backbone switch otherwise. We assumed that

end-hosts are connected only to edge switches.

For all given topologies, we compare our approach with

SRP for all given topologies, which is supposed to be the

best case. As explained in Section III-C, in SRP, everything

is given, and all the conditions for an optimal deployment are

already there before the actual communication starts. Thus, it

is the ultimate competent for SC-TSN.

Different service classes, such as TT traffic and BE traffic,

can coexist in the same TSN network. Therefore, we generated

TABLE I: Topologies used in simulation.

Metrics \ Networks Getnet Integra Garr201001

Average node degree 2.29 2.67 2.52

# of edge switches 4 16 38

# of backbone switches 3 11 16

# of edges between switches 8 36 68

# of hosts per switches 10 5 2

Total number of nodes 47 107 130
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mixed traffic scenarios for a comprehensive evaluation. For

TT traffic, we uniformly selected talker-listener pairs whose

packet sending periods are chosen uniformly between 2-20

ms as stated in [22]. We initiated the TT traffic at different

time instances and set fixed frame size as 1522 bytes as

specified in [20]. the same packet size with TT, i.e., 1522,

and exponentially distributed packet interarrival times [23],

[24]. We set the same packet generation rate at each BE

traffic source and configured them to start transmission at the

beginning of the simulation. We also set our simulation time

to 100 seconds and set the statistics collection period to 2

seconds for the link weight updates.

B. Evaluation Metrics

We use the following metrics to evaluate SC-TSN:

• End-to-end latency: The latency of frames until they

reach their destination.

• Number of delayed frames: The total number of delayed

TT frames.

• Classification rate (CR): The ratio of correctly classified

TT and BE frames to the total frames.

• The true negative rate (TNR): The ratio of correctly

classified BE frames.

C. Results

In this section, we first present the performance of the

learning module at edge switches. Then, we compare SC-

TSN with the SRP-based configuration in terms of the end-to-

end latency. Finally, we measure the performance of SC-TSN

under an increasing number TT streams.

1) Performance of learning traffic parameters: In the first

experiment, we evaluated the classification performance of our

learning module for BE and TT traffic under different BE

loads. For that, we kept the same TT flows for each experiment

and varied the interarrival time of BE frames and measured

TABLE II: End-to-end latency of TT frames for varying BE

traffic load.

SRP SC-TSN
Mean BE

traffic
Mean
[ms]

Max
[ms]

Mean
[ms]

Max
[ms]

10ms 1.31 10.52 1.35 17.30
20ms 1.30 4.31 1.32 11.44
50ms 1.29 2.67 1.30 8.08
100ms 1.29 2.48 1.30 6.24

1000ms 1.29 2.47 1.29 5.80

CR and TNR. Fig. 7 shows the accuracy independent of the

interarrival time of BE frames. The results indicate that that

we can classify both TT and BE frames with the CR between

99.52% and 99.85% . We also see that the TNR is between and

94.84% and 99.52% for different rates of BE traffic. For light

BE load, e.g., when the mean of BE traffic is 1000ms, we can

classify almost all BE flows. However, when the interarrival

time decreases, our learning approach starts to classify BE

frames as TT. We run these experiments several times directly

in the simulation environment because even though we use

the same traffic loads, different factors such as queuing delays

affect the frames’ arrival time.

To sum up, our results indicate that the BE classification

rate does not change significantly with an increasing load. In

case of the misclassification of BE traffic as a TT, we tag that

traffic as a high priority and use the optimal paths instead of

the default ones. This may decrease the end-to-end latency

of BE frames. On the other hand, the misclassification of TT

traffic around 0.5% does not significantly affect end-to-end

TT latency because only the first few frames of each TT flow

are misclassified. In that case, those frames are tagged as low

priority and sent through the preconfigured default paths.

2) Impact of learning on the delivery performance: In the

next experiments, we compared SC-TSN with the SRP-based

configuration that has the traffic requirements of TT flows

Fig. 7: Classification performance of the learning module.
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Fig. 8: Comparison of SC-TSN with SRP under the varying BE traffic load.

before the communication. Unlike SRP, we assume that we

do not have information about the talker and its flows, and we

learn this by observation at edge switches.

In the second experiment, we measure how the delay of

TT flows is affected by increasing the BE traffic load. We

used the Integra topology and determined the number of

TT traffic sources as 53 and BE sources as 26 proportional

to the number of nodes in the network. Then, we repeated

the experiment for different interarrival times (µ) of the BE

frames, ranging from 10ms to 1000ms as given in Table II.

We measured the latency and the number of delayed frames.

As expected, SRP and SC-TSN overlapped significantly; they

have the same average and minimum TT latency values. Since

we use priority-based scheduling at the switches, the average

latency of the TT frames is not significantly affected by the

increasing load of the BE traffic. However, we observe an

increase in the maximum latency. Our approach has a higher

maximum latency than SRP, because of the learning process.

The incoming frames before the extraction of the exact period,

are tagged as low priority traffic and send through the default

routes. Therefore, they might be significantly delayed. To

check this, we measure the number of delayed TT frames,

as seen in Fig. 8a. In SRP, we observe a lower number of

delayed frames.

As we explained previously, our learning module may

classify BE frames as high priority traffic and sends a portion

of BE traffic over optimal paths. We see that SC-TSN has

lower BE latency than the SRP in between 10 ms to 50ms.

Even though it seems like the BE classification rate increases

in that interval (see Fig. 7), the number of BE frames is also

increasing while the number of TT frames remains the same.

In other words, the effect of misclassified BE frames becomes

more visible; therefore, we observe lower BE latency in SC-

TSN, as shown in Fig. 8b.

In the third experiment, we measure how effectively the

OPCE module distributes TT flows and how the increasing
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Fig. 9: End-to-end latency of TT frames with respect to an

increasing number of TT flows.

number of TT flows affects the latency of TT frames. We

set the number of TT flows as {1/8, 1/4, 1/2, 1} times in

proportion to the number of nodes in the network. In the

Integra topology, this results in 13, 26, 53, 107 TT flows

respectively. We run the experiment under a low BE load by

setting µ to 100 ms, and the number of BE flows to half the

number of TT flows. Then, we measure the end-to-end latency

of TT flows. Since we use the same OPCE module in both

approaches, the results in Fig. 9 do not show a significant

difference.

In the last experiment, we measure how TT frames are

affected by varying sizes of network topologies and the

scalability of SC-TSN. We used three different topologies

in different sizes as given in Table I. As in the previous

experiments, we set the number of TT flows to half of the

number of nodes and the number of BE flows to half of the

number of TT flows. Consequently, we have 23 TT and 11

BE sources in Getnet, 53 TT and 26 BE sources in Integra,
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Fig. 10: Comparison of SC-TSN with SRP for varied sized

topologies.

and 65 TT and 32 BE sources in Garr201001 topologies.

Fig. 10 shows that optimization problem solving time

does not significantly affect the end-to-end latency for small

topologies such as Getnet. However, for medium- and large-

size topologies, Integra and Garr201001 in our setup, we

observe that latency increases quickly. One important finding

at that experiment is that the latency of TT and BE frames

converges in the larger topologies since the solution time of

the optimization problem increases with the topology size.

VI. CONCLUSION

Configuration of the time-sensitive networks is a chal-

lenging task and requires considerable engineering efforts.

Although the alternative configuration schemes have been

introduced in IEEE 802.1Qcc standard, self-configuration of

TSN is not covered. This paper proposes an SDN-based self-

configuration framework for the TSN networks, SC-TSN, in

accordance with the plug-n-play nature of Ethernet networks.

In that sense, end-hosts do not need to declare their traffic

requirements in advance. Instead, the SC-TSN adapts itself

for the traffic requirements of the streams with different

characteristics and reserve the required resources for routing

the data traffic.

Our experiments indicate that SC-TSN can successfully

detect traffic characteristics with over 97.85% classification

rate. Moreover, it does achieve results close to the SRP with

minimal increase in the end to end latency and below 1% of

the delayed frame rate.

As explained in [13], bounded latency for TT frames can

be assured by configuring which 802.1Q priorities are allowed

to pass through a particular port at a specific time. Otherwise,

end to end latencies are negatively affected by each traversed

switches’ queuing delays on the multi hop routes. Since we

use simple priority-based queuing at the switches instead that

kind of time aware configurations, it is difficult to guarantee

bounded latency. However, the configuration of gate control

lists is possible with the SDN, as shown in [20]. As we

consider the gate configuration in our optimization model,

TSOR, it is also a valuable future work to extend our whole

design, including gate-configuration features.

In our current implementation, we considered only the fixed

packet sizes but it is also one of the parameters to be used in

SRP. Therefore, we should extend SC-TSN in that direction

to handle frequently changing packet sizes, including jumbo

frames.

We also aware that wrongly tagged BE frames use optimal

paths and cause waste of resources. Therefore, we would not

allocate new resources to TT frames after a certain point.

This emphasizes the importance of the learning accuracy.

However, it would not be appropriate to deploy complicated

mechanisms here due to the run time complexity. There could

be other candidates with low computation overhead but high

classification accuracy.
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