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Abstract—In today’s era of Internet of Things (IoT), where
massive amounts of data are produced by IoT and other devices,
edge computing has emerged as a prominent paradigm for
low-latency data processing. However, applications may have
diverse latency requirements: certain latency-sensitive processing
operations may need to be performed at the edge, while delay-
tolerant operations can be performed on the cloud, without
occupying the potentially limited edge computing resources.
To achieve that, we envision an environment where computing
resources are distributed across edge and cloud offerings. In this
paper, we present the design of CLEDGE (CLoud + EDGE),
an information-centric hybrid cloud-edge framework, aiming
to maximize the on-time completion of computational tasks
offloaded by applications with diverse latency requirements. The
design of CLEDGE is motivated by the networking challenges
that mixed reality researchers face. Our evaluation demonstrates
that CLEDGE can complete on-time more than 90% of offloaded
tasks with modest overheads.

Index Terms—Hybrid Cloud-Edge Computing, Named Data
Networking, Mixed Reality

I. INTRODUCTION

Over the last few years, we have witnessed an explosion
of the number of Internet of Things (IoT) devices and the
amounts of data that these devices produce. The number
of IoT devices is expected to grow further in the future,
reaching 75 billion connected IoT devices by 2025 [1]]. This
calls for pervasive edge computing deployments [2], where
computing resources are available at the network edge for the
low-latency processing of data generated by IoT and other
user devices. However, considering the potentially small-scale
deployments of computing resources at the network edge, it is
critical that computational tasks offloaded by user devices are
executed based on the latency they can tolerate by resources
located at a proper distance from the users. For example,
delay-sensitive tasks must be executed as close to users as
possible, while delay-tolerant tasks can be executed further
away (possibly on the cloud), ensuring that: (i) the latency
requirements of applications that offload the tasks are met; and
(i1) resources are utilized efficiently (e.g., delay-tolerant tasks
do not occupy resources close to users that may be critical
for the execution of delay-sensitive tasks). Furthermore, when
computing resources in a particular edge network are fully
utilized, user/application-offloaded tasks should be distributed
in an adaptive, swift manner to nearby edge networks or a
cloud depending on the latency they can tolerate.

To achieve flexible data processing and distribution of tasks,
we envision hybrid computing environments where computing
resources will be distributed across several edge networks and

cloud offerings. In such environments, computing resources
of different access latency and capacities will be available
to users in a hierarchical manner. At the network edge,
limited resources will be available close to users, while a
vast amount of resources will be further away on the cloud
at the cost of higher communication latency. As a realization
of our vision, in this paper, we present CLEDGE (CLoud +
EDGE), an Information-Centric framework for hybrid cloud-
edge computing. The CLEDGE design is motivated by the
networking challenges identified through a survey among
researchers in the mixed reality community. CLEDGE uses
Named Data Networking (NDN) to: (i) realize a two-tier,
flexible synchronization process for the exchange of resource
utilization information among Edge Nodes (ENs) within the
same or different edge networks; and (ii) seamlessly distribute
offloaded tasks for execution towards ENs within the same or
different edge networks or towards cloud offerings.

Our contributions are the following: (i) we motivate the
CLEDGE design through a survey conducted among mixed
reality researchers in order to better understand their network-
ing challenges and requirements; (ii) we present the design
of CLEDGE, a hybrid cloud-edge framework over NDN, to
tackle the challenges of not only mixed reality applications,
but also any application that offloads computational tasks
with disparate latency requirements; and (iii) we perform
an evaluation study of CLEDGE and compare its perfor-
mance with several baseline approaches. Our evaluation results
demonstrate that CLEDGE seamlessly integrates edge and
cloud computing resources. Specifically, CLEDGE achieves
on-time task completion rates of at least 90% under both
light and heavy load conditions with reasonable overheads,
outperforming all baseline approaches by 7-78% in terms of
on-time task completion rates.

II. BACKGROUND AND PRIOR WORK
A. Named Data Networking

Named Data Networking (NDN) [3] utilizes application-
defined hierarchical naming for data publication and communi-
cation. Consumer applications send requests for “named data”,
called Interest packets, which are forwarded towards data
producers based on their names. Once a producer receives an
Interest, it sends back a Data packet that is cryptographically
signed by its producer and contains the requested content. To
forward Interests towards producers and Data packets back
to consumers, NDN forwarders maintain three main data
structures: (i) a Forwarding Information Base (FIB), which
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contains entries of name prefixes along with one or more
outgoing interfaces for Interest forwarding; (ii) a Pending
Interest Table (PIT), which stores information about forwarded
Interests that have not retrieved data yet; and (iii) a Content
Store (CS), which caches retrieved Data packets to satisfy
future requests for the same data.

B. Cloud and Edge Computing Research

The community has explored cloud computing approaches
over NDN, often in combination with other next-generation
networking technologies, such as Software Defined Network-
ing and Network Function Virtualization [4]. Named Function
Networking (NFN) [3]] attempted to utilize lambda expressions
to formulate computations and distribute them for execution
to computing resources. NFaaS extended the NFN design by
placing computing functions in the network and executing
them through lightweight virtual machines [6]. RICE aug-
mented the capabilities offered by both NFN and NFaaS to
enable consumer authentication and input parameter passing
[7]. Amadeo et al. [8], Krol et al. [9]], and Mastorakis et
al. [10] have explored edge computing frameworks in NDN.
Such frameworks can support the execution of programs/tasks
in diverse environments, including the edge of the network.

Other approaches have proposed hybrid computing models
based on Software Defined Networking (SDN) [[L1], however,
the SDN controller becomes a single point of failure, while
approaches to replicate/distribute the controller may result in
considerable overheads [[12]]. Analytical modeling studies of
hybrid computing systems have also been conducted [13]. In
general, traditional IP-based solutions require complex config-
uration and maintenance of the communication infrastructure.
On the contrary, NDN communication is name based. Nodes
and networks can be added or removed transparently to the
users without additional configuration or maintenance.

None of the prior works has focused on effectively distribut-
ing computational tasks over NDN to available computing re-
sources scattered across edge networks and the cloud with the
objective of satisfying the maximum possible number of tasks,
each with its own completion deadline. The initial aspiration
for CLEDGE started from understanding the requirements of a
specific target community (i.e., the mixed reality community).
In the course of designing CLEDGE, we realized that such
requirements apply not only to mixed reality applications but,
in general, to real- or near real-time applications. To this
end, CLEDGE can accommodate the requirements of diverse
application use-cases, such as smart homes, public safety,
industrial control systems, and IoT applications.

III. THE USE-CASE OF MIXED REALITY

To better understand the needs of the mixed reality commu-
nity and align the design of CLEDGE with our primary use-
case, we conducted a community survey among mixed reality
researchers (N=27). Figure presents the requirements of
the mixed reality community in terms of networking. 46%
of the participants pointed out that latency is the most critical
factor. A “reliable” and consistent latency may be also needed,

while having low latency at the beginning of communication
followed by higher latency later on is problematic. 38% of
the participants pointed out the minimization of packet loss
as their primary requirement. However, multiple respondents
indicated that for the use cases where latency is important, the
reduction of packet loss cannot come at the cost of increased
latency. 15% mentioned that guaranteed bandwidth is the most
important requirement for their applications.

Figure [Tb| shows the problem areas. 57% of the responses
indicated that the network struggles to meet their latency re-
quirements. They mentioned several reasons for higher latency
than what their applications can tolerate: high latency towards
remote cloud offerings, inconsistent latency over production
networks, and more. 19% of the participants suggested that
they are concerned about the Quality of Service (QoS), such
as low packet loss, guaranteed deadlines for the delivery of
processing results, and low jitter. Only 14% of the responses
noted a lack of bandwidth as a cause for concern.

Figure |Ic| illustrates the latency breakdown, as desired by
the community. About 46% of the participants require latency
below 50ms, while about 60% require latency below 100ms.
The participants indicated that achieving sub-100ms latency
with cloud computing is unlikely, thus they often deploy and
manage computing resources in their local networks. While
low latency requirements have been reported previously [14]],
[[15], the surprising finding in this survey was the breadth of
use-cases, and how diverse the latency requirements are. Some
applications indeed need ultra-low latency (less than 10-30ms).
However, other applications (e.g., 2D Augmented Reality) can
tolerate up to 100ms or up to a second of latency. The diverse
latency requirements of mixed reality applications cannot be
accommodated through exclusive edge or cloud offerings. For
example, applications that can tolerate up to 50ms of latency
are unlikely to operate properly with cloud offerings, where
Round-Trip Times (RTTs) may vary from 50ms to 300ms [16].

To address these issues, we propose CLEDGE, a hybrid
cloud-edge environment that shows promise to fulfil the di-
verse latency requirements of mixed reality applications. In
CLEDGE, hierarchically distributed computing resources may
be located at different distances from the users: (i) in edge
networks either one hop (accessed through direct links, such
as LTE/5G) or 2-3 hops away from users; and (ii) on remote
clouds. CLEDGE enables the execution of computational tasks
with diverse latency requirements by finding the appropriate
execution locations at the edge or on the cloud based on the
latency that the tasks can tolerate.

IV. SYSTEM MODEL & ASSUMPTIONS

We define an edge network as an autonomous network of
Edge Nodes (ENs), EN;, ENs, ..., EN,, that offer a set
of services (e.g., object recognition, face detection) to users.
The ENs are server-class nodes with computing and storage
resources. We assume that ENs can be accessed though direct
links (e.g., LTE, 5G, WiFi) or links of 2-3 network hops, and
that user devices (e.g., mobile phones, AR headsets) are associ-
ated with an edge network within their communication range.
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Fig. 1: Mixed reality community survey results

Applications running on user devices offload computational
tasks to ENs in the edge network they are associated with by
specifying the services to be invoked along with input data.
The ENs execute these tasks and return the results to the users.

We assume that multiple edge networks may be available,
each administrated by the same or different entities (e.g.,
service providers). Given that edge computing resources may
be limited at any given time, we utilize an adaptive distribution
scheme for offloaded tasks. When a user offloads a task, this
task will be distributed for execution to available computing
resources at an appropriate distance from the user based on
the latency that the task can tolerate. Furthermore, when a
user offloads a task but no resources are available in an edge
network x (i.e., the ENs of x are fully utilized), = can further
offload (distribute) the task to a nearby edge network y with
available resources. When resources are not available at the
edge (i.e., neighboring edge networks do not have adequate
resources available), resources on a cloud may be utilized.

Task naming and composition: Following approaches pro-
posed in prior work [7], [12], we represent computa-
tional tasks as Interests with the following name format:
“/<service-name>/<input-hash>”. An example of a task
name is illustrated in Figure fa] The first name component
of a task specifies the service to be invoked, while the second
one refers to a hash of the task input data, which distinguishes
tasks for the same service but with different input data. Each
task is associated with a deadline by which the edge (or the
cloud) needs to execute the task and return the results back to
the user (i.e., the delay that the user application can tolerate
until it receives the task execution results). This deadline will
be attached to the parameters of an Interest in order to
leverage in-network caching for tasks with the same input.

Input data of small sizes can be directly attached to the
parameters of an Interest [12]. As illustrated in Figure
additional Interest-Data packet exchanges may be employed
to pass input data of larger sizes (e.g., high-resolution images
or video frames) [7]]. In such cases, the EN will utilize the
forwarding hint of the user device to request the input
data from the device. The EN will also send to the device an
estimated Time To Completion (TTC) for the offloaded task

!An Interest can carry both a forwarding hint and a name. The forwarding
hint is a name identifier that specifies “where” (e.g., to which EN or user

device) an Interest for a certain service or data (identified in the Interest
name) should be forwarded.

and a thunk [19]], which is a name that will allow the device
to reach the particular EN that executes the task after TTC
has expired and retrieve the task execution results. A thunk
may consist of a concatenation of the name prefix of the EN
executing the task and a hash that represents the internal state
of execution and identifies the execution of a specific task.
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Fig. 2: Example of the task offloading process.

V. DESIGN
A. Design Overview

We present the design of CLEDGE through a running
example (Figure [3), where multiple edge networks and a
remote cloud are available to execute tasks offloaded by users.
Edge networks are interconnected through a network of Edge
Gateways (EGs). Specifically, one of the ENs in each edge
network is designated as an EG. CLEDGE features a two-
tier synchronization process: the first tier takes place within
an edge network and involves the ENs and the EG in this
network, while the second tier involves synchronization among
the EGs of different edge networks. Through this process, we
enable: (i) ENs to be aware of the up-to-date availability of
computing resources at all other ENs in their edge network;
and (ii) EGs to be aware of the up-to-date availability of
computing resources across edge networks. In addition to
resource availability, ENs will be able to estimate the RTT
to other ENs in the same edge network, while EGs will be
able to estimate the RTT to other edge networks.

Our synchronization process is not bound to a specific
NDN synchronization protocol, but is able to employ existing
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Fig. 3: CLEDGE running example. Three edge networks are
available with a connection to a remote cloud. One edge
network is located on the south campus of the Awesome
University (AU), one on the north campus of AU, and one
in the awesome village where AU is located.
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NDN synchronization protocols [20]], involving two tiers of
synchronization to scale up the overall process and mitigate
the resulting overhead as the number of edge networks and
ENs increases. At the same time, the different synchronization
tiers enable a flexible design, where the synchronization fre-
quency of the first tier is decoupled from the synchronization
frequency of the second tier. Moreover, the synchronization
frequency of ENs in an edge network can be modified inde-
pendently of the frequency of other edge networks, effectively
adapting to the ongoing operational conditions. For instance,
more frequent synchronization can be selected when user traf-
fic and resource utilization change rapidly, while less frequent
synchronization can be selected when conditions are stable.
We evaluate the impact of the synchronization frequency on
the performance and overhead of CLEDGE in Section
CLEDGE adaptively distributes offloaded tasks for execu-
tion with the objective of maximizing the task satisfaction
rate (i.e.,, the execution results will be returned to users by
the deadline of each task). Overall, tasks will be executed as
further from (or closer to) the users as their deadlines allow. To
meet this goal, CLEDGE ensures that delay-sensitive tasks will
find available resources at ENs close to users, while tasks that
can tolerate additional delay will be executed at ENs further
away from users or even on the cloud. For example, once a
user offloads a delay-sensitive task to an EN in edge network
1 (Figure[3), the EN tries to execute the task if it has available
resources. If this EN has no available resources, it offloads the
task to the closest (in terms of RTT) EN with enough resources
to satisfy the deadline. If no ENs or the EG in edge network 1
have available resources and the task cannot tolerate execution
on the cloud, the task is forwarded through the network of EGs
to another edge network with available resources (e.g., edge
network 2 or 3 in Figure [3). In the case of a delay-tolerant
task, the task is distributed to the furthest EN within an edge
network (or even the cloud) that can satisfy the task deadline.
To achieve adaptive and accurate distribution of tasks based
on the latency they can tolerate, ENs need to be aware
of the network delay to available computing resources as
well as the time that these resources may need to execute
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Fig. 4: Namespace design

the tasks. To accomplish that, CLEDGE establishes profiles
for each service offered in an edge network. These profiles
help ENs to estimate how much time each service needs to
execute a task. ENs in an edge network exchange such profile
information (statistics) through the synchronization process
within their network, while, optionally, these statistics can also
be exchanged among edge networks through the EGs.

B. Namespace Design

Figure [] illustrates the namespace design in CLEDGE. As
we mentioned in Section we represent tasks as Interests
that adhere to the following naming format: “/<service-name>
/<input-hash>”. The first name component of a task specifies
the service to be invoked and the second one refers to a hash
of the task input data. These Interests also carry the task
completion deadline in their parameters [17], so that tasks
for the same input can take advantage of NDN in-network
caching. In Figure fla] we illustrate the name of a task that
invokes an annotation service for a certain image as an input.

Each EN has a name under the name prefix of the edge
network it belongs to. For example, in Figure fb] we present
the name of an EN on the south campus of the Awesome
University (AU) and, specifically, in the Computer Science
department. Furthermore, each EG will have a name prefix
for communication with other edge networks. For example,
for the execution of tasks offloaded on the south campus of
AU by computing resources on the north part of the campus,
the tasks will be distributed from the EG of the edge network
on the south campus towards the EG of the edge network on
the north campus through the name presented in Figure

C. Distribution of Tasks Within an Edge Network

Synchronization process: The first tier of synchronization
in CLEDGE involves the ENs and the EG within an edge
network. This process takes place, so that the ENs and the EG
can maintain up-to-date information needed for the adaptive
and accurate distribution of offloaded tasks. Such information
may include the latest utilization of the computing resources
of each EN and the latest statistics about the execution of each
service that will be used for the creation and maintenance of
the service profiles. During this process, each EN can also
measure the RTT to every other EN. Note that an alternative
to synchronization may be an event driven model where
CLEDGE finds an appropriate location of execution as tasks



arrive. However, the additional lookup and task placement time
may cause problems for latency sensitive tasks.
Building service profiles: Each computational task invokes a
certain service. Over time, ENs execute offloaded tasks and
build execution profiles for each invoked service by collecting
statistics during the execution of each task. The statistics to be
collected can be determined by the network administrators, but
metrics of interest may include execution times of tasks (e.g.,
average values, mean values, 95th percentile, or distributions)
per service. To take into account the heterogeneous hardware
specifications that ENs may have, service profiles can further
include the execution times and the utilization of resources
(e.g., required CPU cores, RAM) for different hardware setups.
During the synchronization process, ENs share with each other
updates on the service profiles they have built. Through such
profiles, ENs can estimate the computing resources needed for
the execution of tasks for a service and how long the execution
of tasks for a service might take.
Task distribution process: Once a task is offloaded from a
user application to an EN, the EN estimates whether the task
should be executed right away or it should be distributed to
an EN further away from the user (lazy task execution). To
estimate how far or close to the user a task should be executed,
ENs consider the following factors: (i) the task deadline; (ii)
the RTT towards other ENs in this edge network; (iii) an
estimate of how long the task execution might take based on
the profile of the invoked service; and (iv) the availability of
computing resources on ENs across the edge network.

For example, in Figure [3| let us assume that user A offloads
a task in edge network 1 that reaches EN1 for execution. EN1
will initially use factors (i), (ii), and (iii) to determine whether
the task needs to be executed right away or it can be executed
by an EN in this network further away from the user (i.e., EN2
and EG1). To avoid resource exhaustion, we avoid distributing
offloaded tasks between ENs that are reachable by users
through a direct link (e.g., WiFi, LTE/5G), such as EN1 and
EN3 in Figure[3] unless there are no other computing resources
available in an edge network. Assuming that the task can
tolerate to be executed by both EN2 and EGI, but EG1 does
not have available resources, EN1 will attach EN2’s prefix
(e.g., “/AU/South-Campus/Computer-Science/EN2” following
the namespace design of Figure [) as the task’s forwarding
hint, so that the task is forwarded towards EN2. If both EN2
and EG1 have adequate resources, EG1 will be preferred, since
it makes computing resources closer to users available for tasks
that may not tolerate the network delay towards EG1. In either
case, EN1’s resources will stay available for tasks that cannot
tolerate to be distributed to other ENs for execution.

D. Task Distribution Across Edge Networks and Cloud

Gateway synchronization process: The second tier of syn-
chronization happens among the EGs. Each EG is responsible
for synchronizing with other EGs on behalf of the ENs in its
own edge network. This process takes place, so that each EG
is aware of which edge networks have available resources and
estimate how far these resources might be, so that tasks can

be distributed from one edge network to another for execution
when computing resources are occupied within a network.

During the gateway synchronization process, the informa-

tion to be synchronized among the EGs can be determined
by the edge network administrators. Information of interest
may include: (i) the RTT towards the closest EN in each EG’s
network that has available resources (0 if the EG itself has
available resources); and (ii) the utilization of the resources of
this EN (or the EG itself). EGs may also optionally exchange
aggregated statistics about services invoked within their net-
works to increase the accuracy of the established service
profiles. Through the message exchanges for synchronization,
the EGs can measure the RTT to each other.
Task distribution across edge networks: In contrast to the
cloud, which may offer an abundance of computing resources,
edge networks typically offer limited resources. When an edge
network does not have available resources to execute newly
offloaded tasks, such tasks will be forwarded to the EG of the
network. The EG will determine based on the task deadline,
the availability of resources in other edge networks, and the
RTT towards these resources, whether the task can tolerate
the delay for execution by another edge network or the cloud.
Subsequently, a task will be forwarded to the cloud (preferable
if the task can tolerate the delay given the abundance of cloud
resources) or another edge network with the goal of meeting
the task deadline. As a result, tasks can be executed among
edge networks based on their resource availability.

For distribution of tasks across edge networks, we utilize
forwarding hints. Specifically, the sending EG attaches the
name prefix of the destination edge network (or cloud) as the
forwarding hint of the original task. The name prefixes of edge
networks for communication through the gateways follow the
namespace design of Figure For example, in Figure [3]
let us assume that through the synchronization process within
edge network 1, ENs are aware that no resources are available
in this edge network. In this case, a newly offloaded task will
be forwarded by ENs to EG1. EG1 will decide whether this
task can tolerate to be executed on the cloud or it needs to be
distributed to another edge network for execution. Assuming
that EG1 decides to distribute the task to edge network 2,
EG1 will attach the prefix “/Gateway/AU/North-Campus” as
the forwarding hint of the original task.

VI. EVALUATION

In this section, we evaluate CLEDGE through a simulation
study. Our goal is to evaluate: (i) whether CLEDGE can
successfully meet the completion deadlines of tasks with
diverse latency requirements; (ii) the overhead associated
with CLEDGE; and (iii) whether CLEDGE can offer reliable
latency to applications for the completion of their tasks.

A. Evaluation Setup

We have implemented CLEDGE in ndnSIM [21]. Figure [3]
shows the topology and Table || shows the simulation pa-
rameters. Each edge network mirrors the topology and setup
of edge network 1 in Figure 5] To determine the one-way
network latency from users to the cloud, we ran 1000 pings



from various locations in the US to Amazon Web Services
(AWS) servers in regions around the world using a web tool
(https://www.cloudping.info) Our measurements showed that
the latency to AWS servers in different US regions varies from
40ms to 80ms, therefore, we selected the latency between each
EG and the cloud to be 50ms (about 60ms from users to the
cloud). Each EG is 5 hops away from the cloud, while each
user is 8 hops away from the cloud. The latency and hop count
values follow values reported in recent studies [22] and cloud
computing trends [23].

Each user in our topology randomly selects one of the
offered services. Following the conclusions of our survey
(Section [MI), the services are selected from one of the
following categories: (i) delay-sensitive services invoked by
tasks with deadlines between 10ms and 50ms; (ii) “regular
type” services invoked by tasks with deadlines between 50ms
and 100ms; and (iii) delay-tolerant services invoked by tasks
with deadlines between 100ms and 1000ms. Each service is
associated with a deadline selected based on its category. For
example, a delay-sensitive service s; will be associated with
a deadline randomly selected between 10ms and 50ms and
the tasks that invoke s; will have the associated deadline. We
experimented with two load profiles: (i) light load: each user
offloads 2 to 8 tasks per second for a total of about 500 tasks
per second; and (ii) heavy load: each user offloads 10 to 30
tasks per second for a total of about 2,000 tasks per second. We
also implemented a mechanism for two-tier synchronization,
where each tier synchronizes periodically and independently
of the other. In Section [VI-B] we present the average results
collected over 10 runs for a total of 500,000 tasks per run.

We compare CLEDGE to the following baseline approaches:
(1) cloud-only: tasks are exclusively offloaded onto the cloud
for execution; (ii) edge-only: tasks are offloaded to ENs for
execution. If an EN does not have available resources, it
buffers incoming tasks for later execution in a first come first
served manner once resources become available; (iii) cloud-
edge: tasks are initially offloaded to ENs for execution. If
an EN does not have available resources, then the tasks are
sent to the cloud for execution; and (iv) adaptive cloud-edge:
tasks are offloaded to ENs for execution. If an EN does not
have available resources, tasks are distributed to the closest
(in terms of RTT) EN. The main difference with CLEDGE is
that adaptive cloud-edge does not consider how much latency a
task can tolerate when decisions about the task distribution are
made. If no available resources exist within an edge network,
tasks will be forwarded through an EG to the closest (in terms
of RTT) edge network with available resources. If none of the
edge networks has available resources, tasks will be sent to
the cloud. Our evaluation metrics include the following:

o Task satisfaction rate: The percent of tasks that are
completed on-time (i.e., the tasks are executed and their
results are returned to users by their associated deadlines).

o Normalized overhead: The volume of traffic generated
for the completion of offloaded tasks normalized by the
total size of tasks. For CLEDGE, the overhead includes
the generated traffic for the two-tier synchronization

TABLE I: Simulation parameters.

Parameter Value(s)
Number of edge networks 5
Number of users 100
Number of services 50

NDN directly on top of the MAC layer (IEEE 802.11n

Network Stack for wireless and IEEE 802.3 for wired connections)

Number of tasks that ENs and
EGs can execute simultaneously
Total number of offloaded
tasks per simulation run

Total simulation runs 10
Task execution times 40%-60% of task deadline (randomly selected)

8

500,000

.F‘ . Edge/Cloud Gateway Node

.' Edge/Cloud Node

Edge network 5
Edge network 4

User

User User

Fig. 5: Evaluation topology. Note that we experimented with
varying link delays and numbers of edge networks, services,
and users, concluding that the results of these experiments fol-
low the same trend as the results we present in Section

mechanism and the distribution of tasks for execution
within an edge network, across edge networks, or towards
the cloud. For all other approaches, the overhead includes
the traffic for the distribution of tasks for execution by
the edge or cloud.

o Task completion latency: The average latency for the
completion of offloaded tasks.

« Reliability of task completion latency: The standard
deviation of the completion times of tasks for a certain
service from the deadline associated with this service.

B. Evaluation Results

Task satisfaction rate and overhead: In Figure[6 we present
results for the task satisfaction rate and normalized overhead of
CLEDGE compared to other approaches. Our results indicate
that the execution of tasks on the cloud (cloud-only approach)
results in low task satisfaction rates and significant overhead,
since tasks are forwarded far away from users. Execution of
tasks only by the ENs that receive them from users (edge-only
approach) results in low overhead under light and heavy loads,
low satisfaction rates under heavy loads (the resources of ENs
are always fully utilized), and relatively high satisfaction rates
for low loads (the resources of ENs are in general available).
These results signify the need for a hybrid cloud-edge com-
puting model, since exclusive execution of tasks by the cloud
or edge cannot lead to satisfactory on-time completion rates
under both low and high loads. Furthermore, cloud-edge and
adaptive cloud-edge result in reasonable overhead (between
the range of the cloud-only and edge-only overhead), while



they achieve relatively high satisfaction rates for light loads
and reasonable satisfaction rates for heavy loads.

CLEDGE is able to satisfy 95% and 92% of the offloaded
tasks for light and heavy loads respectively, achieving 7-
78% higher satisfaction rates than the compared approaches.
Specifically, CLEDGE satisfies 13% and 7% more tasks than
cloud-edge and adaptive cloud-edge respectively for light
loads, while, for heavy loads, CLEDGE satisfies 28% and
24% more tasks than cloud-edge and adaptive cloud-edge
respectively. For light loads, the ENs that directly receive
offloaded tasks from users in general have available computing
resources to execute these tasks. However, under heavy loads,
the computing resources of ENs are in general fully utilized,
therefore, CLEDGE can successfully distribute tasks based
on their deadlines to available resources within the same or
different edge networks or onto the cloud.

In terms of overhead, CLEDGE achieves reasonable over-
heads in the range between cloud-only and edge-only. Specif-
icallyy, CLEDGE’s overhead is marginally higher (about 2-
4%) than cloud-edge and adaptive cloud-edge for high loads,
while, for light loads, CLEDGE results in about 11% and
17% higher overheads than cloud-edge and adaptive cloud-
edge respectively. This is attributed to the fact that CLEDGE
aims to provide reliable latency to applications with diverse
latency requirements under network and resource loads that
may rapidly change. To this end, it ensures that a part of the
computing resources of ENs close to users will be available
to execute latency-sensitive tasks that may be received in the
future. This is achieved at the price of forwarding tasks that
can tolerate latency to resources further away from users.
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g
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Fig. 6: Task satisfaction rate and overhead results.

Task completion latency: In Figure /| we present the average
completion latency for all tasks and for each service category.
Our results demonstrate that CLEDGE is the only approach
that achieves completion times lower than the deadlines of
tasks associated with services of all the different categories.
This indicates that CLEDGE can successfully distribute tasks
for execution to available computing resources based on their
deadlines, being able to satisfy categories of tasks/services
with diverse latency requirements. CLEDGE also achieves the
lowest overall task completion latency (i.e., average comple-
tion time among tasks of all categories) and meets the latency
requirements of task categories that other approaches cannot

(e.g., delay-sensitive and regular type tasks under heavy loads).

(a) Task completion latency (heavy load)

402

100

Fig. 7: Average task completion latency. The results for edge-
only are significantly high, thus they are omitted to improve
readability. The “overall” results include the average of the
results of delay-sensitive, regular, and delay-tolerant tasks.

Reliability of task completion latency: In Figure [8] we show
results on the reliability of the task completion latency for
CLEDGE and adaptive cloud-edge for a sample time interval
of 10 seconds during our experiments under heavy load.
Note that we present results for a selected delay-sensitive and
delay-tolerant service. We have verified that these results are
representative of the results for all other services of the same
nature. Our results indicate that CLEDGE achieves consistent
latency for both delay-sensitive and delay-tolerant tasks with
a minimal standard deviation of 3.6ms and 2.9ms respectively.
On the other hand, adaptive cloud-edge results in inconsistent
latency with a standard deviation of 62.7ms and 36.36ms
for delay-sensitive and delay-tolerant tasks respectively. We
verified that all other approaches result in inconsistent latency
and follow the same trend as adaptive cloud-edge.

2501 X Delay-sensitive SD = 3.6ms, average completion latency = 24.77ms
= Delay-tolerant D = 2.9ms, average completion latency = 178.05ms

Task completion latency (ms)
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(a) ReliabiliEtK;MJf task completion (b) Reliabilittk;m f task completion
latency for adaptive cloud-edge latency for CLEDGE

Fig. 8: Reliability of task completion latency for a sample time
interval (10 seconds) under heavy load. Results for completion
latency and Standard Deviation (SD) are presented for the
tasks of a delay-sensitive and delay-tolerant service.

Distribution of executed tasks: Through our evaluation, we



were able to identify whether offloaded tasks were executed
at the edge or on the cloud. We further identified whether
the tasks were executed in the same or a different edge
network than the one they were offloaded onto. Our results
indicated that CLEDGE executed 41-44% of the tasks within
their home edge networks (i.e., the same edge networks the
tasks were offloaded onto), 11-15% across different edge
networks, and 41-48% on the cloud. This is attributed to
the fact that CLEDGE distributed delay-sensitive tasks to
computing resources within their home edge networks, while
tasks were distributed to neighboring edge networks only when
their home edge networks did not have available resources and
the tasks’ deadlines did not allow for execution on the cloud.
Impact of synchronization frequency: In Figures [Oal and 0b]
we present results on the impact of the frequency of the two-
tier synchronization process on the task satisfaction rate and
the overhead of CLEDGE. Our results indicate that the syn-
chronization frequency does not have a major impact on these
metrics under both light and heavy loads. As synchronization
becomes less frequent, the satisfaction rate and the overhead
decrease by 5%. Since the light and heavy load profiles do
not include rapid task offloading rate changes, the results
demonstrate that the synchronization period can be relatively
long (in the order of several seconds). We further performed
experiments where users continuously switched between light
and heavy loads, signifying that the synchronization frequency
can impact the satisfaction rate when rapid changes of the
utilization of the resources happen. In such cases, ENs may
send an explicit notification to synchronize with others when
they detect a rapid change of their resource utilization.

mEm Light load 5551 Heavy load

100
90

N

N

Task satisfaction rate (%)
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(a) Synchronization frequency impact on CLEDGE’s satisfaction rate
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(b) Impact of synchronization frequency on CLEDGE’s overhead

Fig. 9: Impact of the two-tier synchronization frequency on the
task satisfaction rate and overhead. The notation Sync(z/y)
denotes that synchronization takes place within edge networks
every z seconds and among EGs every y seconds.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented CLEDGE, an NDN framework
for hybrid cloud-edge computing. Its design was motivated
by the requirements of the mixed reality community for the
execution of tasks with diverse deadlines along with reliable
response times. Our evaluation indicated that CLEDGE can
provide adaptive distribution of tasks based on the latency they
can tolerate to available computing resources within the same

or different edge networks, and towards the cloud.

In our future work, we will investigate the following direc-
tions: (i) sophisticated synchronization mechanisms that pro-
vide beneficial trade-offs between task satisfaction rates and
overheads; (ii) utilize CLEDGE to facilitate the operation of
a wide range of applications; and (iii) implement a CLEDGE
prototype, conduct a real-world evaluation study of its design,
performance, and scalability.
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